fraudcrawler 0.3.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of fraudcrawler might be problematic. Click here for more details.

@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2025 veanu
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1,163 @@
1
+ Metadata-Version: 2.3
2
+ Name: fraudcrawler
3
+ Version: 0.3.3
4
+ Summary: Intelligent Market Monitoring
5
+ Home-page: https://github/open-veanu/fraudcrawler
6
+ License: MIT
7
+ Author: Domingo Bertus
8
+ Author-email: hello@veanu.ch
9
+ Requires-Python: >=3.11,<4.0
10
+ Classifier: License :: OSI Approved :: MIT License
11
+ Classifier: Programming Language :: Python :: 3
12
+ Classifier: Programming Language :: Python :: 3.11
13
+ Classifier: Programming Language :: Python :: 3.12
14
+ Classifier: Programming Language :: Python :: 3.13
15
+ Requires-Dist: aiohttp (>=3.11.14,<4.0.0)
16
+ Requires-Dist: openai (>=1.68.2,<2.0.0)
17
+ Requires-Dist: pandas (>=2.2.3,<3.0.0)
18
+ Requires-Dist: pydantic-settings (>=2.8.1,<3.0.0)
19
+ Requires-Dist: requests (>=2.32.3,<3.0.0)
20
+ Project-URL: Repository, https://github/open-veanu/fraudcrawler
21
+ Description-Content-Type: text/markdown
22
+
23
+ # open-veanu/fraudcrawler
24
+ Intelligent Market Monitoring
25
+
26
+ The pipeline for monitoring the market has the folling main steps:
27
+ 1. search for a given term using SerpAPI
28
+ 2. get product information using ZyteAPI
29
+ 3. assess relevance of the found products using an OpenAI API
30
+
31
+ ## Installation
32
+ ```bash
33
+ python3.11 -m venv .venv
34
+ source .venv/bin/activate
35
+ pip install fraudcrawler
36
+ ```
37
+
38
+ ## Usage
39
+ ### `.env` file
40
+ Make sure to create an `.env` file with the necessary API keys and credentials (c.f. `.env.example` file).
41
+
42
+ ### Run demo pipeline
43
+ ```bash
44
+ python -m fraudcrawler.launch_demo_pipeline
45
+ ```
46
+
47
+ ### Customize the pipeline
48
+ Start by initializing the client
49
+ ```python
50
+ from fraudcrawler import FraudCrawlerClient
51
+
52
+ # Initialize the client
53
+ client = FraudCrawlerClient()
54
+ ```
55
+
56
+ For setting up the search we need 5 main objects.
57
+
58
+ #### `search_term: str`
59
+ The search term for the query (similar to search terms used within major search providers).
60
+
61
+ #### `language: Language`
62
+ The language used in SerpAPI ('hl' parameter), as well as for the optional search term enrichement (e.g. finding similar and related search terms). `language=Language('German')` creates an object having a language name and a language code as: `Language(name='German', code='de')`.
63
+
64
+ #### `location: Location`
65
+ The location used in SerpAPI ('gl' parameter). `location=Location('Switzerland')` creates an object having a location name and a location code as `Location(name='Switzerland', code='ch')`.
66
+
67
+ #### `deepness: Deepness`
68
+ Defines the search depth with the number of results to retrieve and optional enrichment parameters.
69
+
70
+ #### `prompts: List[Prompt]`
71
+ The list of prompts to classify a given product with (multiple) LLM calls. Each prompt object has a `name`, a `context` (used for defining the user prompt), a `system_prompt` (for defining the classification task), `allowed_classes` (a list of possible classes) and optionally `default_if_missing` (a default class if anything goes wrong).
72
+
73
+ ```python
74
+ from fraudcrawler import Language, Location, Deepness, Prompt
75
+ # Setup the search
76
+ search_term = "sildenafil"
77
+ language = Language(name="German")
78
+ location = Location(name="Switzerland")
79
+ deepness = Deepness(num_results=50)
80
+ prompts = [
81
+ Prompt(
82
+ name="relevance",
83
+ context="This organization is interested in medical products and drugs.",
84
+ system_prompt=(
85
+ "You are a helpful and intelligent assistant. Your task is to classify any given product "
86
+ "as either relevant (1) or not relevant (0), strictly based on the context and product details provided by the user. "
87
+ "You must consider all aspects of the given context and make a binary decision accordingly. "
88
+ "If the product aligns with the user's needs, classify it as 1 (relevant); otherwise, classify it as 0 (not relevant). "
89
+ "Respond only with the number 1 or 0."
90
+ ),
91
+ allowed_classes=[0, 1],
92
+ )
93
+ ]
94
+ ```
95
+
96
+ (Optional) Add search term enrichement. This will find related search terms (in a given language) and search for these as well.
97
+ ```python
98
+ from fraudcrawler import Enrichment
99
+ deepness.enrichment = Enrichment(
100
+ additional_terms=5,
101
+ additional_urls_per_term=10
102
+ )
103
+ ```
104
+
105
+ (Optional) Add marketplaces where we explicitely want to look for (this will focus your search as the :site parameter for a google search)
106
+ ```python
107
+ from fraudcrawler import Host
108
+ marketplaces = [
109
+ Host(name="International", domains="zavamed.com,apomeds.com"),
110
+ Host(name="National", domains="netdoktor.ch, nobelpharma.ch"),
111
+ ]
112
+ ```
113
+
114
+ (Optional) Exclude urls (where you don't want to find products)
115
+ ```python
116
+ excluded_urls = [
117
+ Host(name="Compendium", domains="compendium.ch"),
118
+ ]
119
+ ```
120
+
121
+ (Optional) Exclude previously collected urls (intends to save credits)
122
+ ```python
123
+ previously_collected_urls = [
124
+ https://pharmaciedelabateliere.ch/shop/sante/douleurs-inflammations/dafalgan-cpr-eff-500-mg-16-pce/,
125
+ https://eiche.ch/product/schmerzmittel-52cd81d5d206a/dafalgan-brausetabletten-1336653,
126
+ ]
127
+ ```
128
+
129
+ And finally run the pipeline
130
+ ```python
131
+ # Execute the pipeline
132
+ client.execute(
133
+ search_term=search_term,
134
+ language=language,
135
+ location=location,
136
+ deepness=deepness,
137
+ prompts=prompts,
138
+ # marketplaces=marketplaces, # Uncomment this for using marketplaces
139
+ # excluded_urls=excluded_urls # Uncomment this for using excluded_urls
140
+ # previously_collected_urls=previously_collected_urls # Uncomment this for using previously_selected_urls
141
+ )
142
+ ```
143
+ This creates a file with name pattern `<search_term>_<language.code>_<location.code>_<datetime[%Y%m%d%H%M%S]>.csv` inside the folder `data/results/`.
144
+
145
+ Once the pipeline terminated the results can be loaded and examined as follows:
146
+ ```python
147
+ df = client.load_results()
148
+ print(df.head(n=10))
149
+ ```
150
+
151
+ If the client has been used to run multiple pipelines, an overview of the available results (for a given instance of
152
+ `FraudCrawlerClient`) can be obtained with
153
+ ```python
154
+ client.print_available_results()
155
+ ```
156
+
157
+ ## Contributing
158
+ see `CONTRIBUTING.md`
159
+
160
+ ### Async Setup
161
+ The following image provides a schematic representation of the package's async setup.
162
+ ![Async Setup](https://github.com/open-veanu/fraudcrawler/raw/master/docs/assets/images/Fraudcrawler_Async_Setup.svg)
163
+
@@ -0,0 +1,140 @@
1
+ # open-veanu/fraudcrawler
2
+ Intelligent Market Monitoring
3
+
4
+ The pipeline for monitoring the market has the folling main steps:
5
+ 1. search for a given term using SerpAPI
6
+ 2. get product information using ZyteAPI
7
+ 3. assess relevance of the found products using an OpenAI API
8
+
9
+ ## Installation
10
+ ```bash
11
+ python3.11 -m venv .venv
12
+ source .venv/bin/activate
13
+ pip install fraudcrawler
14
+ ```
15
+
16
+ ## Usage
17
+ ### `.env` file
18
+ Make sure to create an `.env` file with the necessary API keys and credentials (c.f. `.env.example` file).
19
+
20
+ ### Run demo pipeline
21
+ ```bash
22
+ python -m fraudcrawler.launch_demo_pipeline
23
+ ```
24
+
25
+ ### Customize the pipeline
26
+ Start by initializing the client
27
+ ```python
28
+ from fraudcrawler import FraudCrawlerClient
29
+
30
+ # Initialize the client
31
+ client = FraudCrawlerClient()
32
+ ```
33
+
34
+ For setting up the search we need 5 main objects.
35
+
36
+ #### `search_term: str`
37
+ The search term for the query (similar to search terms used within major search providers).
38
+
39
+ #### `language: Language`
40
+ The language used in SerpAPI ('hl' parameter), as well as for the optional search term enrichement (e.g. finding similar and related search terms). `language=Language('German')` creates an object having a language name and a language code as: `Language(name='German', code='de')`.
41
+
42
+ #### `location: Location`
43
+ The location used in SerpAPI ('gl' parameter). `location=Location('Switzerland')` creates an object having a location name and a location code as `Location(name='Switzerland', code='ch')`.
44
+
45
+ #### `deepness: Deepness`
46
+ Defines the search depth with the number of results to retrieve and optional enrichment parameters.
47
+
48
+ #### `prompts: List[Prompt]`
49
+ The list of prompts to classify a given product with (multiple) LLM calls. Each prompt object has a `name`, a `context` (used for defining the user prompt), a `system_prompt` (for defining the classification task), `allowed_classes` (a list of possible classes) and optionally `default_if_missing` (a default class if anything goes wrong).
50
+
51
+ ```python
52
+ from fraudcrawler import Language, Location, Deepness, Prompt
53
+ # Setup the search
54
+ search_term = "sildenafil"
55
+ language = Language(name="German")
56
+ location = Location(name="Switzerland")
57
+ deepness = Deepness(num_results=50)
58
+ prompts = [
59
+ Prompt(
60
+ name="relevance",
61
+ context="This organization is interested in medical products and drugs.",
62
+ system_prompt=(
63
+ "You are a helpful and intelligent assistant. Your task is to classify any given product "
64
+ "as either relevant (1) or not relevant (0), strictly based on the context and product details provided by the user. "
65
+ "You must consider all aspects of the given context and make a binary decision accordingly. "
66
+ "If the product aligns with the user's needs, classify it as 1 (relevant); otherwise, classify it as 0 (not relevant). "
67
+ "Respond only with the number 1 or 0."
68
+ ),
69
+ allowed_classes=[0, 1],
70
+ )
71
+ ]
72
+ ```
73
+
74
+ (Optional) Add search term enrichement. This will find related search terms (in a given language) and search for these as well.
75
+ ```python
76
+ from fraudcrawler import Enrichment
77
+ deepness.enrichment = Enrichment(
78
+ additional_terms=5,
79
+ additional_urls_per_term=10
80
+ )
81
+ ```
82
+
83
+ (Optional) Add marketplaces where we explicitely want to look for (this will focus your search as the :site parameter for a google search)
84
+ ```python
85
+ from fraudcrawler import Host
86
+ marketplaces = [
87
+ Host(name="International", domains="zavamed.com,apomeds.com"),
88
+ Host(name="National", domains="netdoktor.ch, nobelpharma.ch"),
89
+ ]
90
+ ```
91
+
92
+ (Optional) Exclude urls (where you don't want to find products)
93
+ ```python
94
+ excluded_urls = [
95
+ Host(name="Compendium", domains="compendium.ch"),
96
+ ]
97
+ ```
98
+
99
+ (Optional) Exclude previously collected urls (intends to save credits)
100
+ ```python
101
+ previously_collected_urls = [
102
+ https://pharmaciedelabateliere.ch/shop/sante/douleurs-inflammations/dafalgan-cpr-eff-500-mg-16-pce/,
103
+ https://eiche.ch/product/schmerzmittel-52cd81d5d206a/dafalgan-brausetabletten-1336653,
104
+ ]
105
+ ```
106
+
107
+ And finally run the pipeline
108
+ ```python
109
+ # Execute the pipeline
110
+ client.execute(
111
+ search_term=search_term,
112
+ language=language,
113
+ location=location,
114
+ deepness=deepness,
115
+ prompts=prompts,
116
+ # marketplaces=marketplaces, # Uncomment this for using marketplaces
117
+ # excluded_urls=excluded_urls # Uncomment this for using excluded_urls
118
+ # previously_collected_urls=previously_collected_urls # Uncomment this for using previously_selected_urls
119
+ )
120
+ ```
121
+ This creates a file with name pattern `<search_term>_<language.code>_<location.code>_<datetime[%Y%m%d%H%M%S]>.csv` inside the folder `data/results/`.
122
+
123
+ Once the pipeline terminated the results can be loaded and examined as follows:
124
+ ```python
125
+ df = client.load_results()
126
+ print(df.head(n=10))
127
+ ```
128
+
129
+ If the client has been used to run multiple pipelines, an overview of the available results (for a given instance of
130
+ `FraudCrawlerClient`) can be obtained with
131
+ ```python
132
+ client.print_available_results()
133
+ ```
134
+
135
+ ## Contributing
136
+ see `CONTRIBUTING.md`
137
+
138
+ ### Async Setup
139
+ The following image provides a schematic representation of the package's async setup.
140
+ ![Async Setup](https://github.com/open-veanu/fraudcrawler/raw/master/docs/assets/images/Fraudcrawler_Async_Setup.svg)
@@ -0,0 +1,30 @@
1
+ from fraudcrawler.scraping.serp import SerpApi
2
+ from fraudcrawler.scraping.enrich import Enricher
3
+ from fraudcrawler.scraping.zyte import ZyteApi
4
+ from fraudcrawler.processing.processor import Processor
5
+ from fraudcrawler.base.orchestrator import Orchestrator, ProductItem
6
+ from fraudcrawler.base.client import FraudCrawlerClient
7
+ from fraudcrawler.base.base import (
8
+ Deepness,
9
+ Enrichment,
10
+ Host,
11
+ Language,
12
+ Location,
13
+ Prompt,
14
+ )
15
+
16
+ __all__ = [
17
+ "SerpApi",
18
+ "Enricher",
19
+ "ZyteApi",
20
+ "Processor",
21
+ "Orchestrator",
22
+ "ProductItem",
23
+ "FraudCrawlerClient",
24
+ "Language",
25
+ "Location",
26
+ "Host",
27
+ "Deepness",
28
+ "Enrichment",
29
+ "Prompt",
30
+ ]
File without changes
@@ -0,0 +1,145 @@
1
+ import json
2
+ import logging
3
+ from pydantic import BaseModel, field_validator, model_validator
4
+ from pydantic_settings import BaseSettings
5
+ from typing import List
6
+
7
+ import aiohttp
8
+
9
+ from fraudcrawler.settings import (
10
+ GOOGLE_LANGUAGES_FILENAME,
11
+ GOOGLE_LOCATIONS_FILENAME,
12
+ PROCESSOR_DEFAULT_IF_MISSING,
13
+ )
14
+
15
+ logger = logging.getLogger(__name__)
16
+
17
+ # Load google locations and languages
18
+ with open(GOOGLE_LOCATIONS_FILENAME, "r") as gfile:
19
+ _locs = json.load(gfile)
20
+ _LOCATION_CODES = {loc["name"]: loc["country_code"].lower() for loc in _locs}
21
+ with open(GOOGLE_LANGUAGES_FILENAME, "r") as gfile:
22
+ _langs = json.load(gfile)
23
+ _LANGUAGE_CODES = {lang["language_name"]: lang["language_code"] for lang in _langs}
24
+
25
+
26
+ # Base classes
27
+ class Setup(BaseSettings):
28
+ """Class for loading environment variables."""
29
+
30
+ # Crawler ENV variables
31
+ serpapi_key: str
32
+ dataforseo_user: str
33
+ dataforseo_pwd: str
34
+ zyteapi_key: str
35
+ openaiapi_key: str
36
+
37
+ class Config:
38
+ env_file = ".env"
39
+ env_file_encoding = "utf-8"
40
+
41
+
42
+ class Host(BaseModel):
43
+ """Model for host details (e.g. `Host(name="Galaxus", domains="galaxus.ch, digitec.ch")`)."""
44
+
45
+ name: str
46
+ domains: str | List[str]
47
+
48
+ @field_validator("domains", mode="before")
49
+ def split_domains_if_str(cls, val):
50
+ if isinstance(val, str):
51
+ return [dom.strip() for dom in val.split(",")]
52
+ return val
53
+
54
+
55
+ class Location(BaseModel):
56
+ """Model for location details (e.g. `Location(name="Switzerland", code="ch")`)."""
57
+
58
+ name: str
59
+ code: str = ""
60
+
61
+ @model_validator(mode="before")
62
+ def set_code(cls, values):
63
+ """Set the location code if not provided and make it lower case."""
64
+ name = values.get("name")
65
+ code = values.get("code")
66
+ if code is None or not len(code):
67
+ code = _LOCATION_CODES.get(name)
68
+ if code is None:
69
+ raise ValueError(f'Location code not found for location name="{name}"')
70
+ code = code.lower()
71
+ return {"name": name, "code": code}
72
+
73
+
74
+ class Language(BaseModel):
75
+ """Model for language details (e.g. `Language(name="German", code="de")`)."""
76
+
77
+ name: str
78
+ code: str = ""
79
+
80
+ @model_validator(mode="before")
81
+ def set_code(cls, values):
82
+ """Set the language code if not provided and make it lower case."""
83
+ name = values.get("name")
84
+ code = values.get("code")
85
+ if code is None or not len(code):
86
+ code = _LANGUAGE_CODES.get(name)
87
+ if code is None:
88
+ raise ValueError(f'Language code not found for language name="{name}"')
89
+ code = code.lower()
90
+ return {"name": name, "code": code}
91
+
92
+
93
+ class Enrichment(BaseModel):
94
+ """Model for enriching initial search_term with alternative ones."""
95
+
96
+ additional_terms: int
97
+ additional_urls_per_term: int
98
+
99
+
100
+ class Deepness(BaseModel):
101
+ """Model for search depth."""
102
+
103
+ num_results: int
104
+ enrichment: Enrichment | None = None
105
+
106
+
107
+ class Prompt(BaseModel):
108
+ """Model for prompts."""
109
+
110
+ name: str
111
+ context: str
112
+ system_prompt: str
113
+ allowed_classes: List[int]
114
+ default_if_missing: int = PROCESSOR_DEFAULT_IF_MISSING
115
+
116
+
117
+ class AsyncClient:
118
+ """Base class for sub-classes using async HTTP requests."""
119
+
120
+ @staticmethod
121
+ async def get(
122
+ url: str,
123
+ headers: dict | None = None,
124
+ params: dict | None = None,
125
+ ) -> dict:
126
+ """Async GET request of a given URL returning the data."""
127
+ async with aiohttp.ClientSession(headers=headers) as session:
128
+ async with session.get(url=url, params=params) as response:
129
+ response.raise_for_status()
130
+ json_ = await response.json()
131
+ return json_
132
+
133
+ @staticmethod
134
+ async def post(
135
+ url: str,
136
+ headers: dict | None = None,
137
+ data: List[dict] | dict | None = None,
138
+ auth: aiohttp.BasicAuth | None = None,
139
+ ) -> dict:
140
+ """Async POST request of a given URL returning the data."""
141
+ async with aiohttp.ClientSession(headers=headers) as session:
142
+ async with session.post(url=url, json=data, auth=auth) as response:
143
+ response.raise_for_status()
144
+ json_ = await response.json()
145
+ return json_
@@ -0,0 +1,134 @@
1
+ import asyncio
2
+ import csv
3
+ from datetime import datetime
4
+ import logging
5
+ from pathlib import Path
6
+ from pydantic import BaseModel
7
+ from typing import List
8
+
9
+ import pandas as pd
10
+
11
+ from fraudcrawler.settings import ROOT_DIR
12
+ from fraudcrawler.base.base import Setup, Language, Location, Deepness, Host, Prompt
13
+ from fraudcrawler.base.orchestrator import Orchestrator, ProductItem
14
+
15
+ logger = logging.getLogger(__name__)
16
+
17
+ _RESULTS_DIR = ROOT_DIR / "data" / "results"
18
+
19
+
20
+ class Results(BaseModel):
21
+ """The results of the product search."""
22
+
23
+ search_term: str
24
+ filename: Path | None = None
25
+
26
+
27
+ class FraudCrawlerClient(Orchestrator):
28
+ """The main client for FraudCrawler."""
29
+
30
+ _filename_template = "{search_term}_{language}_{location}_{timestamp}.csv"
31
+
32
+ def __init__(self):
33
+ setup = Setup()
34
+ super().__init__(
35
+ serpapi_key=setup.serpapi_key,
36
+ dataforseo_user=setup.dataforseo_user,
37
+ dataforseo_pwd=setup.dataforseo_pwd,
38
+ zyteapi_key=setup.zyteapi_key,
39
+ openaiapi_key=setup.openaiapi_key,
40
+ )
41
+
42
+ self._results_dir = _RESULTS_DIR
43
+ if not self._results_dir.exists():
44
+ self._results_dir.mkdir(parents=True)
45
+ self._results: List[Results] = []
46
+
47
+ async def _collect_results(
48
+ self, queue_in: asyncio.Queue[ProductItem | None]
49
+ ) -> None:
50
+ """Collects the results from the given queue_in and saves it as csv.
51
+
52
+ Args:
53
+ queue_in: The input queue containing the results.
54
+ """
55
+ products = []
56
+ while True:
57
+ product = await queue_in.get()
58
+ if product is None:
59
+ queue_in.task_done()
60
+ break
61
+
62
+ products.append(product.model_dump())
63
+ queue_in.task_done()
64
+
65
+ # Convert the list of products to a DataFrame
66
+ df = pd.json_normalize(products)
67
+ cols = [c.split(".")[-1] for c in df.columns]
68
+ if len(cols) != len(set(cols)):
69
+ logger.error("Duplicate columns after json_normalize.")
70
+ else:
71
+ df.columns = cols
72
+
73
+ # Save the DataFrame to a CSV file
74
+ filename = self._results[-1].filename
75
+ df.to_csv(filename, index=False, quoting=csv.QUOTE_ALL)
76
+ logger.info(f"Results saved to {filename}")
77
+
78
+ def execute(
79
+ self,
80
+ search_term: str,
81
+ language: Language,
82
+ location: Location,
83
+ deepness: Deepness,
84
+ prompts: List[Prompt],
85
+ marketplaces: List[Host] | None = None,
86
+ excluded_urls: List[Host] | None = None,
87
+ ) -> None:
88
+ """Runs the pipeline steps: serp, enrich, zyte, process, and collect the results.
89
+
90
+ Args:
91
+ search_term: The search term for the query.
92
+ language: The language to use for the query.
93
+ location: The location to use for the query.
94
+ deepness: The search depth and enrichment details.
95
+ prompts: The list of prompts to use for classification.
96
+ marketplaces: The marketplaces to include in the search.
97
+ excluded_urls: The URLs to exclude from the search.
98
+ """
99
+ timestamp = datetime.today().strftime("%Y%m%d%H%M%S")
100
+ filename = self._results_dir / self._filename_template.format(
101
+ search_term=search_term,
102
+ language=language.code,
103
+ location=location.code,
104
+ timestamp=timestamp,
105
+ )
106
+ self._results.append(Results(search_term=search_term, filename=filename))
107
+
108
+ asyncio.run(
109
+ super().run(
110
+ search_term=search_term,
111
+ language=language,
112
+ location=location,
113
+ deepness=deepness,
114
+ prompts=prompts,
115
+ marketplaces=marketplaces,
116
+ excluded_urls=excluded_urls,
117
+ )
118
+ )
119
+
120
+ def load_results(self, index: int = -1) -> pd.DataFrame:
121
+ """Loads the results from the saved .csv files.
122
+
123
+ Args:
124
+ index: The index of the results to load (`incex=-1` are the results for the most recent run).
125
+ """
126
+
127
+ results = self._results[index]
128
+ return pd.read_csv(results.filename)
129
+
130
+ def print_available_results(self) -> None:
131
+ """Prints the available results."""
132
+ n_res = len(self._results)
133
+ for i, res in enumerate(self._results):
134
+ print(f"index={-n_res + i}: {res.search_term} - {res.filename}")