foscat 3.0.24__tar.gz → 3.0.26__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (30) hide show
  1. {foscat-3.0.24 → foscat-3.0.26}/PKG-INFO +7 -1
  2. {foscat-3.0.24 → foscat-3.0.26}/setup.py +1 -1
  3. {foscat-3.0.24 → foscat-3.0.26}/src/foscat/FoCUS.py +1 -1
  4. {foscat-3.0.24 → foscat-3.0.26}/src/foscat/Softmax.py +10 -6
  5. {foscat-3.0.24 → foscat-3.0.26}/src/foscat/scat1D.py +9 -9
  6. {foscat-3.0.24 → foscat-3.0.26}/src/foscat/scat_cov1D.py +3 -2
  7. {foscat-3.0.24 → foscat-3.0.26}/src/foscat.egg-info/PKG-INFO +7 -1
  8. {foscat-3.0.24 → foscat-3.0.26}/README.md +0 -0
  9. {foscat-3.0.24 → foscat-3.0.26}/setup.cfg +0 -0
  10. {foscat-3.0.24 → foscat-3.0.26}/src/foscat/CNN.py +0 -0
  11. {foscat-3.0.24 → foscat-3.0.26}/src/foscat/CircSpline.py +0 -0
  12. {foscat-3.0.24 → foscat-3.0.26}/src/foscat/GCNN.py +0 -0
  13. {foscat-3.0.24 → foscat-3.0.26}/src/foscat/GetGPUinfo.py +0 -0
  14. {foscat-3.0.24 → foscat-3.0.26}/src/foscat/Spline1D.py +0 -0
  15. {foscat-3.0.24 → foscat-3.0.26}/src/foscat/Synthesis.py +0 -0
  16. {foscat-3.0.24 → foscat-3.0.26}/src/foscat/__init__.py +0 -0
  17. {foscat-3.0.24 → foscat-3.0.26}/src/foscat/backend.py +0 -0
  18. {foscat-3.0.24 → foscat-3.0.26}/src/foscat/backend_tens.py +0 -0
  19. {foscat-3.0.24 → foscat-3.0.26}/src/foscat/loss_backend_tens.py +0 -0
  20. {foscat-3.0.24 → foscat-3.0.26}/src/foscat/loss_backend_torch.py +0 -0
  21. {foscat-3.0.24 → foscat-3.0.26}/src/foscat/scat.py +0 -0
  22. {foscat-3.0.24 → foscat-3.0.26}/src/foscat/scat2D.py +0 -0
  23. {foscat-3.0.24 → foscat-3.0.26}/src/foscat/scat_cov.py +0 -0
  24. {foscat-3.0.24 → foscat-3.0.26}/src/foscat/scat_cov2D.py +0 -0
  25. {foscat-3.0.24 → foscat-3.0.26}/src/foscat/scat_cov_map.py +0 -0
  26. {foscat-3.0.24 → foscat-3.0.26}/src/foscat/scat_cov_map2D.py +0 -0
  27. {foscat-3.0.24 → foscat-3.0.26}/src/foscat.egg-info/SOURCES.txt +0 -0
  28. {foscat-3.0.24 → foscat-3.0.26}/src/foscat.egg-info/dependency_links.txt +0 -0
  29. {foscat-3.0.24 → foscat-3.0.26}/src/foscat.egg-info/requires.txt +0 -0
  30. {foscat-3.0.24 → foscat-3.0.26}/src/foscat.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: foscat
3
- Version: 3.0.24
3
+ Version: 3.0.26
4
4
  Summary: Generate synthetic Healpix or 2D data using Cross Scattering Transform
5
5
  Home-page: https://github.com/jmdelouis/FOSCAT
6
6
  Author: Jean-Marc DELOUIS
@@ -9,6 +9,12 @@ Maintainer: Theo Foulquier
9
9
  Maintainer-email: theo.foulquier@ifremer.fr
10
10
  License: MIT
11
11
  Keywords: Scattering transform,Component separation,denoising
12
+ Requires-Dist: imageio
13
+ Requires-Dist: imagecodecs
14
+ Requires-Dist: matplotlib
15
+ Requires-Dist: numpy
16
+ Requires-Dist: tensorflow
17
+ Requires-Dist: healpy
12
18
 
13
19
  Utilize the Cross Scattering Transform (described in https://arxiv.org/abs/2207.12527) to synthesize Healpix or 2D data that is suitable for component separation purposes, such as denoising.
14
20
  A demo package for this process can be found at https://github.com/jmdelouis/FOSCAT_DEMO.
@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
3
3
 
4
4
  setup(
5
5
  name='foscat',
6
- version='3.0.24',
6
+ version='3.0.26',
7
7
  description='Generate synthetic Healpix or 2D data using Cross Scattering Transform' ,
8
8
  long_description='Utilize the Cross Scattering Transform (described in https://arxiv.org/abs/2207.12527) to synthesize Healpix or 2D data that is suitable for component separation purposes, such as denoising. \n A demo package for this process can be found at https://github.com/jmdelouis/FOSCAT_DEMO. \n Complete doc can be found at https://foscat-documentation.readthedocs.io/en/latest/index.html. \n\n List of developers : J.-M. Delouis, T. Foulquier, L. Mousset, T. Odaka, F. Paul, E. Allys ' ,
9
9
  license='MIT',
@@ -32,7 +32,7 @@ class FoCUS:
32
32
  mpi_size=1,
33
33
  mpi_rank=0):
34
34
 
35
- self.__version__ = '3.0.24'
35
+ self.__version__ = '3.0.26'
36
36
  # P00 coeff for normalization for scat_cov
37
37
  self.TMPFILE_VERSION=TMPFILE_VERSION
38
38
  self.P1_dic = None
@@ -16,7 +16,7 @@ class SoftmaxClassifier:
16
16
  Nhidden (int, optional): Number of neurons in the hidden layer. Defaults to 10.
17
17
  """
18
18
 
19
- def __init__(self, Nval, Nclass, Nhidden=10):
19
+ def __init__(self, Nval, Nclass, Nhidden=10,Nlevel=1):
20
20
  """
21
21
  Initializes the SoftmaxClassifier with a specified number of input features, classes, and hidden neurons.
22
22
 
@@ -28,11 +28,15 @@ class SoftmaxClassifier:
28
28
  Nhidden (int): Number of neurons in the hidden layer.
29
29
  """
30
30
  # Create the model
31
- self.model = Sequential([
32
- Dense(units=Nhidden, activation='relu', input_shape=(Nval,)), # A hidden layer with Nhidden neurons
33
- Dense(units=Nclass), # The output layer with Nclass neurons (for Nclass classes)
34
- Softmax() # Softmax activation for classification
35
- ])
31
+ TheModel=[Dense(units=Nhidden, activation='relu', input_shape=(Nval,))]
32
+
33
+ for k in range(1,Nlevel):
34
+ TheModel=TheModel+[Dense(units=Nhidden, activation='relu', input_shape=(Nhidden,))]
35
+
36
+ TheModel=TheModel+[Dense(units=Nclass), # The output layer with Nclass neurons (for Nclass classes)
37
+ Softmax() # Softmax activation for classification
38
+ ]
39
+ self.model = Sequential(TheModel)
36
40
 
37
41
  # Model compilation
38
42
  self.model.compile(
@@ -42,10 +42,10 @@ class scat1D:
42
42
  def flatten(self,S2L=False):
43
43
  if not S2L:
44
44
  if isinstance(self.P00,np.ndarray):
45
- return np.concatenate([self.build_flat(lf.S0),
46
- self.build_flat(lf.S1),
47
- self.build_flat(lf.P00),
48
- self.build_flat(lf.S2)],1)
45
+ return np.concatenate([self.build_flat(self.S0),
46
+ self.build_flat(self.S1),
47
+ self.build_flat(self.P00),
48
+ self.build_flat(self.S2)],1)
49
49
  else:
50
50
  return self.backend.bk_concat([self.build_flat(self.S0),
51
51
  self.build_flat(self.S1),
@@ -53,11 +53,11 @@ class scat1D:
53
53
  self.build_flat(self.S2)],1)
54
54
  else:
55
55
  if isinstance(self.P00,np.ndarray):
56
- return np.concatenate([self.build_flat(lf.S0),
57
- self.build_flat(lf.S1),
58
- self.build_flat(lf.P00),
59
- self.build_flat(lf.S2),
60
- self.build_flat(lf.S2L)],1)
56
+ return np.concatenate([self.build_flat(self.S0),
57
+ self.build_flat(self.S1),
58
+ self.build_flat(self.P00),
59
+ self.build_flat(self.S2),
60
+ self.build_flat(self.S2L)],1)
61
61
  else:
62
62
  return self.backend.bk_concat([self.build_flat(self.S0),
63
63
  self.build_flat(self.S1),
@@ -375,14 +375,15 @@ class scat_cov1D:
375
375
  (self.C01 - other),
376
376
  c11,
377
377
  s1=s1, c10=c10,backend=self.backend)
378
- def domult(self,x,y):
378
+
379
+ def domult(self,x,y):
379
380
  try:
380
381
  return x*y
381
382
  except:
382
383
  if x.dtype==y.dtype:
383
384
  return x*y
384
385
  if self.backend.bk_is_complex(x):
385
-
386
+
386
387
  return self.backend.bk_complex(self.backend.bk_real(x)*y,self.backend.bk_imag(x)*y)
387
388
  else:
388
389
  return self.backend.bk_complex(self.backend.bk_real(y)*x,self.backend.bk_imag(y)*x)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: foscat
3
- Version: 3.0.24
3
+ Version: 3.0.26
4
4
  Summary: Generate synthetic Healpix or 2D data using Cross Scattering Transform
5
5
  Home-page: https://github.com/jmdelouis/FOSCAT
6
6
  Author: Jean-Marc DELOUIS
@@ -9,6 +9,12 @@ Maintainer: Theo Foulquier
9
9
  Maintainer-email: theo.foulquier@ifremer.fr
10
10
  License: MIT
11
11
  Keywords: Scattering transform,Component separation,denoising
12
+ Requires-Dist: imageio
13
+ Requires-Dist: imagecodecs
14
+ Requires-Dist: matplotlib
15
+ Requires-Dist: numpy
16
+ Requires-Dist: tensorflow
17
+ Requires-Dist: healpy
12
18
 
13
19
  Utilize the Cross Scattering Transform (described in https://arxiv.org/abs/2207.12527) to synthesize Healpix or 2D data that is suitable for component separation purposes, such as denoising.
14
20
  A demo package for this process can be found at https://github.com/jmdelouis/FOSCAT_DEMO.
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes