foscat 3.0.30__tar.gz → 3.0.31__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (30) hide show
  1. {foscat-3.0.30 → foscat-3.0.31}/PKG-INFO +1 -1
  2. {foscat-3.0.30 → foscat-3.0.31}/setup.py +1 -1
  3. {foscat-3.0.30 → foscat-3.0.31}/src/foscat/FoCUS.py +58 -14
  4. {foscat-3.0.30 → foscat-3.0.31}/src/foscat.egg-info/PKG-INFO +1 -1
  5. {foscat-3.0.30 → foscat-3.0.31}/README.md +0 -0
  6. {foscat-3.0.30 → foscat-3.0.31}/setup.cfg +0 -0
  7. {foscat-3.0.30 → foscat-3.0.31}/src/foscat/CNN.py +0 -0
  8. {foscat-3.0.30 → foscat-3.0.31}/src/foscat/CircSpline.py +0 -0
  9. {foscat-3.0.30 → foscat-3.0.31}/src/foscat/GCNN.py +0 -0
  10. {foscat-3.0.30 → foscat-3.0.31}/src/foscat/GetGPUinfo.py +0 -0
  11. {foscat-3.0.30 → foscat-3.0.31}/src/foscat/Softmax.py +0 -0
  12. {foscat-3.0.30 → foscat-3.0.31}/src/foscat/Spline1D.py +0 -0
  13. {foscat-3.0.30 → foscat-3.0.31}/src/foscat/Synthesis.py +0 -0
  14. {foscat-3.0.30 → foscat-3.0.31}/src/foscat/__init__.py +0 -0
  15. {foscat-3.0.30 → foscat-3.0.31}/src/foscat/backend.py +0 -0
  16. {foscat-3.0.30 → foscat-3.0.31}/src/foscat/backend_tens.py +0 -0
  17. {foscat-3.0.30 → foscat-3.0.31}/src/foscat/loss_backend_tens.py +0 -0
  18. {foscat-3.0.30 → foscat-3.0.31}/src/foscat/loss_backend_torch.py +0 -0
  19. {foscat-3.0.30 → foscat-3.0.31}/src/foscat/scat.py +0 -0
  20. {foscat-3.0.30 → foscat-3.0.31}/src/foscat/scat1D.py +0 -0
  21. {foscat-3.0.30 → foscat-3.0.31}/src/foscat/scat2D.py +0 -0
  22. {foscat-3.0.30 → foscat-3.0.31}/src/foscat/scat_cov.py +0 -0
  23. {foscat-3.0.30 → foscat-3.0.31}/src/foscat/scat_cov1D.py +0 -0
  24. {foscat-3.0.30 → foscat-3.0.31}/src/foscat/scat_cov2D.py +0 -0
  25. {foscat-3.0.30 → foscat-3.0.31}/src/foscat/scat_cov_map.py +0 -0
  26. {foscat-3.0.30 → foscat-3.0.31}/src/foscat/scat_cov_map2D.py +0 -0
  27. {foscat-3.0.30 → foscat-3.0.31}/src/foscat.egg-info/SOURCES.txt +0 -0
  28. {foscat-3.0.30 → foscat-3.0.31}/src/foscat.egg-info/dependency_links.txt +0 -0
  29. {foscat-3.0.30 → foscat-3.0.31}/src/foscat.egg-info/requires.txt +0 -0
  30. {foscat-3.0.30 → foscat-3.0.31}/src/foscat.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: foscat
3
- Version: 3.0.30
3
+ Version: 3.0.31
4
4
  Summary: Generate synthetic Healpix or 2D data using Cross Scattering Transform
5
5
  Home-page: https://github.com/jmdelouis/FOSCAT
6
6
  Author: Jean-Marc DELOUIS
@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
3
3
 
4
4
  setup(
5
5
  name='foscat',
6
- version='3.0.30',
6
+ version='3.0.31',
7
7
  description='Generate synthetic Healpix or 2D data using Cross Scattering Transform' ,
8
8
  long_description='Utilize the Cross Scattering Transform (described in https://arxiv.org/abs/2207.12527) to synthesize Healpix or 2D data that is suitable for component separation purposes, such as denoising. \n A demo package for this process can be found at https://github.com/jmdelouis/FOSCAT_DEMO. \n Complete doc can be found at https://foscat-documentation.readthedocs.io/en/latest/index.html. \n\n List of developers : J.-M. Delouis, T. Foulquier, L. Mousset, T. Odaka, F. Paul, E. Allys ' ,
9
9
  license='MIT',
@@ -32,7 +32,7 @@ class FoCUS:
32
32
  mpi_size=1,
33
33
  mpi_rank=0):
34
34
 
35
- self.__version__ = '3.0.30'
35
+ self.__version__ = '3.0.31'
36
36
  # P00 coeff for normalization for scat_cov
37
37
  self.TMPFILE_VERSION=TMPFILE_VERSION
38
38
  self.P1_dic = None
@@ -323,7 +323,7 @@ class FoCUS:
323
323
  # ---------------------------------------------−---------
324
324
  # make the CNN working : index reporjection of the kernel on healpix
325
325
 
326
- def calc_indices_convol(self,nside,kernel):
326
+ def calc_indices_convol(self,nside,kernel,rotation=None):
327
327
  to,po=hp.pix2ang(nside,np.arange(12*nside*nside),nest=True)
328
328
  x,y,z=hp.pix2vec(nside,np.arange(12*nside*nside),nest=True)
329
329
 
@@ -346,7 +346,10 @@ class FoCUS:
346
346
  print('Nside=%d KenelSZ=%d %.2f%%'%(nside,kernel,k/(12*nside**2)*100))
347
347
  idx2=hp.query_disc(nside, vec[k], np.pi/nside, inclusive=True,nest=True)
348
348
  t2,p2=hp.pix2ang(nside,idx2,nest=True)
349
- rot=[po[k]/np.pi*180.0,90+(-to[k])/np.pi*180.0]
349
+ if rotation is None:
350
+ rot=[po[k]/np.pi*180.0,90+(-to[k])/np.pi*180.0]
351
+ else:
352
+ rot=[po[k]/np.pi*180.0,90+(-to[k])/np.pi*180.0,rotation[k]]
350
353
  r=hp.Rotator(rot=rot)
351
354
  t2,p2=r(t2,p2)
352
355
  idx3=hp.ang2pix(nside,t2,p2,nest=True)
@@ -364,12 +367,46 @@ class FoCUS:
364
367
 
365
368
  indices=indices[0:nn]
366
369
  weights=weights[0:nn]
367
- print('Nside=%d KenelSZ=%d Total Number of value=%d Ratio of the matrix %.2g%%'%(nside,
370
+ if k%(nside*nside)==nside*nside-1:
371
+ print('Nside=%d KenelSZ=%d Total Number of value=%d Ratio of the matrix %.2g%%'%(nside,
368
372
  kernel,
369
373
  nn,
370
374
  100*nn/(kernel*12*nside**2*12*nside**2)))
371
375
  return indices,weights,xc,yc,zc
372
376
 
377
+ # ---------------------------------------------−---------
378
+ def calc_orientation(self,im): # im is [Ndata,12*Nside**2]
379
+ nside=int(np.sqrt(im.shape[1]//12))
380
+ l_kernel=self.KERNELSZ*self.KERNELSZ
381
+ norient=32
382
+ w=np.zeros([l_kernel,1,2*norient])
383
+ ca=np.cos(np.arange(norient)/norient*np.pi)
384
+ sa=np.sin(np.arange(norient)/norient*np.pi)
385
+ stat=np.zeros([12*nside**2,norient])
386
+
387
+ if self.ww_CNN[nside] is None:
388
+ self.init_CNN_index(nside,transpose=False)
389
+
390
+ y=self.Y_CNN[nside]
391
+ z=self.Z_CNN[nside]
392
+
393
+ for k in range(norient):
394
+ w[:,0,k]=(np.exp(-0.5*nside**2*((y)**2+(z)**2))*np.cos(nside*(y*ca[k]+z*sa[k])*np.pi/2))
395
+ w[:,0,k+norient]=(np.exp(-0.5*nside**2*((y)**2+(z)**2))*np.sin(nside*(y*ca[k]+z*sa[k])*np.pi/2))
396
+ w[:,0,k]=w[:,0,k]-np.mean(w[:,0,k])
397
+ w[:,0,k+norient]=w[:,0,k]-np.mean(w[:,0,k+norient])
398
+
399
+ for k in range(im.shape[0]):
400
+ tmp=im[k].reshape(12*nside**2,1)
401
+ im2=self.healpix_layer(tmp,w)
402
+ stat=stat+im2[:,0:norient]**2+im2[:,norient:]**2
403
+
404
+ rotation=(np.argmax(stat,1)).astype('float')/32.*180.0
405
+
406
+ indices,weights,x,y,z=self.calc_indices_convol(nside,9,rotation=rotation)
407
+
408
+ return indices,weights
409
+
373
410
  def init_CNN_index(self,nside,transpose=False):
374
411
  l_kernel=int(self.KERNELSZ*self.KERNELSZ)
375
412
  try:
@@ -391,7 +428,6 @@ class FoCUS:
391
428
  self.X_CNN[nside]=xc
392
429
  self.Y_CNN[nside]=yc
393
430
  self.Z_CNN[nside]=zc
394
- print(weights.min(),weights.max())
395
431
  self.ww_CNN[nside]=self.backend.bk_SparseTensor(indices,
396
432
  weights,[12*nside*nside*l_kernel,
397
433
  12*nside*nside])
@@ -403,9 +439,9 @@ class FoCUS:
403
439
  if self.ww_CNN[nside] is None:
404
440
  self.init_CNN_index(nside)
405
441
  return self.X_CNN[nside],self.Y_CNN[nside],self.Z_CNN[nside]
406
-
442
+
407
443
  # ---------------------------------------------−---------
408
- def healpix_layer_transpose(self,im,ww):
444
+ def healpix_layer_transpose(self,im,ww,indices=None,weights=None):
409
445
  nside=int(np.sqrt(im.shape[0]//12))
410
446
  l_kernel=self.KERNELSZ*self.KERNELSZ
411
447
 
@@ -413,13 +449,13 @@ class FoCUS:
413
449
  if not self.silent:
414
450
  print('Weights channels should be equal to the input image channels')
415
451
  return -1
416
- tmp=self.healpix_layer(im,ww)
452
+ tmp=self.healpix_layer(im,ww,indices=indices,weights=weights)
417
453
 
418
454
  return self.up_grade(tmp,2*nside)
419
455
 
420
456
  # ---------------------------------------------−---------
421
457
  # ---------------------------------------------−---------
422
- def healpix_layer(self,im,ww):
458
+ def healpix_layer(self,im,ww,indices=None,weights=None):
423
459
  nside=int(np.sqrt(im.shape[0]//12))
424
460
  l_kernel=self.KERNELSZ*self.KERNELSZ
425
461
 
@@ -427,12 +463,20 @@ class FoCUS:
427
463
  if not self.silent:
428
464
  print('Weights channels should be equal to the input image channels')
429
465
  return -1
430
-
431
- if self.ww_CNN[nside] is None:
432
- self.init_CNN_index(nside,transpose=False)
466
+
467
+ if indices is None:
468
+ if self.ww_CNN[nside] is None:
469
+ self.init_CNN_index(nside,transpose=False)
470
+ mat=self.ww_CNN[nside]
471
+ else:
472
+ if weights is None:
473
+ print('healpix_layer : If indices is not none weights should be specify')
474
+ return 0
433
475
 
434
- tmp=self.backend.bk_sparse_dense_matmul(self.ww_CNN[nside],im)
435
- print(tmp.shape)
476
+ mat=self.backend.bk_SparseTensor(indices,weights,[12*nside*nside*l_kernel,12*nside*nside])
477
+
478
+ tmp=self.backend.bk_sparse_dense_matmul(mat,im)
479
+
436
480
  density=self.backend.bk_reshape(tmp,[12*nside*nside,l_kernel*im.shape[1]])
437
481
 
438
482
  return self.backend.bk_matmul(density,self.backend.bk_reshape(ww,[l_kernel*im.shape[1],ww.shape[2]]))
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: foscat
3
- Version: 3.0.30
3
+ Version: 3.0.31
4
4
  Summary: Generate synthetic Healpix or 2D data using Cross Scattering Transform
5
5
  Home-page: https://github.com/jmdelouis/FOSCAT
6
6
  Author: Jean-Marc DELOUIS
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes