flwr 1.21.0__tar.gz → 1.22.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {flwr-1.21.0 → flwr-1.22.0}/PKG-INFO +6 -16
- {flwr-1.21.0 → flwr-1.22.0}/README.md +5 -15
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/app.py +2 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/new.py +9 -7
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/README.flowertune.md.tpl +1 -1
- flwr-1.22.0/py/flwr/cli/new/templates/app/code/client.baseline.py.tpl +75 -0
- flwr-1.22.0/py/flwr/cli/new/templates/app/code/client.huggingface.py.tpl +93 -0
- flwr-1.22.0/py/flwr/cli/new/templates/app/code/client.jax.py.tpl +71 -0
- flwr-1.22.0/py/flwr/cli/new/templates/app/code/client.mlx.py.tpl +102 -0
- flwr-1.22.0/py/flwr/cli/new/templates/app/code/client.numpy.py.tpl +46 -0
- flwr-1.22.0/py/flwr/cli/new/templates/app/code/client.sklearn.py.tpl +108 -0
- flwr-1.22.0/py/flwr/cli/new/templates/app/code/client.tensorflow.py.tpl +82 -0
- flwr-1.22.0/py/flwr/cli/new/templates/app/code/client.xgboost.py.tpl +110 -0
- flwr-1.22.0/py/flwr/cli/new/templates/app/code/flwr_tune/client_app.py.tpl +92 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/code/flwr_tune/models.py.tpl +1 -23
- flwr-1.22.0/py/flwr/cli/new/templates/app/code/flwr_tune/server_app.py.tpl +73 -0
- flwr-1.22.0/py/flwr/cli/new/templates/app/code/flwr_tune/strategy.py.tpl +78 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/code/model.baseline.py.tpl +0 -14
- flwr-1.22.0/py/flwr/cli/new/templates/app/code/server.baseline.py.tpl +43 -0
- flwr-1.22.0/py/flwr/cli/new/templates/app/code/server.huggingface.py.tpl +42 -0
- flwr-1.22.0/py/flwr/cli/new/templates/app/code/server.jax.py.tpl +39 -0
- flwr-1.22.0/py/flwr/cli/new/templates/app/code/server.mlx.py.tpl +41 -0
- flwr-1.22.0/py/flwr/cli/new/templates/app/code/server.numpy.py.tpl +38 -0
- flwr-1.22.0/py/flwr/cli/new/templates/app/code/server.sklearn.py.tpl +44 -0
- flwr-1.22.0/py/flwr/cli/new/templates/app/code/server.tensorflow.py.tpl +38 -0
- flwr-1.22.0/py/flwr/cli/new/templates/app/code/server.xgboost.py.tpl +56 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/code/task.huggingface.py.tpl +16 -20
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/code/task.jax.py.tpl +1 -1
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/code/task.numpy.py.tpl +1 -1
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/code/task.tensorflow.py.tpl +1 -2
- flwr-1.22.0/py/flwr/cli/new/templates/app/code/task.xgboost.py.tpl +67 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/pyproject.baseline.toml.tpl +4 -4
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/pyproject.flowertune.toml.tpl +2 -2
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/pyproject.huggingface.toml.tpl +4 -4
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/pyproject.jax.toml.tpl +1 -1
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/pyproject.mlx.toml.tpl +2 -2
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/pyproject.numpy.toml.tpl +1 -1
- flwr-1.21.0/py/flwr/cli/new/templates/app/pyproject.pytorch_msg_api.toml.tpl → flwr-1.22.0/py/flwr/cli/new/templates/app/pyproject.pytorch.toml.tpl +1 -1
- flwr-1.21.0/py/flwr/cli/new/templates/app/pyproject.pytorch.toml.tpl → flwr-1.22.0/py/flwr/cli/new/templates/app/pyproject.pytorch_legacy_api.toml.tpl +1 -1
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/pyproject.sklearn.toml.tpl +1 -1
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/pyproject.tensorflow.toml.tpl +1 -1
- flwr-1.22.0/py/flwr/cli/new/templates/app/pyproject.xgboost.toml.tpl +61 -0
- flwr-1.22.0/py/flwr/cli/pull.py +100 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/utils.py +17 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/clientapp/mod/__init__.py +4 -1
- flwr-1.22.0/py/flwr/clientapp/mod/centraldp_mods.py +248 -0
- flwr-1.22.0/py/flwr/clientapp/mod/localdp_mod.py +169 -0
- flwr-1.22.0/py/flwr/clientapp/typing.py +22 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/constant.py +3 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/exit/exit_code.py +4 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/record/typeddict.py +12 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/control_pb2.py +7 -3
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/control_pb2.pyi +24 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/control_pb2_grpc.py +34 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/control_pb2_grpc.pyi +13 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/app.py +13 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/serverapp/strategy/__init__.py +26 -0
- flwr-1.22.0/py/flwr/serverapp/strategy/bulyan.py +238 -0
- flwr-1.22.0/py/flwr/serverapp/strategy/dp_adaptive_clipping.py +335 -0
- {flwr-1.21.0/py/flwr/serverapp → flwr-1.22.0/py/flwr/serverapp/strategy}/dp_fixed_clipping.py +71 -49
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/serverapp/strategy/fedadagrad.py +0 -3
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/serverapp/strategy/fedadam.py +0 -3
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/serverapp/strategy/fedavg.py +89 -64
- flwr-1.22.0/py/flwr/serverapp/strategy/fedavgm.py +198 -0
- flwr-1.22.0/py/flwr/serverapp/strategy/fedmedian.py +105 -0
- flwr-1.22.0/py/flwr/serverapp/strategy/fedprox.py +174 -0
- flwr-1.22.0/py/flwr/serverapp/strategy/fedtrimmedavg.py +176 -0
- flwr-1.22.0/py/flwr/serverapp/strategy/fedxgb_bagging.py +117 -0
- flwr-1.22.0/py/flwr/serverapp/strategy/fedxgb_cyclic.py +220 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/serverapp/strategy/fedyogi.py +0 -3
- flwr-1.22.0/py/flwr/serverapp/strategy/krum.py +112 -0
- flwr-1.22.0/py/flwr/serverapp/strategy/multikrum.py +247 -0
- flwr-1.22.0/py/flwr/serverapp/strategy/qfedavg.py +252 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/serverapp/strategy/strategy_utils.py +48 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/simulation/app.py +1 -1
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/simulation/run_simulation.py +25 -30
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/cli/flower_superexec.py +26 -1
- flwr-1.22.0/py/flwr/supercore/constant.py +19 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/superexec/plugin/exec_plugin.py +11 -1
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/superexec/run_superexec.py +16 -2
- flwr-1.22.0/py/flwr/superlink/artifact_provider/__init__.py +22 -0
- flwr-1.22.0/py/flwr/superlink/artifact_provider/artifact_provider.py +37 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/superlink/servicer/control/control_grpc.py +3 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/superlink/servicer/control/control_servicer.py +59 -2
- {flwr-1.21.0 → flwr-1.22.0}/pyproject.toml +1 -1
- flwr-1.21.0/py/flwr/cli/new/templates/app/code/client.baseline.py.tpl +0 -58
- flwr-1.21.0/py/flwr/cli/new/templates/app/code/client.huggingface.py.tpl +0 -55
- flwr-1.21.0/py/flwr/cli/new/templates/app/code/client.jax.py.tpl +0 -50
- flwr-1.21.0/py/flwr/cli/new/templates/app/code/client.mlx.py.tpl +0 -73
- flwr-1.21.0/py/flwr/cli/new/templates/app/code/client.numpy.py.tpl +0 -23
- flwr-1.21.0/py/flwr/cli/new/templates/app/code/client.sklearn.py.tpl +0 -63
- flwr-1.21.0/py/flwr/cli/new/templates/app/code/client.tensorflow.py.tpl +0 -57
- flwr-1.21.0/py/flwr/cli/new/templates/app/code/flwr_tune/client_app.py.tpl +0 -126
- flwr-1.21.0/py/flwr/cli/new/templates/app/code/flwr_tune/server_app.py.tpl +0 -94
- flwr-1.21.0/py/flwr/cli/new/templates/app/code/flwr_tune/strategy.py.tpl +0 -83
- flwr-1.21.0/py/flwr/cli/new/templates/app/code/server.baseline.py.tpl +0 -45
- flwr-1.21.0/py/flwr/cli/new/templates/app/code/server.huggingface.py.tpl +0 -38
- flwr-1.21.0/py/flwr/cli/new/templates/app/code/server.jax.py.tpl +0 -26
- flwr-1.21.0/py/flwr/cli/new/templates/app/code/server.mlx.py.tpl +0 -31
- flwr-1.21.0/py/flwr/cli/new/templates/app/code/server.numpy.py.tpl +0 -25
- flwr-1.21.0/py/flwr/cli/new/templates/app/code/server.sklearn.py.tpl +0 -36
- flwr-1.21.0/py/flwr/cli/new/templates/app/code/server.tensorflow.py.tpl +0 -29
- flwr-1.21.0/py/flwr/clientapp/mod/centraldp_mods.py +0 -132
- flwr-1.21.0/py/flwr/serverapp/strategy/dp_fixed_clipping.py +0 -352
- flwr-1.21.0/py/flwr/serverapp/strategy/strategy_utils_tests.py +0 -304
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/app/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/app/error.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/app/exception.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/app/metadata.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/auth_plugin/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/auth_plugin/oidc_cli_plugin.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/build.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/cli_user_auth_interceptor.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/config_utils.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/constant.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/example.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/install.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/log.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/login/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/login/login.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/ls.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/.gitignore.tpl +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/LICENSE.tpl +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/README.baseline.md.tpl +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/README.md.tpl +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/code/__init__.baseline.py.tpl +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/code/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/code/__init__.py.tpl +0 -0
- /flwr-1.21.0/py/flwr/cli/new/templates/app/code/__init__.pytorch_msg_api.py.tpl → /flwr-1.22.0/py/flwr/cli/new/templates/app/code/__init__.pytorch_legacy_api.py.tpl +0 -0
- /flwr-1.21.0/py/flwr/cli/new/templates/app/code/client.pytorch_msg_api.py.tpl → /flwr-1.22.0/py/flwr/cli/new/templates/app/code/client.pytorch.py.tpl +0 -0
- /flwr-1.21.0/py/flwr/cli/new/templates/app/code/client.pytorch.py.tpl → /flwr-1.22.0/py/flwr/cli/new/templates/app/code/client.pytorch_legacy_api.py.tpl +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/code/dataset.baseline.py.tpl +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/code/flwr_tune/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/code/flwr_tune/dataset.py.tpl +0 -0
- /flwr-1.21.0/py/flwr/cli/new/templates/app/code/server.pytorch_msg_api.py.tpl → /flwr-1.22.0/py/flwr/cli/new/templates/app/code/server.pytorch.py.tpl +0 -0
- /flwr-1.21.0/py/flwr/cli/new/templates/app/code/server.pytorch.py.tpl → /flwr-1.22.0/py/flwr/cli/new/templates/app/code/server.pytorch_legacy_api.py.tpl +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/code/strategy.baseline.py.tpl +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/code/task.mlx.py.tpl +0 -0
- /flwr-1.21.0/py/flwr/cli/new/templates/app/code/task.pytorch_msg_api.py.tpl → /flwr-1.22.0/py/flwr/cli/new/templates/app/code/task.pytorch.py.tpl +0 -0
- /flwr-1.21.0/py/flwr/cli/new/templates/app/code/task.pytorch.py.tpl → /flwr-1.22.0/py/flwr/cli/new/templates/app/code/task.pytorch_legacy_api.py.tpl +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/code/task.sklearn.py.tpl +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/new/templates/app/code/utils.baseline.py.tpl +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/run/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/run/run.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/cli/stop.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/client.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/client_app.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/clientapp/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/clientapp/utils.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/dpfedavg_numpy_client.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/grpc_adapter_client/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/grpc_adapter_client/connection.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/grpc_rere_client/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/grpc_rere_client/client_interceptor.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/grpc_rere_client/connection.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/grpc_rere_client/grpc_adapter.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/message_handler/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/message_handler/message_handler.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/mod/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/mod/centraldp_mods.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/mod/comms_mods.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/mod/localdp_mod.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/mod/secure_aggregation/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/mod/secure_aggregation/secagg_mod.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/mod/secure_aggregation/secaggplus_mod.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/mod/utils.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/numpy_client.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/rest_client/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/rest_client/connection.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/run_info_store.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/client/typing.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/clientapp/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/address.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/args.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/auth_plugin/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/auth_plugin/auth_plugin.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/config.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/context.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/date.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/differential_privacy.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/differential_privacy_constants.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/dp.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/event_log_plugin/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/event_log_plugin/event_log_plugin.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/exit/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/exit/exit.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/exit/exit_handler.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/exit/signal_handler.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/grpc.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/heartbeat.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/inflatable.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/inflatable_protobuf_utils.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/inflatable_utils.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/logger.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/message.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/object_ref.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/parameter.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/pyproject.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/record/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/record/array.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/record/arraychunk.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/record/arrayrecord.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/record/configrecord.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/record/conversion_utils.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/record/metricrecord.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/record/recorddict.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/recorddict_compat.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/retry_invoker.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/secure_aggregation/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/secure_aggregation/crypto/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/secure_aggregation/crypto/shamir.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/secure_aggregation/crypto/symmetric_encryption.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/secure_aggregation/ndarrays_arithmetic.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/secure_aggregation/quantization.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/secure_aggregation/secaggplus_constants.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/secure_aggregation/secaggplus_utils.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/serde.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/serde_utils.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/telemetry.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/typing.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/common/version.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/compat/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/compat/client/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/compat/client/app.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/compat/client/grpc_client/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/compat/client/grpc_client/connection.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/compat/common/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/compat/server/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/compat/server/app.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/compat/simulation/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/appio_pb2.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/appio_pb2.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/appio_pb2_grpc.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/appio_pb2_grpc.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/clientappio_pb2.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/clientappio_pb2.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/clientappio_pb2_grpc.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/clientappio_pb2_grpc.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/error_pb2.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/error_pb2.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/error_pb2_grpc.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/error_pb2_grpc.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/fab_pb2.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/fab_pb2.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/fab_pb2_grpc.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/fab_pb2_grpc.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/fleet_pb2.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/fleet_pb2.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/fleet_pb2_grpc.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/fleet_pb2_grpc.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/grpcadapter_pb2.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/grpcadapter_pb2.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/grpcadapter_pb2_grpc.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/grpcadapter_pb2_grpc.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/heartbeat_pb2.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/heartbeat_pb2.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/heartbeat_pb2_grpc.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/heartbeat_pb2_grpc.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/log_pb2.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/log_pb2.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/log_pb2_grpc.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/log_pb2_grpc.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/message_pb2.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/message_pb2.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/message_pb2_grpc.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/message_pb2_grpc.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/node_pb2.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/node_pb2.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/node_pb2_grpc.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/node_pb2_grpc.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/recorddict_pb2.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/recorddict_pb2.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/recorddict_pb2_grpc.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/recorddict_pb2_grpc.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/run_pb2.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/run_pb2.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/run_pb2_grpc.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/run_pb2_grpc.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/serverappio_pb2.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/serverappio_pb2.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/serverappio_pb2_grpc.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/serverappio_pb2_grpc.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/simulationio_pb2.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/simulationio_pb2.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/simulationio_pb2_grpc.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/simulationio_pb2_grpc.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/transport_pb2.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/transport_pb2.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/transport_pb2_grpc.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/proto/transport_pb2_grpc.pyi +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/py.typed +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/client_manager.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/client_proxy.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/compat/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/compat/app.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/compat/app_utils.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/compat/grid_client_proxy.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/compat/legacy_context.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/criterion.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/fleet_event_log_interceptor.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/grid/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/grid/grid.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/grid/grpc_grid.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/grid/inmemory_grid.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/history.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/run_serverapp.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/server.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/server_app.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/server_config.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/serverapp/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/serverapp/app.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/serverapp_components.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/strategy/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/strategy/aggregate.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/strategy/bulyan.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/strategy/dp_adaptive_clipping.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/strategy/dp_fixed_clipping.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/strategy/dpfedavg_adaptive.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/strategy/dpfedavg_fixed.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/strategy/fault_tolerant_fedavg.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/strategy/fedadagrad.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/strategy/fedadam.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/strategy/fedavg.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/strategy/fedavg_android.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/strategy/fedavgm.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/strategy/fedmedian.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/strategy/fedopt.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/strategy/fedprox.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/strategy/fedtrimmedavg.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/strategy/fedxgb_bagging.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/strategy/fedxgb_cyclic.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/strategy/fedxgb_nn_avg.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/strategy/fedyogi.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/strategy/krum.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/strategy/qfedavg.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/strategy/strategy.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/fleet/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/fleet/grpc_adapter/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/fleet/grpc_adapter/grpc_adapter_servicer.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/fleet/grpc_bidi/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/fleet/grpc_bidi/flower_service_servicer.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/fleet/grpc_bidi/grpc_bridge.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/fleet/grpc_bidi/grpc_client_proxy.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/fleet/grpc_bidi/grpc_server.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/fleet/grpc_rere/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/fleet/grpc_rere/fleet_servicer.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/fleet/grpc_rere/server_interceptor.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/fleet/message_handler/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/fleet/message_handler/message_handler.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/fleet/rest_rere/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/fleet/rest_rere/rest_api.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/fleet/vce/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/fleet/vce/backend/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/fleet/vce/backend/backend.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/fleet/vce/backend/raybackend.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/fleet/vce/vce_api.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/linkstate/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/linkstate/in_memory_linkstate.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/linkstate/linkstate.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/linkstate/linkstate_factory.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/linkstate/sqlite_linkstate.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/linkstate/utils.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/serverappio/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/serverappio/serverappio_grpc.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/serverappio/serverappio_servicer.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/simulation/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/simulation/simulationio_grpc.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/simulation/simulationio_servicer.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/superlink/utils.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/typing.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/utils/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/utils/tensorboard.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/utils/validator.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/workflow/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/workflow/constant.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/workflow/default_workflows.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/workflow/secure_aggregation/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/workflow/secure_aggregation/secagg_workflow.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/server/workflow/secure_aggregation/secaggplus_workflow.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/serverapp/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/serverapp/exception.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/serverapp/strategy/fedopt.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/serverapp/strategy/result.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/serverapp/strategy/strategy.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/simulation/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/simulation/legacy_app.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/simulation/ray_transport/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/simulation/ray_transport/ray_actor.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/simulation/ray_transport/ray_client_proxy.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/simulation/ray_transport/utils.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/simulation/simulationio_connection.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/app_utils.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/cli/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/corestate/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/corestate/corestate.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/ffs/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/ffs/disk_ffs.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/ffs/ffs.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/ffs/ffs_factory.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/grpc_health/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/grpc_health/health_server.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/grpc_health/simple_health_servicer.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/license_plugin/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/license_plugin/license_plugin.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/object_store/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/object_store/in_memory_object_store.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/object_store/object_store.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/object_store/object_store_factory.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/object_store/utils.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/superexec/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/superexec/plugin/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/superexec/plugin/base_exec_plugin.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/superexec/plugin/clientapp_exec_plugin.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/superexec/plugin/serverapp_exec_plugin.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/superexec/plugin/simulation_exec_plugin.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supercore/utils.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/superlink/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/superlink/servicer/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/superlink/servicer/control/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/superlink/servicer/control/control_event_log_interceptor.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/superlink/servicer/control/control_license_interceptor.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/superlink/servicer/control/control_user_auth_interceptor.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supernode/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supernode/cli/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supernode/cli/flower_supernode.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supernode/cli/flwr_clientapp.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supernode/nodestate/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supernode/nodestate/in_memory_nodestate.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supernode/nodestate/nodestate.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supernode/nodestate/nodestate_factory.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supernode/runtime/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supernode/runtime/run_clientapp.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supernode/servicer/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supernode/servicer/clientappio/__init__.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supernode/servicer/clientappio/clientappio_servicer.py +0 -0
- {flwr-1.21.0 → flwr-1.22.0}/py/flwr/supernode/start_client_internal.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.3
|
|
2
2
|
Name: flwr
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.22.0
|
|
4
4
|
Summary: Flower: A Friendly Federated AI Framework
|
|
5
5
|
License: Apache-2.0
|
|
6
6
|
Keywords: Artificial Intelligence,Federated AI,Federated Analytics,Federated Evaluation,Federated Learning,Flower,Machine Learning
|
|
@@ -102,25 +102,15 @@ Meet the Flower community on [flower.ai](https://flower.ai)!
|
|
|
102
102
|
|
|
103
103
|
Flower's goal is to make federated learning accessible to everyone. This series of tutorials introduces the fundamentals of federated learning and how to implement them in Flower.
|
|
104
104
|
|
|
105
|
-
0. **What is Federated Learning
|
|
105
|
+
0. **[What is Federated Learning?](https://flower.ai/docs/framework/main/en/tutorial-series-what-is-federated-learning.html)**
|
|
106
106
|
|
|
107
|
-
|
|
107
|
+
1. **[An Introduction to Federated Learning](https://flower.ai/docs/framework/main/en/tutorial-series-get-started-with-flower-pytorch.html)**
|
|
108
108
|
|
|
109
|
-
|
|
109
|
+
2. **[Using Strategies in Federated Learning](https://flower.ai/docs/framework/main/en/tutorial-series-use-a-federated-learning-strategy-pytorch.html)**
|
|
110
110
|
|
|
111
|
-
|
|
111
|
+
3. **[Customize a Flower Strategy](https://flower.ai/docs/framework/main/en/tutorial-series-build-a-strategy-from-scratch-pytorch.html)**
|
|
112
112
|
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
[](https://colab.research.google.com/github/adap/flower/blob/main/framework/docs/source/tutorial-series-use-a-federated-learning-strategy-pytorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/framework/docs/source/tutorial-series-use-a-federated-learning-strategy-pytorch.ipynb))
|
|
116
|
-
|
|
117
|
-
3. **Building Strategies for Federated Learning**
|
|
118
|
-
|
|
119
|
-
[](https://colab.research.google.com/github/adap/flower/blob/main/framework/docs/source/tutorial-series-build-a-strategy-from-scratch-pytorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/framework/docs/source/tutorial-series-build-a-strategy-from-scratch-pytorch.ipynb))
|
|
120
|
-
|
|
121
|
-
4. **Custom Clients for Federated Learning**
|
|
122
|
-
|
|
123
|
-
[](https://colab.research.google.com/github/adap/flower/blob/main/framework/docs/source/tutorial-series-customize-the-client-pytorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/framework/docs/source/tutorial-series-customize-the-client-pytorch.ipynb))
|
|
113
|
+
4. **[Communicate Custom Messages](https://flower.ai/docs/framework/main/en/tutorial-series-customize-the-client-pytorch.html)**
|
|
124
114
|
|
|
125
115
|
Stay tuned, more tutorials are coming soon. Topics include **Privacy and Security in Federated Learning**, and **Scaling Federated Learning**.
|
|
126
116
|
|
|
@@ -46,25 +46,15 @@ Meet the Flower community on [flower.ai](https://flower.ai)!
|
|
|
46
46
|
|
|
47
47
|
Flower's goal is to make federated learning accessible to everyone. This series of tutorials introduces the fundamentals of federated learning and how to implement them in Flower.
|
|
48
48
|
|
|
49
|
-
0. **What is Federated Learning
|
|
49
|
+
0. **[What is Federated Learning?](https://flower.ai/docs/framework/main/en/tutorial-series-what-is-federated-learning.html)**
|
|
50
50
|
|
|
51
|
-
|
|
51
|
+
1. **[An Introduction to Federated Learning](https://flower.ai/docs/framework/main/en/tutorial-series-get-started-with-flower-pytorch.html)**
|
|
52
52
|
|
|
53
|
-
|
|
53
|
+
2. **[Using Strategies in Federated Learning](https://flower.ai/docs/framework/main/en/tutorial-series-use-a-federated-learning-strategy-pytorch.html)**
|
|
54
54
|
|
|
55
|
-
|
|
55
|
+
3. **[Customize a Flower Strategy](https://flower.ai/docs/framework/main/en/tutorial-series-build-a-strategy-from-scratch-pytorch.html)**
|
|
56
56
|
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
[](https://colab.research.google.com/github/adap/flower/blob/main/framework/docs/source/tutorial-series-use-a-federated-learning-strategy-pytorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/framework/docs/source/tutorial-series-use-a-federated-learning-strategy-pytorch.ipynb))
|
|
60
|
-
|
|
61
|
-
3. **Building Strategies for Federated Learning**
|
|
62
|
-
|
|
63
|
-
[](https://colab.research.google.com/github/adap/flower/blob/main/framework/docs/source/tutorial-series-build-a-strategy-from-scratch-pytorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/framework/docs/source/tutorial-series-build-a-strategy-from-scratch-pytorch.ipynb))
|
|
64
|
-
|
|
65
|
-
4. **Custom Clients for Federated Learning**
|
|
66
|
-
|
|
67
|
-
[](https://colab.research.google.com/github/adap/flower/blob/main/framework/docs/source/tutorial-series-customize-the-client-pytorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/framework/docs/source/tutorial-series-customize-the-client-pytorch.ipynb))
|
|
57
|
+
4. **[Communicate Custom Messages](https://flower.ai/docs/framework/main/en/tutorial-series-customize-the-client-pytorch.html)**
|
|
68
58
|
|
|
69
59
|
Stay tuned, more tutorials are coming soon. Topics include **Privacy and Security in Federated Learning**, and **Scaling Federated Learning**.
|
|
70
60
|
|
|
@@ -25,6 +25,7 @@ from .log import log
|
|
|
25
25
|
from .login import login
|
|
26
26
|
from .ls import ls
|
|
27
27
|
from .new import new
|
|
28
|
+
from .pull import pull
|
|
28
29
|
from .run import run
|
|
29
30
|
from .stop import stop
|
|
30
31
|
|
|
@@ -46,6 +47,7 @@ app.command()(log)
|
|
|
46
47
|
app.command()(ls)
|
|
47
48
|
app.command()(stop)
|
|
48
49
|
app.command()(login)
|
|
50
|
+
app.command()(pull)
|
|
49
51
|
|
|
50
52
|
typer_click_object = get_command(app)
|
|
51
53
|
|
|
@@ -35,15 +35,16 @@ class MlFramework(str, Enum):
|
|
|
35
35
|
"""Available frameworks."""
|
|
36
36
|
|
|
37
37
|
PYTORCH = "PyTorch"
|
|
38
|
-
PYTORCH_MSG_API = "PyTorch (Message API)"
|
|
39
38
|
TENSORFLOW = "TensorFlow"
|
|
40
39
|
SKLEARN = "sklearn"
|
|
41
40
|
HUGGINGFACE = "HuggingFace"
|
|
42
41
|
JAX = "JAX"
|
|
43
42
|
MLX = "MLX"
|
|
44
43
|
NUMPY = "NumPy"
|
|
44
|
+
XGBOOST = "XGBoost"
|
|
45
45
|
FLOWERTUNE = "FlowerTune"
|
|
46
46
|
BASELINE = "Flower Baseline"
|
|
47
|
+
PYTORCH_LEGACY_API = "PyTorch (Legacy API, deprecated)"
|
|
47
48
|
|
|
48
49
|
|
|
49
50
|
class LlmChallengeName(str, Enum):
|
|
@@ -155,8 +156,8 @@ def new(
|
|
|
155
156
|
if framework_str == MlFramework.BASELINE:
|
|
156
157
|
framework_str = "baseline"
|
|
157
158
|
|
|
158
|
-
if framework_str == MlFramework.
|
|
159
|
-
framework_str = "
|
|
159
|
+
if framework_str == MlFramework.PYTORCH_LEGACY_API:
|
|
160
|
+
framework_str = "pytorch_legacy_api"
|
|
160
161
|
|
|
161
162
|
print(
|
|
162
163
|
typer.style(
|
|
@@ -201,7 +202,7 @@ def new(
|
|
|
201
202
|
}
|
|
202
203
|
|
|
203
204
|
# Challenge specific context
|
|
204
|
-
|
|
205
|
+
fraction_train = "0.2" if llm_challenge_str == "code" else "0.1"
|
|
205
206
|
if llm_challenge_str == "generalnlp":
|
|
206
207
|
challenge_name = "General NLP"
|
|
207
208
|
num_clients = "20"
|
|
@@ -220,7 +221,7 @@ def new(
|
|
|
220
221
|
dataset_name = "flwrlabs/code-alpaca-20k"
|
|
221
222
|
|
|
222
223
|
context["llm_challenge_str"] = llm_challenge_str
|
|
223
|
-
context["
|
|
224
|
+
context["fraction_train"] = fraction_train
|
|
224
225
|
context["challenge_name"] = challenge_name
|
|
225
226
|
context["num_clients"] = num_clients
|
|
226
227
|
context["dataset_name"] = dataset_name
|
|
@@ -247,14 +248,15 @@ def new(
|
|
|
247
248
|
MlFramework.TENSORFLOW.value,
|
|
248
249
|
MlFramework.SKLEARN.value,
|
|
249
250
|
MlFramework.NUMPY.value,
|
|
250
|
-
|
|
251
|
+
MlFramework.XGBOOST.value,
|
|
252
|
+
"pytorch_legacy_api",
|
|
251
253
|
]
|
|
252
254
|
if framework_str in frameworks_with_tasks:
|
|
253
255
|
files[f"{import_name}/task.py"] = {
|
|
254
256
|
"template": f"app/code/task.{template_name}.py.tpl"
|
|
255
257
|
}
|
|
256
258
|
|
|
257
|
-
if framework_str == "
|
|
259
|
+
if framework_str == "pytorch_legacy_api":
|
|
258
260
|
# Use custom __init__ that better captures name of framework
|
|
259
261
|
files[f"{import_name}/__init__.py"] = {
|
|
260
262
|
"template": f"app/code/__init__.{framework_str}.py.tpl"
|
|
@@ -26,7 +26,7 @@ pip install -e .
|
|
|
26
26
|
## Experimental setup
|
|
27
27
|
|
|
28
28
|
The dataset is divided into $num_clients partitions in an IID fashion, a partition is assigned to each ClientApp.
|
|
29
|
-
We randomly sample a fraction ($
|
|
29
|
+
We randomly sample a fraction ($fraction_train) of the total nodes to participate in each round, for a total of `200` rounds.
|
|
30
30
|
All settings are defined in `pyproject.toml`.
|
|
31
31
|
|
|
32
32
|
> [!IMPORTANT]
|
|
@@ -0,0 +1,75 @@
|
|
|
1
|
+
"""$project_name: A Flower Baseline."""
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
from flwr.app import ArrayRecord, Context, Message, MetricRecord, RecordDict
|
|
5
|
+
from flwr.clientapp import ClientApp
|
|
6
|
+
|
|
7
|
+
from $import_name.dataset import load_data
|
|
8
|
+
from $import_name.model import Net
|
|
9
|
+
from $import_name.model import test as test_fn
|
|
10
|
+
from $import_name.model import train as train_fn
|
|
11
|
+
|
|
12
|
+
# Flower ClientApp
|
|
13
|
+
app = ClientApp()
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
@app.train()
|
|
17
|
+
def train(msg: Message, context: Context):
|
|
18
|
+
"""Train the model on local data."""
|
|
19
|
+
|
|
20
|
+
# Load the model and initialize it with the received weights
|
|
21
|
+
model = Net()
|
|
22
|
+
model.load_state_dict(msg.content["arrays"].to_torch_state_dict())
|
|
23
|
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
24
|
+
|
|
25
|
+
# Load the data
|
|
26
|
+
partition_id = int(context.node_config["partition-id"])
|
|
27
|
+
num_partitions = int(context.node_config["num-partitions"])
|
|
28
|
+
trainloader, _ = load_data(partition_id, num_partitions)
|
|
29
|
+
local_epochs = context.run_config["local-epochs"]
|
|
30
|
+
|
|
31
|
+
# Call the training function
|
|
32
|
+
train_loss = train_fn(
|
|
33
|
+
model,
|
|
34
|
+
trainloader,
|
|
35
|
+
local_epochs,
|
|
36
|
+
device,
|
|
37
|
+
)
|
|
38
|
+
|
|
39
|
+
# Construct and return reply Message
|
|
40
|
+
model_record = ArrayRecord(model.state_dict())
|
|
41
|
+
metrics = {
|
|
42
|
+
"train_loss": train_loss,
|
|
43
|
+
"num-examples": len(trainloader.dataset),
|
|
44
|
+
}
|
|
45
|
+
metric_record = MetricRecord(metrics)
|
|
46
|
+
content = RecordDict({"arrays": model_record, "metrics": metric_record})
|
|
47
|
+
return Message(content=content, reply_to=msg)
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
@app.evaluate()
|
|
51
|
+
def evaluate(msg: Message, context: Context):
|
|
52
|
+
"""Evaluate the model on local data."""
|
|
53
|
+
|
|
54
|
+
# Load the model and initialize it with the received weights
|
|
55
|
+
model = Net()
|
|
56
|
+
model.load_state_dict(msg.content["arrays"].to_torch_state_dict())
|
|
57
|
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
58
|
+
|
|
59
|
+
# Load the data
|
|
60
|
+
partition_id = int(context.node_config["partition-id"])
|
|
61
|
+
num_partitions = int(context.node_config["num-partitions"])
|
|
62
|
+
_, valloader = load_data(partition_id, num_partitions)
|
|
63
|
+
|
|
64
|
+
# Call the evaluation function
|
|
65
|
+
eval_loss, eval_acc = test_fn(model, valloader, device)
|
|
66
|
+
|
|
67
|
+
# Construct and return reply Message
|
|
68
|
+
metrics = {
|
|
69
|
+
"eval_loss": eval_loss,
|
|
70
|
+
"eval_acc": eval_acc,
|
|
71
|
+
"num-examples": len(valloader.dataset),
|
|
72
|
+
}
|
|
73
|
+
metric_record = MetricRecord(metrics)
|
|
74
|
+
content = RecordDict({"metrics": metric_record})
|
|
75
|
+
return Message(content=content, reply_to=msg)
|
|
@@ -0,0 +1,93 @@
|
|
|
1
|
+
"""$project_name: A Flower / $framework_str app."""
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
from flwr.app import ArrayRecord, Context, Message, MetricRecord, RecordDict
|
|
5
|
+
from flwr.clientapp import ClientApp
|
|
6
|
+
from transformers import AutoModelForSequenceClassification
|
|
7
|
+
|
|
8
|
+
from $import_name.task import load_data
|
|
9
|
+
from $import_name.task import test as test_fn
|
|
10
|
+
from $import_name.task import train as train_fn
|
|
11
|
+
|
|
12
|
+
# Flower ClientApp
|
|
13
|
+
app = ClientApp()
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
@app.train()
|
|
17
|
+
def train(msg: Message, context: Context):
|
|
18
|
+
"""Train the model on local data."""
|
|
19
|
+
|
|
20
|
+
# Get this client's dataset partition
|
|
21
|
+
partition_id = context.node_config["partition-id"]
|
|
22
|
+
num_partitions = context.node_config["num-partitions"]
|
|
23
|
+
model_name = context.run_config["model-name"]
|
|
24
|
+
trainloader, _ = load_data(partition_id, num_partitions, model_name)
|
|
25
|
+
|
|
26
|
+
# Load model
|
|
27
|
+
num_labels = context.run_config["num-labels"]
|
|
28
|
+
net = AutoModelForSequenceClassification.from_pretrained(
|
|
29
|
+
model_name, num_labels=num_labels
|
|
30
|
+
)
|
|
31
|
+
|
|
32
|
+
# Initialize it with the received weights
|
|
33
|
+
net.load_state_dict(msg.content["arrays"].to_torch_state_dict())
|
|
34
|
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
35
|
+
net.to(device)
|
|
36
|
+
|
|
37
|
+
# Train the model on local data
|
|
38
|
+
train_loss = train_fn(
|
|
39
|
+
net,
|
|
40
|
+
trainloader,
|
|
41
|
+
context.run_config["local-steps"],
|
|
42
|
+
device,
|
|
43
|
+
)
|
|
44
|
+
|
|
45
|
+
# Construct and return reply Message
|
|
46
|
+
model_record = ArrayRecord(net.state_dict())
|
|
47
|
+
metrics = {
|
|
48
|
+
"train_loss": train_loss,
|
|
49
|
+
"num-examples": len(trainloader.dataset),
|
|
50
|
+
}
|
|
51
|
+
metric_record = MetricRecord(metrics)
|
|
52
|
+
content = RecordDict({"arrays": model_record, "metrics": metric_record})
|
|
53
|
+
return Message(content=content, reply_to=msg)
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
@app.evaluate()
|
|
57
|
+
def evaluate(msg: Message, context: Context):
|
|
58
|
+
"""Evaluate the model on local data."""
|
|
59
|
+
|
|
60
|
+
# Get this client's dataset partition
|
|
61
|
+
partition_id = context.node_config["partition-id"]
|
|
62
|
+
num_partitions = context.node_config["num-partitions"]
|
|
63
|
+
model_name = context.run_config["model-name"]
|
|
64
|
+
_, valloader = load_data(partition_id, num_partitions, model_name)
|
|
65
|
+
|
|
66
|
+
# Load model
|
|
67
|
+
num_labels = context.run_config["num-labels"]
|
|
68
|
+
net = AutoModelForSequenceClassification.from_pretrained(
|
|
69
|
+
model_name, num_labels=num_labels
|
|
70
|
+
)
|
|
71
|
+
|
|
72
|
+
# Initialize it with the received weights
|
|
73
|
+
net.load_state_dict(msg.content["arrays"].to_torch_state_dict())
|
|
74
|
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
75
|
+
net.to(device)
|
|
76
|
+
|
|
77
|
+
# Evaluate the model on local data
|
|
78
|
+
val_loss, val_accuracy = test_fn(
|
|
79
|
+
net,
|
|
80
|
+
valloader,
|
|
81
|
+
device,
|
|
82
|
+
)
|
|
83
|
+
|
|
84
|
+
# Construct and return reply Message
|
|
85
|
+
model_record = ArrayRecord(net.state_dict())
|
|
86
|
+
metrics = {
|
|
87
|
+
"val_loss": val_loss,
|
|
88
|
+
"val_accuracy": val_accuracy,
|
|
89
|
+
"num-examples": len(valloader.dataset),
|
|
90
|
+
}
|
|
91
|
+
metric_record = MetricRecord(metrics)
|
|
92
|
+
content = RecordDict({"arrays": model_record, "metrics": metric_record})
|
|
93
|
+
return Message(content=content, reply_to=msg)
|
|
@@ -0,0 +1,71 @@
|
|
|
1
|
+
"""$project_name: A Flower / $framework_str app."""
|
|
2
|
+
|
|
3
|
+
import jax
|
|
4
|
+
from flwr.app import ArrayRecord, Context, Message, MetricRecord, RecordDict
|
|
5
|
+
from flwr.clientapp import ClientApp
|
|
6
|
+
|
|
7
|
+
from $import_name.task import evaluation as evaluation_fn
|
|
8
|
+
from $import_name.task import get_params, load_data, load_model, loss_fn, set_params
|
|
9
|
+
from $import_name.task import train as train_fn
|
|
10
|
+
|
|
11
|
+
# Flower ClientApp
|
|
12
|
+
app = ClientApp()
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
@app.train()
|
|
16
|
+
def train(msg: Message, context: Context):
|
|
17
|
+
"""Train the model on local data."""
|
|
18
|
+
|
|
19
|
+
# Read from config
|
|
20
|
+
input_dim = context.run_config["input-dim"]
|
|
21
|
+
|
|
22
|
+
# Load data and model
|
|
23
|
+
train_x, train_y, _, _ = load_data()
|
|
24
|
+
model = load_model((input_dim,))
|
|
25
|
+
grad_fn = jax.grad(loss_fn)
|
|
26
|
+
|
|
27
|
+
# Set model parameters
|
|
28
|
+
ndarrays = msg.content["arrays"].to_numpy_ndarrays()
|
|
29
|
+
set_params(model, ndarrays)
|
|
30
|
+
|
|
31
|
+
# Train the model on local data
|
|
32
|
+
model, loss, num_examples = train_fn(model, grad_fn, train_x, train_y)
|
|
33
|
+
|
|
34
|
+
# Construct and return reply Message
|
|
35
|
+
model_record = ArrayRecord(get_params(model))
|
|
36
|
+
metrics = {
|
|
37
|
+
"train_loss": float(loss),
|
|
38
|
+
"num-examples": num_examples,
|
|
39
|
+
}
|
|
40
|
+
metric_record = MetricRecord(metrics)
|
|
41
|
+
content = RecordDict({"arrays": model_record, "metrics": metric_record})
|
|
42
|
+
return Message(content=content, reply_to=msg)
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
@app.evaluate()
|
|
46
|
+
def evaluate(msg: Message, context: Context):
|
|
47
|
+
"""Evaluate the model on local data."""
|
|
48
|
+
|
|
49
|
+
# Read from config
|
|
50
|
+
input_dim = context.run_config["input-dim"]
|
|
51
|
+
|
|
52
|
+
# Load data and model
|
|
53
|
+
_, _, test_x, test_y = load_data()
|
|
54
|
+
model = load_model((input_dim,))
|
|
55
|
+
grad_fn = jax.grad(loss_fn)
|
|
56
|
+
|
|
57
|
+
# Set model parameters
|
|
58
|
+
ndarrays = msg.content["arrays"].to_numpy_ndarrays()
|
|
59
|
+
set_params(model, ndarrays)
|
|
60
|
+
|
|
61
|
+
# Evaluate the model on local data
|
|
62
|
+
loss, num_examples = evaluation_fn(model, grad_fn, test_x, test_y)
|
|
63
|
+
|
|
64
|
+
# Construct and return reply Message
|
|
65
|
+
metrics = {
|
|
66
|
+
"test_loss": float(loss),
|
|
67
|
+
"num-examples": num_examples,
|
|
68
|
+
}
|
|
69
|
+
metric_record = MetricRecord(metrics)
|
|
70
|
+
content = RecordDict({"metrics": metric_record})
|
|
71
|
+
return Message(content=content, reply_to=msg)
|
|
@@ -0,0 +1,102 @@
|
|
|
1
|
+
"""$project_name: A Flower / $framework_str app."""
|
|
2
|
+
|
|
3
|
+
import mlx.core as mx
|
|
4
|
+
import mlx.nn as nn
|
|
5
|
+
import mlx.optimizers as optim
|
|
6
|
+
from flwr.app import ArrayRecord, Context, Message, MetricRecord, RecordDict
|
|
7
|
+
from flwr.clientapp import ClientApp
|
|
8
|
+
|
|
9
|
+
from $import_name.task import (
|
|
10
|
+
MLP,
|
|
11
|
+
batch_iterate,
|
|
12
|
+
eval_fn,
|
|
13
|
+
get_params,
|
|
14
|
+
load_data,
|
|
15
|
+
loss_fn,
|
|
16
|
+
set_params,
|
|
17
|
+
)
|
|
18
|
+
|
|
19
|
+
# Flower ClientApp
|
|
20
|
+
app = ClientApp()
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
@app.train()
|
|
24
|
+
def train(msg: Message, context: Context):
|
|
25
|
+
"""Train the model on local data."""
|
|
26
|
+
|
|
27
|
+
# Read config
|
|
28
|
+
num_layers = context.run_config["num-layers"]
|
|
29
|
+
input_dim = context.run_config["input-dim"]
|
|
30
|
+
hidden_dim = context.run_config["hidden-dim"]
|
|
31
|
+
batch_size = context.run_config["batch-size"]
|
|
32
|
+
learning_rate = context.run_config["lr"]
|
|
33
|
+
num_epochs = context.run_config["local-epochs"]
|
|
34
|
+
|
|
35
|
+
# Instantiate model and apply global parameters
|
|
36
|
+
model = MLP(num_layers, input_dim, hidden_dim, output_dim=10)
|
|
37
|
+
ndarrays = msg.content["arrays"].to_numpy_ndarrays()
|
|
38
|
+
set_params(model, ndarrays)
|
|
39
|
+
|
|
40
|
+
# Define optimizer and loss function
|
|
41
|
+
optimizer = optim.SGD(learning_rate=learning_rate)
|
|
42
|
+
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
|
|
43
|
+
|
|
44
|
+
# Load data
|
|
45
|
+
partition_id = context.node_config["partition-id"]
|
|
46
|
+
num_partitions = context.node_config["num-partitions"]
|
|
47
|
+
train_images, train_labels, _, _ = load_data(partition_id, num_partitions)
|
|
48
|
+
|
|
49
|
+
# Train the model on local data
|
|
50
|
+
for _ in range(num_epochs):
|
|
51
|
+
for X, y in batch_iterate(batch_size, train_images, train_labels):
|
|
52
|
+
_, grads = loss_and_grad_fn(model, X, y)
|
|
53
|
+
optimizer.update(model, grads)
|
|
54
|
+
mx.eval(model.parameters(), optimizer.state)
|
|
55
|
+
|
|
56
|
+
# Compute train accuracy and loss
|
|
57
|
+
accuracy = eval_fn(model, train_images, train_labels)
|
|
58
|
+
loss = loss_fn(model, train_images, train_labels)
|
|
59
|
+
# Construct and return reply Message
|
|
60
|
+
model_record = ArrayRecord(get_params(model))
|
|
61
|
+
metrics = {
|
|
62
|
+
"num-examples": len(train_images),
|
|
63
|
+
"accuracy": float(accuracy.item()),
|
|
64
|
+
"loss": float(loss.item()),
|
|
65
|
+
}
|
|
66
|
+
metric_record = MetricRecord(metrics)
|
|
67
|
+
content = RecordDict({"arrays": model_record, "metrics": metric_record})
|
|
68
|
+
return Message(content=content, reply_to=msg)
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
@app.evaluate()
|
|
72
|
+
def evaluate(msg: Message, context: Context):
|
|
73
|
+
"""Evaluate the model on local data."""
|
|
74
|
+
|
|
75
|
+
# Read config
|
|
76
|
+
num_layers = context.run_config["num-layers"]
|
|
77
|
+
input_dim = context.run_config["input-dim"]
|
|
78
|
+
hidden_dim = context.run_config["hidden-dim"]
|
|
79
|
+
|
|
80
|
+
# Instantiate model and apply global parameters
|
|
81
|
+
model = MLP(num_layers, input_dim, hidden_dim, output_dim=10)
|
|
82
|
+
ndarrays = msg.content["arrays"].to_numpy_ndarrays()
|
|
83
|
+
set_params(model, ndarrays)
|
|
84
|
+
|
|
85
|
+
# Load data
|
|
86
|
+
partition_id = context.node_config["partition-id"]
|
|
87
|
+
num_partitions = context.node_config["num-partitions"]
|
|
88
|
+
_, _, test_images, test_labels = load_data(partition_id, num_partitions)
|
|
89
|
+
|
|
90
|
+
# Evaluate the model on local data
|
|
91
|
+
accuracy = eval_fn(model, test_images, test_labels)
|
|
92
|
+
loss = loss_fn(model, test_images, test_labels)
|
|
93
|
+
|
|
94
|
+
# Construct and return reply Message
|
|
95
|
+
metrics = {
|
|
96
|
+
"num-examples": len(test_images),
|
|
97
|
+
"accuracy": float(accuracy.item()),
|
|
98
|
+
"loss": float(loss.item()),
|
|
99
|
+
}
|
|
100
|
+
metric_record = MetricRecord(metrics)
|
|
101
|
+
content = RecordDict({"metrics": metric_record})
|
|
102
|
+
return Message(content=content, reply_to=msg)
|
|
@@ -0,0 +1,46 @@
|
|
|
1
|
+
"""$project_name: A Flower / $framework_str app."""
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
from flwr.app import ArrayRecord, Context, Message, MetricRecord, RecordDict
|
|
5
|
+
from flwr.clientapp import ClientApp
|
|
6
|
+
|
|
7
|
+
# Flower ClientApp
|
|
8
|
+
app = ClientApp()
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
@app.train()
|
|
12
|
+
def train(msg: Message, context: Context):
|
|
13
|
+
"""Train the model on local data."""
|
|
14
|
+
|
|
15
|
+
# The model is the global arrays
|
|
16
|
+
ndarrays = msg.content["arrays"].to_numpy_ndarrays()
|
|
17
|
+
|
|
18
|
+
# Simulate local training (here we just add random noise to model parameters)
|
|
19
|
+
model = [m + np.random.rand(*m.shape) for m in ndarrays]
|
|
20
|
+
|
|
21
|
+
# Construct and return reply Message
|
|
22
|
+
model_record = ArrayRecord(model)
|
|
23
|
+
metrics = {
|
|
24
|
+
"random_metric": np.random.rand(),
|
|
25
|
+
"num-examples": 1,
|
|
26
|
+
}
|
|
27
|
+
metric_record = MetricRecord(metrics)
|
|
28
|
+
content = RecordDict({"arrays": model_record, "metrics": metric_record})
|
|
29
|
+
return Message(content=content, reply_to=msg)
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
@app.evaluate()
|
|
33
|
+
def evaluate(msg: Message, context: Context):
|
|
34
|
+
"""Evaluate the model on local data."""
|
|
35
|
+
|
|
36
|
+
# The model is the global arrays
|
|
37
|
+
ndarrays = msg.content["arrays"].to_numpy_ndarrays()
|
|
38
|
+
|
|
39
|
+
# Return reply Message
|
|
40
|
+
metrics = {
|
|
41
|
+
"random_metric": np.random.rand(3).tolist(),
|
|
42
|
+
"num-examples": 1,
|
|
43
|
+
}
|
|
44
|
+
metric_record = MetricRecord(metrics)
|
|
45
|
+
content = RecordDict({"metrics": metric_record})
|
|
46
|
+
return Message(content=content, reply_to=msg)
|
|
@@ -0,0 +1,108 @@
|
|
|
1
|
+
"""$project_name: A Flower / $framework_str app."""
|
|
2
|
+
|
|
3
|
+
import warnings
|
|
4
|
+
|
|
5
|
+
from flwr.app import ArrayRecord, Context, Message, MetricRecord, RecordDict
|
|
6
|
+
from flwr.clientapp import ClientApp
|
|
7
|
+
from sklearn.metrics import (
|
|
8
|
+
accuracy_score,
|
|
9
|
+
f1_score,
|
|
10
|
+
log_loss,
|
|
11
|
+
precision_score,
|
|
12
|
+
recall_score,
|
|
13
|
+
)
|
|
14
|
+
|
|
15
|
+
from $import_name.task import (
|
|
16
|
+
get_model,
|
|
17
|
+
get_model_params,
|
|
18
|
+
load_data,
|
|
19
|
+
set_initial_params,
|
|
20
|
+
set_model_params,
|
|
21
|
+
)
|
|
22
|
+
|
|
23
|
+
# Flower ClientApp
|
|
24
|
+
app = ClientApp()
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
@app.train()
|
|
28
|
+
def train(msg: Message, context: Context):
|
|
29
|
+
"""Train the model on local data."""
|
|
30
|
+
|
|
31
|
+
# Create LogisticRegression Model
|
|
32
|
+
penalty = context.run_config["penalty"]
|
|
33
|
+
local_epochs = context.run_config["local-epochs"]
|
|
34
|
+
model = get_model(penalty, local_epochs)
|
|
35
|
+
# Setting initial parameters, akin to model.compile for keras models
|
|
36
|
+
set_initial_params(model)
|
|
37
|
+
|
|
38
|
+
# Apply received pararameters
|
|
39
|
+
ndarrays = msg.content["arrays"].to_numpy_ndarrays()
|
|
40
|
+
set_model_params(model, ndarrays)
|
|
41
|
+
|
|
42
|
+
# Load the data
|
|
43
|
+
partition_id = context.node_config["partition-id"]
|
|
44
|
+
num_partitions = context.node_config["num-partitions"]
|
|
45
|
+
X_train, _, y_train, _ = load_data(partition_id, num_partitions)
|
|
46
|
+
|
|
47
|
+
# Ignore convergence failure due to low local epochs
|
|
48
|
+
with warnings.catch_warnings():
|
|
49
|
+
warnings.simplefilter("ignore")
|
|
50
|
+
# Train the model on local data
|
|
51
|
+
model.fit(X_train, y_train)
|
|
52
|
+
|
|
53
|
+
# Let's compute train loss
|
|
54
|
+
y_train_pred_proba = model.predict_proba(X_train)
|
|
55
|
+
train_logloss = log_loss(y_train, y_train_pred_proba)
|
|
56
|
+
|
|
57
|
+
# Construct and return reply Message
|
|
58
|
+
ndarrays = get_model_params(model)
|
|
59
|
+
model_record = ArrayRecord(ndarrays)
|
|
60
|
+
metrics = {"num-examples": len(X_train), "train_logloss": train_logloss}
|
|
61
|
+
metric_record = MetricRecord(metrics)
|
|
62
|
+
content = RecordDict({"arrays": model_record, "metrics": metric_record})
|
|
63
|
+
return Message(content=content, reply_to=msg)
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
@app.evaluate()
|
|
67
|
+
def evaluate(msg: Message, context: Context):
|
|
68
|
+
"""Evaluate the model on test data."""
|
|
69
|
+
|
|
70
|
+
# Create LogisticRegression Model
|
|
71
|
+
penalty = context.run_config["penalty"]
|
|
72
|
+
local_epochs = context.run_config["local-epochs"]
|
|
73
|
+
model = get_model(penalty, local_epochs)
|
|
74
|
+
|
|
75
|
+
# Setting initial parameters, akin to model.compile for keras models
|
|
76
|
+
set_initial_params(model)
|
|
77
|
+
|
|
78
|
+
# Apply received pararameters
|
|
79
|
+
ndarrays = msg.content["arrays"].to_numpy_ndarrays()
|
|
80
|
+
set_model_params(model, ndarrays)
|
|
81
|
+
|
|
82
|
+
# Load the data
|
|
83
|
+
partition_id = context.node_config["partition-id"]
|
|
84
|
+
num_partitions = context.node_config["num-partitions"]
|
|
85
|
+
_, X_test, _, y_test = load_data(partition_id, num_partitions)
|
|
86
|
+
|
|
87
|
+
# Evaluate the model on local data
|
|
88
|
+
y_train_pred = model.predict(X_test)
|
|
89
|
+
y_train_pred_proba = model.predict_proba(X_test)
|
|
90
|
+
|
|
91
|
+
accuracy = accuracy_score(y_test, y_train_pred)
|
|
92
|
+
loss = log_loss(y_test, y_train_pred_proba)
|
|
93
|
+
precision = precision_score(y_test, y_train_pred, average="macro", zero_division=0)
|
|
94
|
+
recall = recall_score(y_test, y_train_pred, average="macro", zero_division=0)
|
|
95
|
+
f1 = f1_score(y_test, y_train_pred, average="macro", zero_division=0)
|
|
96
|
+
|
|
97
|
+
# Construct and return reply Message
|
|
98
|
+
metrics = {
|
|
99
|
+
"num-examples": len(X_test),
|
|
100
|
+
"test_logloss": loss,
|
|
101
|
+
"accuracy": accuracy,
|
|
102
|
+
"precision": precision,
|
|
103
|
+
"recall": recall,
|
|
104
|
+
"f1": f1,
|
|
105
|
+
}
|
|
106
|
+
metric_record = MetricRecord(metrics)
|
|
107
|
+
content = RecordDict({"metrics": metric_record})
|
|
108
|
+
return Message(content=content, reply_to=msg)
|