flwr-nightly 1.5.0.dev20230616__tar.gz → 1.5.0.dev20230619__tar.gz

Sign up to get free protection for your applications and to get access to all the features.
Files changed (113) hide show
  1. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/PKG-INFO +1 -1
  2. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/pyproject.toml +8 -4
  3. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/setup.py +1 -1
  4. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/client/grpc_client/connection.py +5 -2
  5. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/app.py +1 -1
  6. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/state/sqlite_state.py +1 -1
  7. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/utils/tensorboard.py +1 -1
  8. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/LICENSE +0 -0
  9. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/README.md +0 -0
  10. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/__init__.py +0 -0
  11. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/client/__init__.py +0 -0
  12. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/client/app.py +0 -0
  13. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/client/client.py +0 -0
  14. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/client/dpfedavg_numpy_client.py +0 -0
  15. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/client/grpc_client/__init__.py +0 -0
  16. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/client/grpc_rere_client/__init__.py +0 -0
  17. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/client/grpc_rere_client/connection.py +0 -0
  18. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/client/message_handler/__init__.py +0 -0
  19. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/client/message_handler/message_handler.py +0 -0
  20. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/client/message_handler/task_handler.py +0 -0
  21. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/client/numpy_client.py +0 -0
  22. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/client/rest_client/__init__.py +0 -0
  23. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/client/rest_client/connection.py +0 -0
  24. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/common/__init__.py +0 -0
  25. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/common/address.py +0 -0
  26. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/common/constant.py +0 -0
  27. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/common/date.py +0 -0
  28. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/common/dp.py +0 -0
  29. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/common/grpc.py +0 -0
  30. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/common/logger.py +0 -0
  31. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/common/parameter.py +0 -0
  32. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/common/serde.py +0 -0
  33. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/common/telemetry.py +0 -0
  34. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/common/typing.py +0 -0
  35. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/common/version.py +0 -0
  36. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/driver/__init__.py +0 -0
  37. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/driver/app.py +0 -0
  38. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/driver/driver.py +0 -0
  39. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/driver/driver_client_manager.py +0 -0
  40. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/driver/driver_client_proxy.py +0 -0
  41. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/proto/__init__.py +0 -0
  42. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/proto/driver_pb2.py +0 -0
  43. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/proto/driver_pb2.pyi +0 -0
  44. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/proto/driver_pb2_grpc.py +0 -0
  45. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/proto/driver_pb2_grpc.pyi +0 -0
  46. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/proto/fleet_pb2.py +0 -0
  47. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/proto/fleet_pb2.pyi +0 -0
  48. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/proto/fleet_pb2_grpc.py +0 -0
  49. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/proto/fleet_pb2_grpc.pyi +0 -0
  50. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/proto/node_pb2.py +0 -0
  51. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/proto/node_pb2.pyi +0 -0
  52. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/proto/node_pb2_grpc.py +0 -0
  53. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/proto/node_pb2_grpc.pyi +0 -0
  54. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/proto/task_pb2.py +0 -0
  55. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/proto/task_pb2.pyi +0 -0
  56. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/proto/task_pb2_grpc.py +0 -0
  57. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/proto/task_pb2_grpc.pyi +0 -0
  58. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/proto/transport_pb2.py +0 -0
  59. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/proto/transport_pb2.pyi +0 -0
  60. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/proto/transport_pb2_grpc.py +0 -0
  61. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/proto/transport_pb2_grpc.pyi +0 -0
  62. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/py.typed +0 -0
  63. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/__init__.py +0 -0
  64. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/client_manager.py +0 -0
  65. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/client_proxy.py +0 -0
  66. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/criterion.py +0 -0
  67. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/driver/__init__.py +0 -0
  68. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/driver/driver_servicer.py +0 -0
  69. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/fleet/__init__.py +0 -0
  70. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/fleet/grpc_bidi/__init__.py +0 -0
  71. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/fleet/grpc_bidi/driver_client_manager.py +0 -0
  72. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/fleet/grpc_bidi/flower_service_servicer.py +0 -0
  73. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/fleet/grpc_bidi/grpc_bridge.py +0 -0
  74. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/fleet/grpc_bidi/grpc_client_proxy.py +0 -0
  75. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/fleet/grpc_bidi/grpc_server.py +0 -0
  76. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/fleet/grpc_bidi/ins_scheduler.py +0 -0
  77. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/fleet/grpc_rere/__init__.py +0 -0
  78. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/fleet/grpc_rere/fleet_servicer.py +0 -0
  79. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/fleet/message_handler/__init__.py +0 -0
  80. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/fleet/message_handler/message_handler.py +0 -0
  81. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/fleet/rest_rere/__init__.py +0 -0
  82. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/fleet/rest_rere/rest_api.py +0 -0
  83. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/history.py +0 -0
  84. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/server.py +0 -0
  85. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/state/__init__.py +0 -0
  86. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/state/in_memory_state.py +0 -0
  87. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/state/state.py +0 -0
  88. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/state/state_factory.py +0 -0
  89. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/strategy/__init__.py +0 -0
  90. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/strategy/aggregate.py +0 -0
  91. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/strategy/dpfedavg_adaptive.py +0 -0
  92. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/strategy/dpfedavg_fixed.py +0 -0
  93. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/strategy/fault_tolerant_fedavg.py +0 -0
  94. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/strategy/fedadagrad.py +0 -0
  95. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/strategy/fedadam.py +0 -0
  96. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/strategy/fedavg.py +0 -0
  97. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/strategy/fedavg_android.py +0 -0
  98. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/strategy/fedavgm.py +0 -0
  99. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/strategy/fedmedian.py +0 -0
  100. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/strategy/fedopt.py +0 -0
  101. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/strategy/fedprox.py +0 -0
  102. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/strategy/fedtrimmedavg.py +0 -0
  103. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/strategy/fedxgb_nn_avg.py +0 -0
  104. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/strategy/fedyogi.py +0 -0
  105. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/strategy/krum.py +0 -0
  106. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/strategy/qfedavg.py +0 -0
  107. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/strategy/strategy.py +0 -0
  108. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/utils/__init__.py +0 -0
  109. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/server/utils/validator.py +0 -0
  110. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/simulation/__init__.py +0 -0
  111. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/simulation/app.py +0 -0
  112. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/simulation/ray_transport/__init__.py +0 -0
  113. {flwr_nightly-1.5.0.dev20230616 → flwr_nightly-1.5.0.dev20230619}/src/py/flwr/simulation/ray_transport/ray_client_proxy.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: flwr-nightly
3
- Version: 1.5.0.dev20230616
3
+ Version: 1.5.0.dev20230619
4
4
  Summary: Flower: A Friendly Federated Learning Framework
5
5
  Home-page: https://flower.dev
6
6
  License: Apache-2.0
@@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
4
4
 
5
5
  [tool.poetry]
6
6
  name = "flwr-nightly"
7
- version = "1.5.0-dev20230616"
7
+ version = "1.5.0-dev20230619"
8
8
  description = "Flower: A Friendly Federated Learning Framework"
9
9
  license = "Apache-2.0"
10
10
  authors = ["The Flower Authors <hello@flower.dev>"]
@@ -159,10 +159,11 @@ wrap-summaries = 88
159
159
  wrap-descriptions = 88
160
160
 
161
161
  [tool.ruff]
162
+ target-version = "py37"
162
163
  line-length = 88
163
- select = ["D"]
164
- fixable = ["D"]
165
-
164
+ select = ["D", "E", "F", "W", "B", "ISC", "C4"]
165
+ fixable = ["D", "E", "F", "W", "B", "ISC", "C4"]
166
+ ignore = ["B024", "B027"]
166
167
  exclude = [
167
168
  ".bzr",
168
169
  ".direnv",
@@ -189,3 +190,6 @@ exclude = [
189
190
 
190
191
  [tool.ruff.pydocstyle]
191
192
  convention = "numpy"
193
+
194
+ [tool.ruff.per-file-ignores]
195
+ "src/py/flwr/server/strategy/*.py" = ["E501"]
@@ -52,7 +52,7 @@ entry_points = \
52
52
 
53
53
  setup_kwargs = {
54
54
  'name': 'flwr-nightly',
55
- 'version': '1.5.0.dev20230616',
55
+ 'version': '1.5.0.dev20230619',
56
56
  'description': 'Flower: A Friendly Federated Learning Framework',
57
57
  'long_description': '# Flower: A Friendly Federated Learning Framework\n\n<p align="center">\n <a href="https://flower.dev/">\n <img src="https://flower.dev/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Fflower_white_border.c2012e70.png&w=640&q=75" width="140px" alt="Flower Website" />\n </a>\n</p>\n<p align="center">\n <a href="https://flower.dev/">Website</a> |\n <a href="https://flower.dev/blog">Blog</a> |\n <a href="https://flower.dev/docs/">Docs</a> |\n <a href="https://flower.dev/conf/flower-summit-2022">Conference</a> |\n <a href="https://flower.dev/join-slack">Slack</a>\n <br /><br />\n</p>\n\n[![GitHub license](https://img.shields.io/github/license/adap/flower)](https://github.com/adap/flower/blob/main/LICENSE)\n[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](https://github.com/adap/flower/blob/main/CONTRIBUTING.md)\n![Build](https://github.com/adap/flower/actions/workflows/flower.yml/badge.svg)\n![Downloads](https://pepy.tech/badge/flwr)\n[![Slack](https://img.shields.io/badge/Chat-Slack-red)](https://flower.dev/join-slack)\n\nFlower (`flwr`) is a framework for building federated learning systems. The\ndesign of Flower is based on a few guiding principles:\n\n* **Customizable**: Federated learning systems vary wildly from one use case to\n another. Flower allows for a wide range of different configurations depending\n on the needs of each individual use case.\n\n* **Extendable**: Flower originated from a research project at the University of\n Oxford, so it was built with AI research in mind. Many components can be\n extended and overridden to build new state-of-the-art systems.\n\n* **Framework-agnostic**: Different machine learning frameworks have different\n strengths. Flower can be used with any machine learning framework, for\n example, [PyTorch](https://pytorch.org),\n [TensorFlow](https://tensorflow.org), [Hugging Face Transformers](https://huggingface.co/), [PyTorch Lightning](https://pytorchlightning.ai/), [MXNet](https://mxnet.apache.org/), [scikit-learn](https://scikit-learn.org/), [JAX](https://jax.readthedocs.io/), [TFLite](https://tensorflow.org/lite/), [fastai](https://www.fast.ai/), [Pandas](https://pandas.pydata.org/\n) for federated analytics, or even raw [NumPy](https://numpy.org/)\n for users who enjoy computing gradients by hand.\n\n* **Understandable**: Flower is written with maintainability in mind. The\n community is encouraged to both read and contribute to the codebase.\n\nMeet the Flower community on [flower.dev](https://flower.dev)!\n\n## Federated Learning Tutorial\n\nFlower\'s goal is to make federated learning accessible to everyone. This series of tutorials introduces the fundamentals of federated learning and how to implement them in Flower.\n\n0. **What is Federated Learning?**\n\n [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-0-What-is-FL.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-0-What-is-FL.ipynb))\n\n1. **An Introduction to Federated Learning**\n\n [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-1-Intro-to-FL-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-1-Intro-to-FL-PyTorch.ipynb))\n\n2. **Using Strategies in Federated Learning**\n\n [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-2-Strategies-in-FL-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-2-Strategies-in-FL-PyTorch.ipynb))\n \n3. **Building Strategies for Federated Learning**\n\n [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-3-Building-a-Strategy-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-3-Building-a-Strategy-PyTorch.ipynb))\n \n4. **Custom Clients for Federated Learning**\n\n [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-4-Client-and-NumPyClient-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-4-Client-and-NumPyClient-PyTorch.ipynb))\n\nStay tuned, more tutorials are coming soon. Topics include **Privacy and Security in Federated Learning**, and **Scaling Federated Learning**.\n\n## Documentation\n\n[Flower Docs](https://flower.dev/docs):\n* [Installation](https://flower.dev/docs/installation.html)\n* [Quickstart (TensorFlow)](https://flower.dev/docs/quickstart-tensorflow.html)\n* [Quickstart (PyTorch)](https://flower.dev/docs/quickstart-pytorch.html)\n* [Quickstart (Hugging Face [code example])](https://flower.dev/docs/quickstart-huggingface.html)\n* [Quickstart (PyTorch Lightning [code example])](https://flower.dev/docs/quickstart-pytorch-lightning.html)\n* [Quickstart (MXNet)](https://flower.dev/docs/example-mxnet-walk-through.html)\n* [Quickstart (Pandas)](https://flower.dev/docs/quickstart-pandas.html)\n* [Quickstart (fastai)](https://flower.dev/docs/quickstart-fastai.html)\n* [Quickstart (JAX)](https://github.com/adap/flower/tree/main/examples/quickstart_jax)\n* [Quickstart (scikit-learn)](https://github.com/adap/flower/tree/main/examples/sklearn-logreg-mnist)\n* [Quickstart (TFLite on Android [code example])](https://github.com/adap/flower/tree/main/examples/android)\n* [Quickstart (iOS)](https://flower.dev/docs/quickstart-ios.html)\n\n## Flower Baselines\n\nFlower Baselines is a collection of community-contributed experiments that reproduce the experiments performed in popular federated learning publications. Researchers can build on Flower Baselines to quickly evaluate new ideas:\n\n* [FedAvg](https://arxiv.org/abs/1602.05629):\n * [MNIST](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/fedavg_mnist)\n* [FedProx](https://arxiv.org/abs/1812.06127):\n * [MNIST](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/fedprox_mnist)\n* [FedBN: Federated Learning on non-IID Features via Local Batch Normalization](https://arxiv.org/abs/2102.07623):\n * [Convergence Rate](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/fedbn/convergence_rate)\n* [Adaptive Federated Optimization](https://arxiv.org/abs/2003.00295):\n * [CIFAR-10/100](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/adaptive_federated_optimization)\n\nCheck the Flower documentation to learn more: [Using Baselines](https://flower.dev/docs/using-baselines.html)\n\nThe Flower community loves contributions! Make your work more visible and enable others to build on it by contributing it as a baseline: [Contributing Baselines](https://flower.dev/docs/contributing-baselines.html)\n\n## Flower Usage Examples\n\nSeveral code examples show different usage scenarios of Flower (in combination with popular machine learning frameworks such as PyTorch or TensorFlow).\n\nQuickstart examples:\n\n* [Quickstart (TensorFlow)](https://github.com/adap/flower/tree/main/examples/quickstart_tensorflow)\n* [Quickstart (PyTorch)](https://github.com/adap/flower/tree/main/examples/quickstart_pytorch)\n* [Quickstart (Hugging Face)](https://github.com/adap/flower/tree/main/examples/quickstart_huggingface)\n* [Quickstart (PyTorch Lightning)](https://github.com/adap/flower/tree/main/examples/quickstart_pytorch_lightning)\n* [Quickstart (fastai)](https://github.com/adap/flower/tree/main/examples/quickstart_fastai)\n* [Quickstart (Pandas)](https://github.com/adap/flower/tree/main/examples/quickstart_pandas)\n* [Quickstart (MXNet)](https://github.com/adap/flower/tree/main/examples/quickstart_mxnet)\n* [Quickstart (JAX)](https://github.com/adap/flower/tree/main/examples/quickstart_jax)\n* [Quickstart (scikit-learn)](https://github.com/adap/flower/tree/main/examples/sklearn-logreg-mnist)\n* [Quickstart (TFLite on Android)](https://github.com/adap/flower/tree/main/examples/android)\n\nOther [examples](https://github.com/adap/flower/tree/main/examples):\n\n* [Raspberry Pi & Nvidia Jetson Tutorial](https://github.com/adap/flower/tree/main/examples/embedded_devices)\n* [Android & TFLite](https://github.com/adap/flower/tree/main/examples/android)\n* [PyTorch: From Centralized to Federated](https://github.com/adap/flower/tree/main/examples/pytorch_from_centralized_to_federated)\n* [MXNet: From Centralized to Federated](https://github.com/adap/flower/tree/main/examples/mxnet_from_centralized_to_federated)\n* [Advanced Flower with TensorFlow/Keras](https://github.com/adap/flower/tree/main/examples/advanced_tensorflow)\n* [Advanced Flower with PyTorch](https://github.com/adap/flower/tree/main/examples/advanced_pytorch)\n* Single-Machine Simulation of Federated Learning Systems ([PyTorch](https://github.com/adap/flower/tree/main/examples/simulation_pytorch)) ([Tensorflow](https://github.com/adap/flower/tree/main/examples/simulation_tensorflow))\n\n## Community\n\nFlower is built by a wonderful community of researchers and engineers. [Join Slack](https://flower.dev/join-slack) to meet them, [contributions](#contributing-to-flower) are welcome.\n\n<a href="https://github.com/adap/flower/graphs/contributors">\n <img src="https://contrib.rocks/image?repo=adap/flower" />\n</a>\n\n## Citation\n\nIf you publish work that uses Flower, please cite Flower as follows: \n\n```bibtex\n@article{beutel2020flower,\n title={Flower: A Friendly Federated Learning Research Framework},\n author={Beutel, Daniel J and Topal, Taner and Mathur, Akhil and Qiu, Xinchi and Fernandez-Marques, Javier and Gao, Yan and Sani, Lorenzo and Kwing, Hei Li and Parcollet, Titouan and Gusmão, Pedro PB de and Lane, Nicholas D}, \n journal={arXiv preprint arXiv:2007.14390},\n year={2020}\n}\n```\n\nPlease also consider adding your publication to the list of Flower-based publications in the docs, just open a Pull Request.\n\n## Contributing to Flower\n\nWe welcome contributions. Please see [CONTRIBUTING.md](CONTRIBUTING.md) to get started!\n',
58
58
  'author': 'The Flower Authors',
@@ -102,8 +102,11 @@ def grpc_connection(
102
102
 
103
103
  server_message_iterator: Iterator[ServerMessage] = stub.Join(iter(queue.get, None))
104
104
 
105
- receive: Callable[[], ServerMessage] = lambda: next(server_message_iterator)
106
- send: Callable[[ClientMessage], None] = lambda msg: queue.put(msg, block=False)
105
+ def receive() -> ServerMessage:
106
+ return next(server_message_iterator)
107
+
108
+ def send(msg: ClientMessage) -> None:
109
+ return queue.put(msg, block=False)
107
110
 
108
111
  try:
109
112
  yield (receive, send)
@@ -628,7 +628,7 @@ def _validate_ssl_files(
628
628
  if not bool(ssl_keyfile) == bool(ssl_certfile):
629
629
  msg = (
630
630
  "When setting one of `--ssl-keyfile` and "
631
- + "`--ssl-certfile`, both have to be used."
631
+ "`--ssl-certfile`, both have to be used."
632
632
  )
633
633
  log(ERROR, msg)
634
634
  validation_exceptions.append(ValueError(msg))
@@ -226,7 +226,7 @@ class SqliteState(State):
226
226
  if node_id == 0:
227
227
  msg = (
228
228
  "`node_id` must be >= 1"
229
- + "\n\n For requesting anonymous tasks use `node_id` equal `None`"
229
+ "\n\n For requesting anonymous tasks use `node_id` equal `None`"
230
230
  )
231
231
  raise AssertionError(msg)
232
232
 
@@ -50,7 +50,7 @@ def tensorboard(logdir: str) -> Callable[[Strategy], Strategy]:
50
50
  """
51
51
  print(
52
52
  "\n\t\033[32mStart TensorBoard with the following parameters"
53
- + f"\n\t$ tensorboard --logdir {logdir}\033[39m\n"
53
+ f"\n\t$ tensorboard --logdir {logdir}\033[39m\n"
54
54
  )
55
55
  # Create logdir if it does not yet exist
56
56
  os.makedirs(logdir, exist_ok=True)