foscat 3.0.21__tar.gz → 3.0.23__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (30) hide show
  1. {foscat-3.0.21 → foscat-3.0.23}/PKG-INFO +7 -1
  2. {foscat-3.0.21 → foscat-3.0.23}/setup.py +1 -1
  3. {foscat-3.0.21 → foscat-3.0.23}/src/foscat/CNN.py +0 -1
  4. {foscat-3.0.21 → foscat-3.0.23}/src/foscat/FoCUS.py +1 -1
  5. {foscat-3.0.21 → foscat-3.0.23}/src/foscat/scat_cov.py +5 -5
  6. {foscat-3.0.21 → foscat-3.0.23}/src/foscat.egg-info/PKG-INFO +7 -1
  7. {foscat-3.0.21 → foscat-3.0.23}/README.md +0 -0
  8. {foscat-3.0.21 → foscat-3.0.23}/setup.cfg +0 -0
  9. {foscat-3.0.21 → foscat-3.0.23}/src/foscat/CircSpline.py +0 -0
  10. {foscat-3.0.21 → foscat-3.0.23}/src/foscat/GCNN.py +0 -0
  11. {foscat-3.0.21 → foscat-3.0.23}/src/foscat/GetGPUinfo.py +0 -0
  12. {foscat-3.0.21 → foscat-3.0.23}/src/foscat/Softmax.py +0 -0
  13. {foscat-3.0.21 → foscat-3.0.23}/src/foscat/Spline1D.py +0 -0
  14. {foscat-3.0.21 → foscat-3.0.23}/src/foscat/Synthesis.py +0 -0
  15. {foscat-3.0.21 → foscat-3.0.23}/src/foscat/__init__.py +0 -0
  16. {foscat-3.0.21 → foscat-3.0.23}/src/foscat/backend.py +0 -0
  17. {foscat-3.0.21 → foscat-3.0.23}/src/foscat/backend_tens.py +0 -0
  18. {foscat-3.0.21 → foscat-3.0.23}/src/foscat/loss_backend_tens.py +0 -0
  19. {foscat-3.0.21 → foscat-3.0.23}/src/foscat/loss_backend_torch.py +0 -0
  20. {foscat-3.0.21 → foscat-3.0.23}/src/foscat/scat.py +0 -0
  21. {foscat-3.0.21 → foscat-3.0.23}/src/foscat/scat1D.py +0 -0
  22. {foscat-3.0.21 → foscat-3.0.23}/src/foscat/scat2D.py +0 -0
  23. {foscat-3.0.21 → foscat-3.0.23}/src/foscat/scat_cov1D.py +0 -0
  24. {foscat-3.0.21 → foscat-3.0.23}/src/foscat/scat_cov2D.py +0 -0
  25. {foscat-3.0.21 → foscat-3.0.23}/src/foscat/scat_cov_map.py +0 -0
  26. {foscat-3.0.21 → foscat-3.0.23}/src/foscat/scat_cov_map2D.py +0 -0
  27. {foscat-3.0.21 → foscat-3.0.23}/src/foscat.egg-info/SOURCES.txt +0 -0
  28. {foscat-3.0.21 → foscat-3.0.23}/src/foscat.egg-info/dependency_links.txt +0 -0
  29. {foscat-3.0.21 → foscat-3.0.23}/src/foscat.egg-info/requires.txt +0 -0
  30. {foscat-3.0.21 → foscat-3.0.23}/src/foscat.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: foscat
3
- Version: 3.0.21
3
+ Version: 3.0.23
4
4
  Summary: Generate synthetic Healpix or 2D data using Cross Scattering Transform
5
5
  Home-page: https://github.com/jmdelouis/FOSCAT
6
6
  Author: Jean-Marc DELOUIS
@@ -9,6 +9,12 @@ Maintainer: Theo Foulquier
9
9
  Maintainer-email: theo.foulquier@ifremer.fr
10
10
  License: MIT
11
11
  Keywords: Scattering transform,Component separation,denoising
12
+ Requires-Dist: imageio
13
+ Requires-Dist: imagecodecs
14
+ Requires-Dist: matplotlib
15
+ Requires-Dist: numpy
16
+ Requires-Dist: tensorflow
17
+ Requires-Dist: healpy
12
18
 
13
19
  Utilize the Cross Scattering Transform (described in https://arxiv.org/abs/2207.12527) to synthesize Healpix or 2D data that is suitable for component separation purposes, such as denoising.
14
20
  A demo package for this process can be found at https://github.com/jmdelouis/FOSCAT_DEMO.
@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
3
3
 
4
4
  setup(
5
5
  name='foscat',
6
- version='3.0.21',
6
+ version='3.0.23',
7
7
  description='Generate synthetic Healpix or 2D data using Cross Scattering Transform' ,
8
8
  long_description='Utilize the Cross Scattering Transform (described in https://arxiv.org/abs/2207.12527) to synthesize Healpix or 2D data that is suitable for component separation purposes, such as denoising. \n A demo package for this process can be found at https://github.com/jmdelouis/FOSCAT_DEMO. \n Complete doc can be found at https://foscat-documentation.readthedocs.io/en/latest/index.html. \n\n List of developers : J.-M. Delouis, T. Foulquier, L. Mousset, T. Odaka, F. Paul, E. Allys ' ,
9
9
  license='MIT',
@@ -90,7 +90,6 @@ class CNN:
90
90
  im=self.scat_operator.backend.bk_relu(im)
91
91
 
92
92
  for k in range(self.nscale):
93
- print(im.shape)
94
93
  ww=self.scat_operator.backend.bk_reshape(x[nn:nn+self.KERNELSZ*self.KERNELSZ*self.chanlist[k]*self.chanlist[k+1]],
95
94
  [self.KERNELSZ*self.KERNELSZ,self.chanlist[k],self.chanlist[k+1]])
96
95
  nn=nn+self.KERNELSZ*self.KERNELSZ*self.chanlist[k]*self.chanlist[k+1]
@@ -32,7 +32,7 @@ class FoCUS:
32
32
  mpi_size=1,
33
33
  mpi_rank=0):
34
34
 
35
- self.__version__ = '3.0.21'
35
+ self.__version__ = '3.0.23'
36
36
  # P00 coeff for normalization for scat_cov
37
37
  self.TMPFILE_VERSION=TMPFILE_VERSION
38
38
  self.P1_dic = None
@@ -835,7 +835,7 @@ class scat_cov:
835
835
  for i4 in range(tmp.shape[4]):
836
836
  dtmp=tmp[i0,i1,j1==i2,i3,i4]
837
837
  if norm:
838
- dtmp=dtmp/ntmp[i0,i1,i2,i3]
838
+ dtmp=dtmp/(ntmp[i0,i1,i2,i3]*ntmp[i0,i1,j2[j1==i2],i3])
839
839
  if j2[j1==i2].shape[0]==1:
840
840
  ax1.plot(j2[j1==i2]+n,dtmp,'.', \
841
841
  color=color, lw=lw)
@@ -859,7 +859,7 @@ class scat_cov:
859
859
  for i3 in range(tmp.shape[3]):
860
860
  dtmp=tmp[i0,i1,j1==i2,i3]
861
861
  if norm:
862
- dtmp=dtmp/ntmp[i0,i1,i2]
862
+ dtmp=dtmp/(ntmp[i0,i1,i2]*ntmp[i0,i1,j2[j1==i2]])
863
863
  if j2[j1==i2].shape[0]==1:
864
864
  ax1.plot(j2[j1==i2]+n,dtmp,'.', \
865
865
  color=color, lw=lw)
@@ -914,7 +914,7 @@ class scat_cov:
914
914
  tabnx=[]
915
915
  tab2x=[]
916
916
  tab2nx=[]
917
- ntmp=ntmp*ntmp
917
+ ntmp=ntmp
918
918
  if len(tmp.shape)>4:
919
919
  for i0 in range(tmp.shape[0]):
920
920
  for i1 in range(tmp.shape[1]):
@@ -927,7 +927,7 @@ class scat_cov:
927
927
  for i5 in range(tmp.shape[5]):
928
928
  dtmp=tmp[i0,i1,idx,i3,i4,i5]
929
929
  if norm:
930
- dtmp=dtmp/ntmp[i0,i1,i2,i3]
930
+ dtmp=dtmp/(ntmp[i0,i1,i2,i3]*ntmp[i0,i1,i2b,i3])
931
931
  if len(idx)==1:
932
932
  ax1.plot(np.arange(len(idx))+n,dtmp,'.', \
933
933
  color=color, lw=lw)
@@ -954,7 +954,7 @@ class scat_cov:
954
954
  for i3 in range(tmp.shape[3]):
955
955
  dtmp=tmp[i0,i1,idx,i3]
956
956
  if norm:
957
- dtmp=dtmp/ntmp[i0,i1,i2]
957
+ dtmp=dtmp/(ntmp[i0,i1,i2]*ntmp[i0,i1,i2b])
958
958
  if len(idx)==1:
959
959
  ax1.plot(np.arange(len(idx))+n,dtmp,'.', \
960
960
  color=color, lw=lw)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: foscat
3
- Version: 3.0.21
3
+ Version: 3.0.23
4
4
  Summary: Generate synthetic Healpix or 2D data using Cross Scattering Transform
5
5
  Home-page: https://github.com/jmdelouis/FOSCAT
6
6
  Author: Jean-Marc DELOUIS
@@ -9,6 +9,12 @@ Maintainer: Theo Foulquier
9
9
  Maintainer-email: theo.foulquier@ifremer.fr
10
10
  License: MIT
11
11
  Keywords: Scattering transform,Component separation,denoising
12
+ Requires-Dist: imageio
13
+ Requires-Dist: imagecodecs
14
+ Requires-Dist: matplotlib
15
+ Requires-Dist: numpy
16
+ Requires-Dist: tensorflow
17
+ Requires-Dist: healpy
12
18
 
13
19
  Utilize the Cross Scattering Transform (described in https://arxiv.org/abs/2207.12527) to synthesize Healpix or 2D data that is suitable for component separation purposes, such as denoising.
14
20
  A demo package for this process can be found at https://github.com/jmdelouis/FOSCAT_DEMO.
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes