foscat 3.0.42__tar.gz → 3.0.43__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (30) hide show
  1. {foscat-3.0.42 → foscat-3.0.43}/PKG-INFO +1 -1
  2. {foscat-3.0.42 → foscat-3.0.43}/setup.py +1 -1
  3. {foscat-3.0.42 → foscat-3.0.43}/src/foscat/FoCUS.py +1 -1
  4. {foscat-3.0.42 → foscat-3.0.43}/src/foscat/scat_cov.py +77 -86
  5. {foscat-3.0.42 → foscat-3.0.43}/src/foscat.egg-info/PKG-INFO +1 -1
  6. {foscat-3.0.42 → foscat-3.0.43}/README.md +0 -0
  7. {foscat-3.0.42 → foscat-3.0.43}/setup.cfg +0 -0
  8. {foscat-3.0.42 → foscat-3.0.43}/src/foscat/CNN.py +0 -0
  9. {foscat-3.0.42 → foscat-3.0.43}/src/foscat/CircSpline.py +0 -0
  10. {foscat-3.0.42 → foscat-3.0.43}/src/foscat/GCNN.py +0 -0
  11. {foscat-3.0.42 → foscat-3.0.43}/src/foscat/GetGPUinfo.py +0 -0
  12. {foscat-3.0.42 → foscat-3.0.43}/src/foscat/Softmax.py +0 -0
  13. {foscat-3.0.42 → foscat-3.0.43}/src/foscat/Spline1D.py +0 -0
  14. {foscat-3.0.42 → foscat-3.0.43}/src/foscat/Synthesis.py +0 -0
  15. {foscat-3.0.42 → foscat-3.0.43}/src/foscat/__init__.py +0 -0
  16. {foscat-3.0.42 → foscat-3.0.43}/src/foscat/backend.py +0 -0
  17. {foscat-3.0.42 → foscat-3.0.43}/src/foscat/backend_tens.py +0 -0
  18. {foscat-3.0.42 → foscat-3.0.43}/src/foscat/loss_backend_tens.py +0 -0
  19. {foscat-3.0.42 → foscat-3.0.43}/src/foscat/loss_backend_torch.py +0 -0
  20. {foscat-3.0.42 → foscat-3.0.43}/src/foscat/scat.py +0 -0
  21. {foscat-3.0.42 → foscat-3.0.43}/src/foscat/scat1D.py +0 -0
  22. {foscat-3.0.42 → foscat-3.0.43}/src/foscat/scat2D.py +0 -0
  23. {foscat-3.0.42 → foscat-3.0.43}/src/foscat/scat_cov1D.py +0 -0
  24. {foscat-3.0.42 → foscat-3.0.43}/src/foscat/scat_cov2D.py +0 -0
  25. {foscat-3.0.42 → foscat-3.0.43}/src/foscat/scat_cov_map.py +0 -0
  26. {foscat-3.0.42 → foscat-3.0.43}/src/foscat/scat_cov_map2D.py +0 -0
  27. {foscat-3.0.42 → foscat-3.0.43}/src/foscat.egg-info/SOURCES.txt +0 -0
  28. {foscat-3.0.42 → foscat-3.0.43}/src/foscat.egg-info/dependency_links.txt +0 -0
  29. {foscat-3.0.42 → foscat-3.0.43}/src/foscat.egg-info/requires.txt +0 -0
  30. {foscat-3.0.42 → foscat-3.0.43}/src/foscat.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: foscat
3
- Version: 3.0.42
3
+ Version: 3.0.43
4
4
  Summary: Generate synthetic Healpix or 2D data using Cross Scattering Transform
5
5
  Home-page: https://github.com/jmdelouis/FOSCAT
6
6
  Author: Jean-Marc DELOUIS
@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
3
3
 
4
4
  setup(
5
5
  name='foscat',
6
- version='3.0.42',
6
+ version='3.0.43',
7
7
  description='Generate synthetic Healpix or 2D data using Cross Scattering Transform' ,
8
8
  long_description='Utilize the Cross Scattering Transform (described in https://arxiv.org/abs/2207.12527) to synthesize Healpix or 2D data that is suitable for component separation purposes, such as denoising. \n A demo package for this process can be found at https://github.com/jmdelouis/FOSCAT_DEMO. \n Complete doc can be found at https://foscat-documentation.readthedocs.io/en/latest/index.html. \n\n List of developers : J.-M. Delouis, T. Foulquier, L. Mousset, T. Odaka, F. Paul, E. Allys ' ,
9
9
  license='MIT',
@@ -32,7 +32,7 @@ class FoCUS:
32
32
  mpi_size=1,
33
33
  mpi_rank=0):
34
34
 
35
- self.__version__ = '3.0.42'
35
+ self.__version__ = '3.0.43'
36
36
  # P00 coeff for normalization for scat_cov
37
37
  self.TMPFILE_VERSION=TMPFILE_VERSION
38
38
  self.P1_dic = None
@@ -68,63 +68,31 @@ class scat_cov:
68
68
  self.backend.constant(self.C01),
69
69
  self.backend.constant(self.C11),
70
70
  s1=s1, c10=c10,backend=self.backend)
71
-
71
+
72
+ def conv2complex(self,val):
73
+ if val.dtype=='complex64' or val.dtype=='complex128' :
74
+ return val
75
+ else:
76
+ return self.backend.bk_complex(val,0*val)
77
+ return val
72
78
  # ---------------------------------------------−---------
73
79
  def flatten(self):
74
- if isinstance(self.P00,np.ndarray):
75
- if self.S1 is None:
76
- if self.C10 is None:
77
- return np.concatenate([self.S0.flatten(),
78
- self.P00.flatten(),
79
- self.C01.flatten(),
80
- self.C11.flatten()],0)
81
- else:
82
- return np.concatenate([self.S0.flatten(),
83
- self.P00.flatten(),
84
- self.C01.flatten(),
85
- self.C10.flatten(),
86
- self.C11.flatten()],0)
87
- else:
88
- if self.C10 is None:
89
- return np.concatenate([self.S0.flatten(),
90
- self.S1.flatten(),
91
- self.P00.flatten(),
92
- self.C01.flatten(),
93
- self.C11.flatten()],0)
94
- else:
95
- return np.concatenate([self.S0.flatten(),
96
- self.S1.flatten(),
97
- self.P00.flatten(),
98
- self.C01.flatten(),
99
- self.C10.flatten(),
100
- self.C11.flatten()],0)
101
- else:
102
- if self.S1 is None:
103
- if self.C10 is None:
104
- return self.backend.bk_concat([self.backend.bk_flattenR(self.S0),
105
- self.backend.bk_flattenR(self.P00),
106
- self.backend.bk_flattenR(self.C01),
107
- self.backend.bk_flattenR(self.C11)],0)
108
- else:
109
- return self.backend.bk_concat([self.backend.bk_flattenR(self.S0),
110
- self.backend.bk_flattenR(self.P00),
111
- self.backend.bk_flattenR(self.C01),
112
- self.backend.bk_flattenR(self.C10),
113
- self.backend.bk_flattenR(self.C11)],0)
114
- else:
115
- if self.C10 is None:
116
- return self.backend.bk_concat([self.backend.bk_flattenR(self.S0),
117
- self.backend.bk_flattenR(self.S1),
118
- self.backend.bk_flattenR(self.P00),
119
- self.backend.bk_flattenR(self.C01),
120
- self.backend.bk_flattenR(self.C11)],0)
121
- else:
122
- return self.backend.bk_concat([self.backend.bk_flattenR(self.S0),
123
- self.backend.bk_flattenR(self.S1),
124
- self.backend.bk_flattenR(self.P00),
125
- self.backend.bk_flattenR(self.C01),
126
- self.backend.bk_flattenR(self.C10),
127
- self.backend.bk_flattenR(self.C11)],0)
80
+ tmp=[self.conv2complex(self.backend.bk_reshape(self.S0[0],[self.S0.shape[1]]))]
81
+ if self.S1 is not None:
82
+ tmp=tmp+[self.conv2complex(self.backend.bk_reshape(self.S1[0],
83
+ [self.S1.shape[1]*self.S1.shape[2]*self.S1.shape[3]]))]
84
+ tmp=tmp+[self.conv2complex(self.backend.bk_reshape(self.P00[0],
85
+ [self.S1.shape[1]*self.S1.shape[2]*self.S1.shape[3]])),
86
+ self.conv2complex(self.backend.bk_reshape(self.C01[0],
87
+ [self.C01.shape[1]*self.C01.shape[2]*self.C01.shape[3]*self.C01.shape[4]]))]
88
+ if self.C10 is not None:
89
+ tmp=tmp+[self.conv2complex(self.backend.bk_reshape(self.C10[0],
90
+ [self.C01.shape[1]*self.C01.shape[2]*self.C01.shape[3]*self.C01.shape[4]]))]
91
+
92
+ tmp=tmp+[self.conv2complex(self.backend.bk_reshape(self.C11[0],
93
+ [self.C11.shape[1]*self.C11.shape[2]*self.C11.shape[3]*self.C11.shape[4]*self.C11.shape[5]]))]
94
+
95
+ return self.backend.bk_concat(tmp,0)
128
96
 
129
97
  # ---------------------------------------------−---------
130
98
  def flattenMask(self):
@@ -780,32 +748,6 @@ class scat_cov:
780
748
  if hold:
781
749
  plt.figure(figsize=(16, 8))
782
750
 
783
- if self.S1 is not None:
784
- plt.subplot(2, 2, 1)
785
- tmp=abs(self.get_np(self.S1))
786
- test=None
787
- if len(tmp.shape)>3:
788
- for k in range(tmp.shape[3]):
789
- for i1 in range(tmp.shape[0]):
790
- for i2 in range(tmp.shape[1]):
791
- if test is None:
792
- test=1
793
- plt.plot(tmp[i1,i2,:,k],color=color, label=r'%s $S_1$' % (name), lw=lw)
794
- else:
795
- plt.plot(tmp[i1,i2,:,k],color=color, lw=lw)
796
- else:
797
- for i1 in range(tmp.shape[0]):
798
- for i2 in range(tmp.shape[1]):
799
- if test is None:
800
- test=1
801
- plt.plot(tmp[i1,i2,:],color=color, label=r'%s $S_1$' % (name), lw=lw)
802
- else:
803
- plt.plot(tmp[i1,i2,:],color=color, lw=lw)
804
- plt.yscale('log')
805
- plt.legend()
806
- plt.ylabel('S1')
807
- plt.xlabel(r'$j_{1}$')
808
-
809
751
  test=None
810
752
  plt.subplot(2, 2, 2)
811
753
  tmp=abs(self.get_np(self.P00))
@@ -831,17 +773,62 @@ class scat_cov:
831
773
  plt.ylabel('P00')
832
774
  plt.xlabel(r'$j_{1}$')
833
775
  plt.legend()
776
+
777
+ if self.S1 is not None:
778
+ plt.subplot(2, 2, 1)
779
+ tmp=abs(self.get_np(self.S1))
780
+ test=None
781
+ if len(tmp.shape)>3:
782
+ for k in range(tmp.shape[3]):
783
+ for i1 in range(tmp.shape[0]):
784
+ for i2 in range(tmp.shape[1]):
785
+ if test is None:
786
+ test=1
787
+ if norm:
788
+ plt.plot(tmp[i1,i2,:,k,]/ntmp[i1,i2,:,k],color=color, label=r'%s norm. $S_1$' % (name), lw=lw)
789
+ else:
790
+ plt.plot(tmp[i1,i2,:,k],color=color, label=r'%s $S_1$' % (name), lw=lw)
791
+ else:
792
+ if norm:
793
+ plt.plot(tmp[i1,i2,:,k]/ntmp[i1,i2,:,k],color=color, lw=lw)
794
+ else:
795
+ plt.plot(tmp[i1,i2,:,k],color=color, lw=lw)
796
+ else:
797
+ for i1 in range(tmp.shape[0]):
798
+ for i2 in range(tmp.shape[1]):
799
+ if test is None:
800
+ test=1
801
+ plt.plot(tmp[i1,i2,:],color=color, label=r'%s $S_1$' % (name), lw=lw)
802
+ else:
803
+ plt.plot(tmp[i1,i2,:],color=color, lw=lw)
804
+ plt.yscale('log')
805
+ plt.legend()
806
+ if norm:
807
+ plt.ylabel(r'$\frac{S_1}{\sqrt{P_{00}}}$')
808
+ else:
809
+ plt.ylabel('$S_1$')
810
+ plt.xlabel(r'$j_{1}$')
834
811
 
835
812
  ax1=plt.subplot(2, 2, 3)
836
813
  ax2 = ax1.twiny()
837
814
  n=0
838
815
  tmp=abs(self.get_np(self.C01))
839
- lname=r'%s $C_{01}$' % (name)
840
- ax1.set_ylabel(r'$C_{01}$')
816
+ if norm:
817
+ lname=r'%s norm. $C_{01}$' % (name)
818
+ ax1.set_ylabel(r'$\frac{C_{01}}{\sqrt{P_{00,j_1}P_{00,j_2}}}$')
819
+ else:
820
+ lname=r'%s $C_{01}$' % (name)
821
+ ax1.set_ylabel(r'$C_{01}$')
822
+
841
823
  if self.C10 is not None:
842
824
  tmp=abs(self.get_np(self.C01))
843
- lname=r'%s $C_{10}$' % (name)
844
- ax1.set_ylabel(r'$C_{10}$')
825
+ if norm:
826
+ lname=r'%s norm. $C_{10}$' % (name)
827
+ ax1.set_ylabel(r'$\frac{C_{10}}{\sqrt{P_{00,j_1}P_{00,j_2}}}$')
828
+ else:
829
+ lname=r'%s $C_{10}$' % (name)
830
+ ax1.set_ylabel(r'$C_{10}$')
831
+
845
832
  test=None
846
833
  tabx=[]
847
834
  tabnx=[]
@@ -992,7 +979,11 @@ class scat_cov:
992
979
  tab2nx=tab2nx+['%d'%(i2)]
993
980
  ax1.axvline(n-0.5,ls=':',color='gray')
994
981
  plt.yscale('log')
995
- ax1.set_ylabel(r'$C_{11}$')
982
+ if norm:
983
+ ax1.set_ylabel(r'$\frac{C_{11}}{\sqrt{P_{00,j_1}P_{00,j_2}}}$')
984
+ else:
985
+ ax1.set_ylabel(r'$C_{11}$')
986
+
996
987
  ax1.set_xticks(tabx)
997
988
  ax1.set_xticklabels(tabnx,fontsize=6)
998
989
  ax1.set_xlabel(r"$j_{2},j_{3}$",fontsize=6)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: foscat
3
- Version: 3.0.42
3
+ Version: 3.0.43
4
4
  Summary: Generate synthetic Healpix or 2D data using Cross Scattering Transform
5
5
  Home-page: https://github.com/jmdelouis/FOSCAT
6
6
  Author: Jean-Marc DELOUIS
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes