foscat 3.0.14__tar.gz → 3.6.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (54) hide show
  1. foscat-3.6.0/LICENCE +13 -0
  2. foscat-3.6.0/PKG-INFO +184 -0
  3. foscat-3.6.0/README.md +155 -0
  4. foscat-3.6.0/pyproject.toml +89 -0
  5. foscat-3.6.0/setup.cfg +4 -0
  6. foscat-3.6.0/src/foscat/CNN.py +151 -0
  7. foscat-3.6.0/src/foscat/CircSpline.py +119 -0
  8. foscat-3.6.0/src/foscat/FoCUS.py +2706 -0
  9. foscat-3.6.0/src/foscat/GCNN.py +239 -0
  10. {foscat-3.0.14 → foscat-3.6.0}/src/foscat/Softmax.py +29 -20
  11. foscat-3.6.0/src/foscat/Spline1D.py +92 -0
  12. foscat-3.6.0/src/foscat/Synthesis.py +455 -0
  13. foscat-3.6.0/src/foscat/alm.py +690 -0
  14. foscat-3.6.0/src/foscat/alm_tools.py +11 -0
  15. foscat-3.6.0/src/foscat/backend.py +1061 -0
  16. foscat-3.6.0/src/foscat/backend_tens.py +63 -0
  17. foscat-3.6.0/src/foscat/loss_backend_tens.py +70 -0
  18. foscat-3.6.0/src/foscat/loss_backend_torch.py +58 -0
  19. foscat-3.6.0/src/foscat/scat.py +2030 -0
  20. foscat-3.6.0/src/foscat/scat1D.py +1546 -0
  21. foscat-3.6.0/src/foscat/scat2D.py +17 -0
  22. foscat-3.6.0/src/foscat/scat_cov.py +3844 -0
  23. foscat-3.6.0/src/foscat/scat_cov1D.py +18 -0
  24. foscat-3.6.0/src/foscat/scat_cov2D.py +18 -0
  25. foscat-3.6.0/src/foscat/scat_cov_map.py +93 -0
  26. foscat-3.6.0/src/foscat/scat_cov_map2D.py +94 -0
  27. foscat-3.6.0/src/foscat.egg-info/PKG-INFO +184 -0
  28. {foscat-3.0.14 → foscat-3.6.0}/src/foscat.egg-info/SOURCES.txt +6 -3
  29. {foscat-3.0.14 → foscat-3.6.0}/src/foscat.egg-info/requires.txt +1 -0
  30. foscat-3.0.14/PKG-INFO +0 -17
  31. foscat-3.0.14/README.md +0 -61
  32. foscat-3.0.14/setup.cfg +0 -8
  33. foscat-3.0.14/setup.py +0 -27
  34. foscat-3.0.14/src/foscat/CircSpline.py +0 -51
  35. foscat-3.0.14/src/foscat/FoCUS.py +0 -1508
  36. foscat-3.0.14/src/foscat/GCNN.py +0 -100
  37. foscat-3.0.14/src/foscat/GetGPUinfo.py +0 -36
  38. foscat-3.0.14/src/foscat/Spline1D.py +0 -42
  39. foscat-3.0.14/src/foscat/Synthesis.py +0 -387
  40. foscat-3.0.14/src/foscat/backend.py +0 -756
  41. foscat-3.0.14/src/foscat/loss_backend_tens.py +0 -60
  42. foscat-3.0.14/src/foscat/loss_backend_torch.py +0 -64
  43. foscat-3.0.14/src/foscat/scat.py +0 -1406
  44. foscat-3.0.14/src/foscat/scat1D.py +0 -1064
  45. foscat-3.0.14/src/foscat/scat2D.py +0 -15
  46. foscat-3.0.14/src/foscat/scat_cov.py +0 -2433
  47. foscat-3.0.14/src/foscat/scat_cov1D.py +0 -1474
  48. foscat-3.0.14/src/foscat/scat_cov2D.py +0 -16
  49. foscat-3.0.14/src/foscat/scat_cov_map.py +0 -67
  50. foscat-3.0.14/src/foscat/scat_cov_map2D.py +0 -64
  51. foscat-3.0.14/src/foscat.egg-info/PKG-INFO +0 -17
  52. {foscat-3.0.14 → foscat-3.6.0}/src/foscat/__init__.py +0 -0
  53. {foscat-3.0.14 → foscat-3.6.0}/src/foscat.egg-info/dependency_links.txt +0 -0
  54. {foscat-3.0.14 → foscat-3.6.0}/src/foscat.egg-info/top_level.txt +0 -0
foscat-3.6.0/LICENCE ADDED
@@ -0,0 +1,13 @@
1
+ BSD 3-Clause License
2
+
3
+ Copyright (c) 2022, the Foscat developers All rights reserved.
4
+
5
+ Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
6
+
7
+ Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
8
+
9
+ Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
10
+
11
+ Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
12
+
13
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
foscat-3.6.0/PKG-INFO ADDED
@@ -0,0 +1,184 @@
1
+ Metadata-Version: 2.2
2
+ Name: foscat
3
+ Version: 3.6.0
4
+ Summary: Generate synthetic Healpix or 2D data using Cross Scattering Transform
5
+ Author-email: Jean-Marc DELOUIS <jean.marc.delouis@ifremer.fr>
6
+ Maintainer-email: Theo Foulquier <theo.foulquier@ifremer.fr>
7
+ License: BSD-3-Clause
8
+ Project-URL: Repository, https://github.com/jmdelouis/FOSCAT.git
9
+ Project-URL: Issues, https://github.com/jmdelouis/FOSCAT/issues
10
+ Project-URL: Documentation, https://foscat-documentation.readthedocs.io/en/latest/index.html
11
+ Keywords: scattering transform,component separation,denoising
12
+ Classifier: Intended Audience :: Science/Research
13
+ Classifier: License :: OSI Approved :: MIT License
14
+ Classifier: Programming Language :: Python :: 3
15
+ Classifier: Programming Language :: Python :: 3.9
16
+ Classifier: Programming Language :: Python :: 3.10
17
+ Classifier: Programming Language :: Python :: 3.11
18
+ Classifier: Programming Language :: Python :: 3.12
19
+ Requires-Python: >=3.9
20
+ Description-Content-Type: text/markdown
21
+ License-File: LICENCE
22
+ Requires-Dist: imageio
23
+ Requires-Dist: imagecodecs
24
+ Requires-Dist: matplotlib
25
+ Requires-Dist: numpy
26
+ Requires-Dist: tensorflow
27
+ Requires-Dist: healpy
28
+ Requires-Dist: spherical
29
+
30
+ # foscat
31
+
32
+ [![Read the Docs](https://readthedocs.org/projects/foscat-documentation/badge/?version=latest)](https://foscat-documentation.readthedocs.io/en/latest)
33
+
34
+ A python package dedicated to image component separation based on scattering transform analysis designed for high performance computing.
35
+
36
+ ## the concept
37
+
38
+ The foscat genesis has been built to synthesise data (2D or Healpix) using Cross Scattering Transform. For a detailed method description please refer to https://arxiv.org/abs/2207.12527. This algorithm could be effectively usable for component separation (e.g. denoising).
39
+
40
+ A demo package for this process can be found at https://github.com/jmdelouis/FOSCAT_DEMO.
41
+
42
+ ## usage
43
+
44
+ # Short tutorial
45
+
46
+ https://github.com/IAOCEA/demo-foscat-pangeo-eosc/blob/main/Demo_Synthesis.ipynb
47
+
48
+ # FOSCAT_DEMO
49
+
50
+ The python scripts _demo.py_ included in this package demonstrate how to use the foscat library to generate synthetic fields that have patterns with the same statistical properties as a specified image.
51
+
52
+ # Install foscat library
53
+
54
+ Before installing, make sure you have python installed in your enviroment.
55
+ The last version of the foscat library can be installed using PyPi:
56
+
57
+ ```
58
+ pip install foscat
59
+ ```
60
+
61
+ Load the FOSCAT_DEMO package from github.
62
+
63
+ ```
64
+ git clone https://github.com/jmdelouis/FOSCAT_DEMO.git
65
+ ```
66
+
67
+ ## Recommended installing procedures for mac users
68
+
69
+ It is recomended to use python=3.9\*.
70
+
71
+ ```
72
+ micromamba create -n FOSCAT
73
+ micromamba install -n FOSCAT ‘python==3.9*’
74
+ micromamba activate FOSCAT
75
+ pip install foscat
76
+ git clone https://github.com/jmdelouis/FOSCAT_DEMO.git
77
+
78
+ ```
79
+
80
+ ## Recommended installing procedures HPC users
81
+
82
+ It is recomended to install tensorflow in advance. For [DATARMOR](https://pcdm.ifremer.fr/Equipement) for using GPU ;
83
+
84
+ ```
85
+ micromamba create -n FOSCAT
86
+ micromamba install -n FOSCAT ‘python==3.9*’
87
+ micromamba install -n FOSCAT ‘tensorflow==2.11.0’
88
+ micromamba activate FOSCAT
89
+ pip install foscat
90
+ git clone https://github.com/jmdelouis/FOSCAT_DEMO.git
91
+
92
+ ```
93
+
94
+ # Spherical data example
95
+
96
+ ## compute a synthetic image
97
+
98
+ ```
99
+ python demo.py -n=32 -k -c -s=100
100
+ ```
101
+
102
+ The _demo.py_ script serves as a demonstration of the capabilities of the foscat library. It utilizes the Cross Wavelet Scattering Transform to generate a Healpix map that possesses the same characteristics as a specified input map.
103
+
104
+ - `-n=32` computes map with nside=32.
105
+ - `-k` uses 5x5 kernel.
106
+ - `-c` uses Scattering Covariance.
107
+ - `-l` uses LBFGS minimizer.
108
+ - `-s=100` computes 100 steps.
109
+
110
+ ```
111
+ python demo.py -n=8 [-c|--cov][-s|--steps=3000][-S=1234|--seed=1234][-k|--k5x5][-d|--data][-o|--out][-r|--orient] [-p|--path][-a|--adam]
112
+
113
+ ```
114
+
115
+ - The "-n" option specifies the nside of the input map. The maximum nside value is 256 with the default map.
116
+ - The "--cov" option (optional) uses scat_cov instead of scat.
117
+ - The "--steps" option (optional) specifies the number of iterations. If not specified, the default value is 1000.
118
+ - The "--seed" option (optional) specifies the seed of the random generator.
119
+ - The "--path" option (optional) allows you to define the path where the output files will be written. The default path is "data".
120
+ - The "--k5x5" option (optional) uses a 5x5 kernel instead of a 3x3.
121
+ - The "--data" option (optional) specifies the input data file to be used. If not specified, the default file "LSS_map_nside128.npy" will be used.
122
+ - The "--out" option (optional) specifies the output file name. If not specified, the output file will be saved in "demo".
123
+ - The "--orient" option (optional) specifies the number of orientations. If not specified, the default value is 4.
124
+ - The "--adam" option (optional) makes the synthesis using the ADAM optimizer instead of the L_BFGS.
125
+
126
+ ## plot the result
127
+
128
+ The following script generates a series of plots that showcase different aspects of the synthesis process using the _demo.py_ script.
129
+
130
+ > python test2D.py
131
+
132
+ ```
133
+ python plotdemo.py -n=32 -c
134
+ ```
135
+
136
+ # 2D field demo
137
+
138
+ > python test2Dplot.py
139
+
140
+ # compute a synthetic turbulent field
141
+
142
+ The python scripts _demo2D.py_ included in this package demonstrate how to use the foscat library to generate a 2D synthetic fields that have patterns with the same statistical properties as a specified 2D image. In this particular case, the input field is a sea surface temperature extracted from a north atlantic ocean simulation.
143
+
144
+ > python testHealpix.py
145
+
146
+ ```
147
+ python demo2d.py -n=32 -k -c
148
+ ```
149
+
150
+ > python testHplot.py
151
+
152
+ The following script generates a series of plots that showcase different aspects of the synthesis process using the _demo2D.py_ script.
153
+
154
+ ```
155
+ python plotdemo2d.py -n=32 -c
156
+ ```
157
+
158
+ For more information, see the [documentation](https://foscat-documentation.readthedocs.io/en/latest/index.html).
159
+
160
+ > mpirun -np 3 testHealpix_mpi.py
161
+
162
+ ## Authors and acknowledgment
163
+
164
+ Authors: J.-M. Delouis, P. Campeti, T. Foulquier, J. Mangin, L. Mousset, T. Odaka, F. Paul, E. Allys
165
+
166
+ This work is part of the R & T Deepsee project supported by CNES. The authors acknowledge the heritage of the Planck-HFI consortium regarding data, software, knowledge. This work has been supported by the Programme National de Télédétection Spatiale (PNTS, http://programmes.insu.cnrs.fr/pnts/), grant n◦ PNTS-2020-08
167
+
168
+ ## License
169
+
170
+ BSD 3-Clause License
171
+
172
+ Copyright (c) 2022, the Foscat developers All rights reserved.
173
+
174
+ Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
175
+
176
+ Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
177
+
178
+ Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
179
+
180
+ Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
181
+
182
+ ## Project status
183
+
184
+ It is a scientific driven development. We are open to any contributing development.
foscat-3.6.0/README.md ADDED
@@ -0,0 +1,155 @@
1
+ # foscat
2
+
3
+ [![Read the Docs](https://readthedocs.org/projects/foscat-documentation/badge/?version=latest)](https://foscat-documentation.readthedocs.io/en/latest)
4
+
5
+ A python package dedicated to image component separation based on scattering transform analysis designed for high performance computing.
6
+
7
+ ## the concept
8
+
9
+ The foscat genesis has been built to synthesise data (2D or Healpix) using Cross Scattering Transform. For a detailed method description please refer to https://arxiv.org/abs/2207.12527. This algorithm could be effectively usable for component separation (e.g. denoising).
10
+
11
+ A demo package for this process can be found at https://github.com/jmdelouis/FOSCAT_DEMO.
12
+
13
+ ## usage
14
+
15
+ # Short tutorial
16
+
17
+ https://github.com/IAOCEA/demo-foscat-pangeo-eosc/blob/main/Demo_Synthesis.ipynb
18
+
19
+ # FOSCAT_DEMO
20
+
21
+ The python scripts _demo.py_ included in this package demonstrate how to use the foscat library to generate synthetic fields that have patterns with the same statistical properties as a specified image.
22
+
23
+ # Install foscat library
24
+
25
+ Before installing, make sure you have python installed in your enviroment.
26
+ The last version of the foscat library can be installed using PyPi:
27
+
28
+ ```
29
+ pip install foscat
30
+ ```
31
+
32
+ Load the FOSCAT_DEMO package from github.
33
+
34
+ ```
35
+ git clone https://github.com/jmdelouis/FOSCAT_DEMO.git
36
+ ```
37
+
38
+ ## Recommended installing procedures for mac users
39
+
40
+ It is recomended to use python=3.9\*.
41
+
42
+ ```
43
+ micromamba create -n FOSCAT
44
+ micromamba install -n FOSCAT ‘python==3.9*’
45
+ micromamba activate FOSCAT
46
+ pip install foscat
47
+ git clone https://github.com/jmdelouis/FOSCAT_DEMO.git
48
+
49
+ ```
50
+
51
+ ## Recommended installing procedures HPC users
52
+
53
+ It is recomended to install tensorflow in advance. For [DATARMOR](https://pcdm.ifremer.fr/Equipement) for using GPU ;
54
+
55
+ ```
56
+ micromamba create -n FOSCAT
57
+ micromamba install -n FOSCAT ‘python==3.9*’
58
+ micromamba install -n FOSCAT ‘tensorflow==2.11.0’
59
+ micromamba activate FOSCAT
60
+ pip install foscat
61
+ git clone https://github.com/jmdelouis/FOSCAT_DEMO.git
62
+
63
+ ```
64
+
65
+ # Spherical data example
66
+
67
+ ## compute a synthetic image
68
+
69
+ ```
70
+ python demo.py -n=32 -k -c -s=100
71
+ ```
72
+
73
+ The _demo.py_ script serves as a demonstration of the capabilities of the foscat library. It utilizes the Cross Wavelet Scattering Transform to generate a Healpix map that possesses the same characteristics as a specified input map.
74
+
75
+ - `-n=32` computes map with nside=32.
76
+ - `-k` uses 5x5 kernel.
77
+ - `-c` uses Scattering Covariance.
78
+ - `-l` uses LBFGS minimizer.
79
+ - `-s=100` computes 100 steps.
80
+
81
+ ```
82
+ python demo.py -n=8 [-c|--cov][-s|--steps=3000][-S=1234|--seed=1234][-k|--k5x5][-d|--data][-o|--out][-r|--orient] [-p|--path][-a|--adam]
83
+
84
+ ```
85
+
86
+ - The "-n" option specifies the nside of the input map. The maximum nside value is 256 with the default map.
87
+ - The "--cov" option (optional) uses scat_cov instead of scat.
88
+ - The "--steps" option (optional) specifies the number of iterations. If not specified, the default value is 1000.
89
+ - The "--seed" option (optional) specifies the seed of the random generator.
90
+ - The "--path" option (optional) allows you to define the path where the output files will be written. The default path is "data".
91
+ - The "--k5x5" option (optional) uses a 5x5 kernel instead of a 3x3.
92
+ - The "--data" option (optional) specifies the input data file to be used. If not specified, the default file "LSS_map_nside128.npy" will be used.
93
+ - The "--out" option (optional) specifies the output file name. If not specified, the output file will be saved in "demo".
94
+ - The "--orient" option (optional) specifies the number of orientations. If not specified, the default value is 4.
95
+ - The "--adam" option (optional) makes the synthesis using the ADAM optimizer instead of the L_BFGS.
96
+
97
+ ## plot the result
98
+
99
+ The following script generates a series of plots that showcase different aspects of the synthesis process using the _demo.py_ script.
100
+
101
+ > python test2D.py
102
+
103
+ ```
104
+ python plotdemo.py -n=32 -c
105
+ ```
106
+
107
+ # 2D field demo
108
+
109
+ > python test2Dplot.py
110
+
111
+ # compute a synthetic turbulent field
112
+
113
+ The python scripts _demo2D.py_ included in this package demonstrate how to use the foscat library to generate a 2D synthetic fields that have patterns with the same statistical properties as a specified 2D image. In this particular case, the input field is a sea surface temperature extracted from a north atlantic ocean simulation.
114
+
115
+ > python testHealpix.py
116
+
117
+ ```
118
+ python demo2d.py -n=32 -k -c
119
+ ```
120
+
121
+ > python testHplot.py
122
+
123
+ The following script generates a series of plots that showcase different aspects of the synthesis process using the _demo2D.py_ script.
124
+
125
+ ```
126
+ python plotdemo2d.py -n=32 -c
127
+ ```
128
+
129
+ For more information, see the [documentation](https://foscat-documentation.readthedocs.io/en/latest/index.html).
130
+
131
+ > mpirun -np 3 testHealpix_mpi.py
132
+
133
+ ## Authors and acknowledgment
134
+
135
+ Authors: J.-M. Delouis, P. Campeti, T. Foulquier, J. Mangin, L. Mousset, T. Odaka, F. Paul, E. Allys
136
+
137
+ This work is part of the R & T Deepsee project supported by CNES. The authors acknowledge the heritage of the Planck-HFI consortium regarding data, software, knowledge. This work has been supported by the Programme National de Télédétection Spatiale (PNTS, http://programmes.insu.cnrs.fr/pnts/), grant n◦ PNTS-2020-08
138
+
139
+ ## License
140
+
141
+ BSD 3-Clause License
142
+
143
+ Copyright (c) 2022, the Foscat developers All rights reserved.
144
+
145
+ Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
146
+
147
+ Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
148
+
149
+ Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
150
+
151
+ Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
152
+
153
+ ## Project status
154
+
155
+ It is a scientific driven development. We are open to any contributing development.
@@ -0,0 +1,89 @@
1
+ [project]
2
+ name = "foscat"
3
+ version = "3.6.0"
4
+ description = "Generate synthetic Healpix or 2D data using Cross Scattering Transform"
5
+ readme = "README.md"
6
+ license = { text = "BSD-3-Clause" }
7
+ authors = [
8
+ { name = "Jean-Marc DELOUIS", email = "jean.marc.delouis@ifremer.fr" },
9
+ ]
10
+
11
+ maintainers = [
12
+ { name = "Theo Foulquier", email = "theo.foulquier@ifremer.fr" },
13
+ ]
14
+
15
+ dependencies = [
16
+ "imageio",
17
+ "imagecodecs",
18
+ "matplotlib",
19
+ "numpy",
20
+ "tensorflow",
21
+ "healpy",
22
+ "spherical",
23
+ ]
24
+
25
+ requires-python = ">= 3.9"
26
+ keywords = ["scattering transform", "component separation", "denoising"]
27
+ classifiers = [
28
+ "Intended Audience :: Science/Research",
29
+ "License :: OSI Approved :: MIT License",
30
+ "Programming Language :: Python :: 3",
31
+ "Programming Language :: Python :: 3.9",
32
+ "Programming Language :: Python :: 3.10",
33
+ "Programming Language :: Python :: 3.11",
34
+ "Programming Language :: Python :: 3.12",
35
+ ]
36
+
37
+ [project.urls]
38
+ Repository = "https://github.com/jmdelouis/FOSCAT.git"
39
+ Issues = "https://github.com/jmdelouis/FOSCAT/issues"
40
+ Documentation = "https://foscat-documentation.readthedocs.io/en/latest/index.html"
41
+
42
+ [tool.setuptools]
43
+ package-dir = { "" = "src" }
44
+ packages = ["foscat"]
45
+
46
+ [build-system]
47
+ requires = ["setuptools"]
48
+ build-backend = "setuptools.build_meta"
49
+
50
+ [tool.ruff]
51
+ target-version = "py39"
52
+ builtins = ["ellipsis"]
53
+ exclude = [
54
+ ".git",
55
+ ".eggs",
56
+ "build",
57
+ "dist",
58
+ "__pycache__",
59
+ ]
60
+ line-length = 100
61
+
62
+ [tool.ruff.lint]
63
+ ignore = [
64
+ "E402", # E402: module level import not at top of file
65
+ "E501", # E501: line too long - let black worry about that
66
+ "E731", # E731: do not assign a lambda expression, use a def
67
+ # ignore for now, fix in a later PR
68
+ "E722", # bare except
69
+ "UP031", # percent-based string interpolation
70
+ ]
71
+ select = [
72
+ "F", # Pyflakes
73
+ "E", # Pycodestyle
74
+ "I", # isort
75
+ "UP", # Pyupgrade
76
+ "TID", # flake8-tidy-imports
77
+ "W",
78
+ ]
79
+ extend-safe-fixes = [
80
+ "TID252", # absolute imports
81
+ ]
82
+ fixable = ["I", "TID252"]
83
+
84
+ [tool.ruff.lint.isort]
85
+ known-first-party = ["foscat"]
86
+
87
+ [tool.ruff.lint.flake8-tidy-imports]
88
+ # Disallow all relative imports.
89
+ ban-relative-imports = "all"
foscat-3.6.0/setup.cfg ADDED
@@ -0,0 +1,4 @@
1
+ [egg_info]
2
+ tag_build =
3
+ tag_date = 0
4
+
@@ -0,0 +1,151 @@
1
+ import pickle
2
+
3
+ import numpy as np
4
+
5
+ import foscat.scat_cov as sc
6
+
7
+
8
+ class CNN:
9
+
10
+ def __init__(
11
+ self,
12
+ scat_operator=None,
13
+ nparam=1,
14
+ nscale=1,
15
+ chanlist=[],
16
+ in_nside=1,
17
+ n_chan_in=1,
18
+ nbatch=1,
19
+ SEED=1234,
20
+ filename=None,
21
+ ):
22
+
23
+ if filename is not None:
24
+ outlist = pickle.load(open("%s.pkl" % (filename), "rb"))
25
+ self.scat_operator = sc.funct(KERNELSZ=outlist[3], all_type=outlist[7])
26
+ self.KERNELSZ = self.scat_operator.KERNELSZ
27
+ self.all_type = self.scat_operator.all_type
28
+ self.npar = outlist[2]
29
+ self.nscale = outlist[5]
30
+ self.chanlist = outlist[0]
31
+ self.in_nside = outlist[4]
32
+ self.nbatch = outlist[1]
33
+ self.n_chan_in = outlist[8]
34
+ self.x = self.scat_operator.backend.bk_cast(outlist[6])
35
+ self.out_nside = self.in_nside // (2**self.nscale)
36
+ else:
37
+ self.nscale = nscale
38
+ self.nbatch = nbatch
39
+ self.npar = nparam
40
+ self.n_chan_in = n_chan_in
41
+ self.scat_operator = scat_operator
42
+ if len(chanlist) != nscale + 1:
43
+ print(
44
+ "len of chanlist (here %d) should of nscale+1 (here %d)"
45
+ % (len(chanlist), nscale + 1)
46
+ )
47
+ return None
48
+
49
+ self.chanlist = chanlist
50
+ self.KERNELSZ = scat_operator.KERNELSZ
51
+ self.all_type = scat_operator.all_type
52
+ self.in_nside = in_nside
53
+ self.out_nside = self.in_nside // (2**self.nscale)
54
+
55
+ np.random.seed(SEED)
56
+ self.x = scat_operator.backend.bk_cast(
57
+ np.random.randn(self.get_number_of_weights())
58
+ / (self.KERNELSZ * self.KERNELSZ)
59
+ )
60
+
61
+ def save(self, filename):
62
+
63
+ outlist = [
64
+ self.chanlist,
65
+ self.nbatch,
66
+ self.npar,
67
+ self.KERNELSZ,
68
+ self.in_nside,
69
+ self.nscale,
70
+ self.get_weights().numpy(),
71
+ self.all_type,
72
+ self.n_chan_in,
73
+ ]
74
+
75
+ myout = open("%s.pkl" % (filename), "wb")
76
+ pickle.dump(outlist, myout)
77
+ myout.close()
78
+
79
+ def get_number_of_weights(self):
80
+ totnchan = 0
81
+ for i in range(self.nscale):
82
+ totnchan = totnchan + self.chanlist[i] * self.chanlist[i + 1]
83
+ return (
84
+ self.npar * 12 * self.out_nside**2 * self.chanlist[self.nscale]
85
+ + totnchan * self.KERNELSZ * self.KERNELSZ
86
+ + self.KERNELSZ * self.KERNELSZ * self.n_chan_in * self.chanlist[0]
87
+ )
88
+
89
+ def set_weights(self, x):
90
+ self.x = x
91
+
92
+ def get_weights(self):
93
+ return self.x
94
+
95
+ def eval(self, im, indices=None, weights=None):
96
+
97
+ x = self.x
98
+ ww = self.scat_operator.backend.bk_reshape(
99
+ x[0 : self.KERNELSZ * self.KERNELSZ * self.n_chan_in * self.chanlist[0]],
100
+ [self.KERNELSZ * self.KERNELSZ, self.n_chan_in, self.chanlist[0]],
101
+ )
102
+ nn = self.KERNELSZ * self.KERNELSZ * self.n_chan_in * self.chanlist[0]
103
+
104
+ im = self.scat_operator.healpix_layer(im, ww)
105
+ im = self.scat_operator.backend.bk_relu(im)
106
+
107
+ for k in range(self.nscale):
108
+ ww = self.scat_operator.backend.bk_reshape(
109
+ x[
110
+ nn : nn
111
+ + self.KERNELSZ
112
+ * self.KERNELSZ
113
+ * self.chanlist[k]
114
+ * self.chanlist[k + 1]
115
+ ],
116
+ [self.KERNELSZ * self.KERNELSZ, self.chanlist[k], self.chanlist[k + 1]],
117
+ )
118
+ nn = (
119
+ nn
120
+ + self.KERNELSZ
121
+ * self.KERNELSZ
122
+ * self.chanlist[k]
123
+ * self.chanlist[k + 1]
124
+ )
125
+ if indices is None:
126
+ im = self.scat_operator.healpix_layer(im, ww)
127
+ else:
128
+ im = self.scat_operator.healpix_layer(
129
+ im, ww, indices=indices[k], weights=weights[k]
130
+ )
131
+ im = self.scat_operator.backend.bk_relu(im)
132
+ im = self.scat_operator.ud_grade_2(im, axis=0)
133
+
134
+ ww = self.scat_operator.backend.bk_reshape(
135
+ x[
136
+ nn : nn
137
+ + self.npar * 12 * self.out_nside**2 * self.chanlist[self.nscale]
138
+ ],
139
+ [12 * self.out_nside**2 * self.chanlist[self.nscale], self.npar],
140
+ )
141
+
142
+ im = self.scat_operator.backend.bk_matmul(
143
+ self.scat_operator.backend.bk_reshape(
144
+ im, [1, 12 * self.out_nside**2 * self.chanlist[self.nscale]]
145
+ ),
146
+ ww,
147
+ )
148
+ im = self.scat_operator.backend.bk_reshape(im, [self.npar])
149
+ im = self.scat_operator.backend.bk_relu(im)
150
+
151
+ return im