flwr-nightly 1.4.0.dev20230322__tar.gz → 1.4.0.dev20230323__tar.gz
Sign up to get free protection for your applications and to get access to all the features.
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/PKG-INFO +1 -1
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/pyproject.toml +6 -6
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/setup.py +6 -7
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/__init__.py +2 -1
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/client/app.py +12 -2
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/client/rest_client/connection.py +7 -1
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/app.py +11 -2
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/rest_server/rest_api.py +11 -5
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/strategy/fedxgb_nn_avg.py +0 -3
- flwr_nightly-1.4.0.dev20230322/src/py/flwr/server/strategy/fedxgb.py +0 -153
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/LICENSE +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/README.md +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/client/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/client/client.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/client/dpfedavg_numpy_client.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/client/grpc_client/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/client/grpc_client/connection.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/client/message_handler/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/client/message_handler/message_handler.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/client/message_handler/task_handler.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/client/numpy_client.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/client/rest_client/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/common/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/common/date.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/common/dp.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/common/grpc.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/common/logger.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/common/parameter.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/common/serde.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/common/telemetry.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/common/typing.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/common/version.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/driver/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/driver/driver.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/driver_pb2.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/driver_pb2.pyi +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/driver_pb2_grpc.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/driver_pb2_grpc.pyi +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/fleet_pb2.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/fleet_pb2.pyi +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/fleet_pb2_grpc.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/fleet_pb2_grpc.pyi +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/node_pb2.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/node_pb2.pyi +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/node_pb2_grpc.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/node_pb2_grpc.pyi +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/task_pb2.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/task_pb2.pyi +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/task_pb2_grpc.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/task_pb2_grpc.pyi +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/transport_pb2.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/transport_pb2.pyi +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/transport_pb2_grpc.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/transport_pb2_grpc.pyi +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/py.typed +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/client_manager.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/client_proxy.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/criterion.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/driver/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/driver/driver_servicer.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/fleet/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/fleet/fleet_servicer.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/grpc_server/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/grpc_server/driver_client_manager.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/grpc_server/flower_service_servicer.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/grpc_server/grpc_bridge.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/grpc_server/grpc_client_proxy.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/grpc_server/grpc_server.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/grpc_server/ins_scheduler.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/history.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/rest_server/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/server.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/state/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/state/in_memory_state.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/state/sqlite_state.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/state/state.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/state/state_factory.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/strategy/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/strategy/aggregate.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/strategy/dpfedavg_adaptive.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/strategy/dpfedavg_fixed.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/strategy/fault_tolerant_fedavg.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/strategy/fedadagrad.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/strategy/fedadam.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/strategy/fedavg.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/strategy/fedavg_android.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/strategy/fedavgm.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/strategy/fedmedian.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/strategy/fedopt.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/strategy/fedprox.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/strategy/fedyogi.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/strategy/krum.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/strategy/qfedavg.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/strategy/strategy.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/utils/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/utils/tensorboard.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/utils/validator.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/simulation/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/simulation/app.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/simulation/ray_transport/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/simulation/ray_transport/ray_client_proxy.py +0 -0
@@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
|
|
4
4
|
|
5
5
|
[tool.poetry]
|
6
6
|
name = "flwr-nightly"
|
7
|
-
version = "1.4.0-
|
7
|
+
version = "1.4.0-dev20230323"
|
8
8
|
description = "Flower: A Friendly Federated Learning Framework"
|
9
9
|
license = "Apache-2.0"
|
10
10
|
authors = ["The Flower Authors <hello@flower.dev>"]
|
@@ -60,11 +60,11 @@ iterators = "^0.0.2"
|
|
60
60
|
# Optional dependencies (VCE)
|
61
61
|
ray = { extras = ["default"], version = "~2.3.0", optional = true }
|
62
62
|
# Optional dependencies (REST transport layer)
|
63
|
-
requests = "^2.28.2"
|
64
|
-
fastapi = "^0.92.0"
|
65
|
-
starlette = "^0.25.0"
|
66
|
-
uvicorn = {extras = ["standard"], version = "^0.20.0"}
|
67
|
-
# Optional
|
63
|
+
requests = { version = "^2.28.2", optional = true }
|
64
|
+
fastapi = { version = "^0.92.0", optional = true }
|
65
|
+
starlette = { version = "^0.25.0", optional = true }
|
66
|
+
uvicorn = { extras = ["standard"], version = "^0.20.0", optional = true }
|
67
|
+
# Optional dependency (xgboost)
|
68
68
|
xgboost = { version = "^1.6.2", optional = true }
|
69
69
|
|
70
70
|
[tool.poetry.extras]
|
@@ -31,14 +31,13 @@ install_requires = \
|
|
31
31
|
['grpcio>=1.43.0,<2.0.0,!=1.52.0',
|
32
32
|
'iterators>=0.0.2,<0.0.3',
|
33
33
|
'numpy>=1.21.0,<2.0.0',
|
34
|
-
'protobuf>=3.19.0,<4.0.0'
|
35
|
-
'starlette>=0.25.0,<0.26.0']
|
34
|
+
'protobuf>=3.19.0,<4.0.0']
|
36
35
|
|
37
36
|
extras_require = \
|
38
|
-
{':
|
39
|
-
|
40
|
-
|
41
|
-
|
37
|
+
{':python_version < "3.8"': ['importlib-metadata>=4.0.0,<5.0.0'],
|
38
|
+
'rest': ['requests>=2.28.2,<3.0.0',
|
39
|
+
'fastapi>=0.92.0,<0.93.0',
|
40
|
+
'uvicorn[standard]>=0.20.0,<0.21.0'],
|
42
41
|
'simulation': ['ray[default]>=2.3.0,<2.4.0'],
|
43
42
|
'xgboost': ['xgboost>=1.6.2,<2.0.0']}
|
44
43
|
|
@@ -50,7 +49,7 @@ entry_points = \
|
|
50
49
|
|
51
50
|
setup_kwargs = {
|
52
51
|
'name': 'flwr-nightly',
|
53
|
-
'version': '1.4.0.
|
52
|
+
'version': '1.4.0.dev20230323',
|
54
53
|
'description': 'Flower: A Friendly Federated Learning Framework',
|
55
54
|
'long_description': '# Flower: A Friendly Federated Learning Framework\n\n<p align="center">\n <a href="https://flower.dev/">\n <img src="https://flower.dev/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Fflower_white_border.c2012e70.png&w=640&q=75" width="140px" alt="Flower Website" />\n </a>\n</p>\n<p align="center">\n <a href="https://flower.dev/">Website</a> |\n <a href="https://flower.dev/blog">Blog</a> |\n <a href="https://flower.dev/docs/">Docs</a> |\n <a href="https://flower.dev/conf/flower-summit-2022">Conference</a> |\n <a href="https://flower.dev/join-slack">Slack</a>\n <br /><br />\n</p>\n\n[![GitHub license](https://img.shields.io/github/license/adap/flower)](https://github.com/adap/flower/blob/main/LICENSE)\n[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](https://github.com/adap/flower/blob/main/CONTRIBUTING.md)\n![Build](https://github.com/adap/flower/actions/workflows/flower.yml/badge.svg)\n![Downloads](https://pepy.tech/badge/flwr)\n[![Slack](https://img.shields.io/badge/Chat-Slack-red)](https://flower.dev/join-slack)\n\nFlower (`flwr`) is a framework for building federated learning systems. The\ndesign of Flower is based on a few guiding principles:\n\n* **Customizable**: Federated learning systems vary wildly from one use case to\n another. Flower allows for a wide range of different configurations depending\n on the needs of each individual use case.\n\n* **Extendable**: Flower originated from a research project at the University of\n Oxford, so it was built with AI research in mind. Many components can be\n extended and overridden to build new state-of-the-art systems.\n\n* **Framework-agnostic**: Different machine learning frameworks have different\n strengths. Flower can be used with any machine learning framework, for\n example, [PyTorch](https://pytorch.org),\n [TensorFlow](https://tensorflow.org), [Hugging Face Transformers](https://huggingface.co/), [PyTorch Lightning](https://pytorchlightning.ai/), [MXNet](https://mxnet.apache.org/), [scikit-learn](https://scikit-learn.org/), [JAX](https://jax.readthedocs.io/), [TFLite](https://tensorflow.org/lite/), [fastai](https://www.fast.ai/), [Pandas](https://pandas.pydata.org/\n) for federated analytics, or even raw [NumPy](https://numpy.org/)\n for users who enjoy computing gradients by hand.\n\n* **Understandable**: Flower is written with maintainability in mind. The\n community is encouraged to both read and contribute to the codebase.\n\nMeet the Flower community on [flower.dev](https://flower.dev)!\n\n## Federated Learning Tutorial\n\nFlower\'s goal is to make federated learning accessible to everyone. This series of tutorials introduces the fundamentals of federated learning and how to implement them in Flower.\n\n0. **What is Federated Learning?**\n\n [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-0-What-is-FL.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-0-What-is-FL.ipynb))\n\n1. **An Introduction to Federated Learning**\n\n [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-1-Intro-to-FL-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-1-Intro-to-FL-PyTorch.ipynb))\n\n2. **Using Strategies in Federated Learning**\n\n [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-2-Strategies-in-FL-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-2-Strategies-in-FL-PyTorch.ipynb))\n \n3. **Building Strategies for Federated Learning**\n\n [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-3-Building-a-Strategy-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-3-Building-a-Strategy-PyTorch.ipynb))\n \n4. **Custom Clients for Federated Learning**\n\n [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-4-Client-and-NumPyClient-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-4-Client-and-NumPyClient-PyTorch.ipynb))\n\nStay tuned, more tutorials are coming soon. Topics include **Privacy and Security in Federated Learning**, and **Scaling Federated Learning**.\n\n## Documentation\n\n[Flower Docs](https://flower.dev/docs):\n* [Installation](https://flower.dev/docs/installation.html)\n* [Quickstart (TensorFlow)](https://flower.dev/docs/quickstart-tensorflow.html)\n* [Quickstart (PyTorch)](https://flower.dev/docs/quickstart-pytorch.html)\n* [Quickstart (Hugging Face [code example])](https://flower.dev/docs/quickstart-huggingface.html)\n* [Quickstart (PyTorch Lightning [code example])](https://flower.dev/docs/quickstart-pytorch-lightning.html)\n* [Quickstart (MXNet)](https://flower.dev/docs/example-mxnet-walk-through.html)\n* [Quickstart (Pandas)](https://flower.dev/docs/quickstart-pandas.html)\n* [Quickstart (fastai)](https://flower.dev/docs/quickstart-fastai.html)\n* [Quickstart (JAX)](https://github.com/adap/flower/tree/main/examples/quickstart_jax)\n* [Quickstart (scikit-learn)](https://github.com/adap/flower/tree/main/examples/sklearn-logreg-mnist)\n* [Quickstart (TFLite on Android [code example])](https://github.com/adap/flower/tree/main/examples/android)\n\n## Flower Baselines\n\nFlower Baselines is a collection of community-contributed experiments that reproduce the experiments performed in popular federated learning publications. Researchers can build on Flower Baselines to quickly evaluate new ideas:\n\n* [FedAvg](https://arxiv.org/abs/1602.05629):\n * [MNIST](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/fedavg_mnist)\n* [FedProx](https://arxiv.org/abs/1812.06127):\n * [MNIST](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/fedprox_mnist)\n* [FedBN: Federated Learning on non-IID Features via Local Batch Normalization](https://arxiv.org/abs/2102.07623):\n * [Convergence Rate](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/fedbn/convergence_rate)\n* [Adaptive Federated Optimization](https://arxiv.org/abs/2003.00295):\n * [CIFAR-10/100](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/adaptive_federated_optimization)\n\nCheck the Flower documentation to learn more: [Using Baselines](https://flower.dev/docs/using-baselines.html)\n\nThe Flower community loves contributions! Make your work more visible and enable others to build on it by contributing it as a baseline: [Contributing Baselines](https://flower.dev/docs/contributing-baselines.html)\n\n## Flower Usage Examples\n\nSeveral code examples show different usage scenarios of Flower (in combination with popular machine learning frameworks such as PyTorch or TensorFlow).\n\nQuickstart examples:\n\n* [Quickstart (TensorFlow)](https://github.com/adap/flower/tree/main/examples/quickstart_tensorflow)\n* [Quickstart (PyTorch)](https://github.com/adap/flower/tree/main/examples/quickstart_pytorch)\n* [Quickstart (Hugging Face)](https://github.com/adap/flower/tree/main/examples/quickstart_huggingface)\n* [Quickstart (PyTorch Lightning)](https://github.com/adap/flower/tree/main/examples/quickstart_pytorch_lightning)\n* [Quickstart (fastai)](https://github.com/adap/flower/tree/main/examples/quickstart_fastai)\n* [Quickstart (Pandas)](https://github.com/adap/flower/tree/main/examples/quickstart_pandas)\n* [Quickstart (MXNet)](https://github.com/adap/flower/tree/main/examples/quickstart_mxnet)\n* [Quickstart (JAX)](https://github.com/adap/flower/tree/main/examples/quickstart_jax)\n* [Quickstart (scikit-learn)](https://github.com/adap/flower/tree/main/examples/sklearn-logreg-mnist)\n* [Quickstart (TFLite on Android)](https://github.com/adap/flower/tree/main/examples/android)\n\nOther [examples](https://github.com/adap/flower/tree/main/examples):\n\n* [Raspberry Pi & Nvidia Jetson Tutorial](https://github.com/adap/flower/tree/main/examples/embedded_devices)\n* [Android & TFLite](https://github.com/adap/flower/tree/main/examples/android)\n* [PyTorch: From Centralized to Federated](https://github.com/adap/flower/tree/main/examples/pytorch_from_centralized_to_federated)\n* [MXNet: From Centralized to Federated](https://github.com/adap/flower/tree/main/examples/mxnet_from_centralized_to_federated)\n* [Advanced Flower with TensorFlow/Keras](https://github.com/adap/flower/tree/main/examples/advanced_tensorflow)\n* [Advanced Flower with PyTorch](https://github.com/adap/flower/tree/main/examples/advanced_pytorch)\n* Single-Machine Simulation of Federated Learning Systems ([PyTorch](https://github.com/adap/flower/tree/main/examples/simulation_pytorch)) ([Tensorflow](https://github.com/adap/flower/tree/main/examples/simulation_tensorflow))\n\n## Community\n\nFlower is built by a wonderful community of researchers and engineers. [Join Slack](https://flower.dev/join-slack) to meet them, [contributions](#contributing-to-flower) are welcome.\n\n<a href="https://github.com/adap/flower/graphs/contributors">\n <img src="https://contrib.rocks/image?repo=adap/flower" />\n</a>\n\n## Citation\n\nIf you publish work that uses Flower, please cite Flower as follows: \n\n```bibtex\n@article{beutel2020flower,\n title={Flower: A Friendly Federated Learning Research Framework},\n author={Beutel, Daniel J and Topal, Taner and Mathur, Akhil and Qiu, Xinchi and Fernandez-Marques, Javier and Gao, Yan and Sani, Lorenzo and Kwing, Hei Li and Parcollet, Titouan and Gusmão, Pedro PB de and Lane, Nicholas D}, \n journal={arXiv preprint arXiv:2007.14390},\n year={2020}\n}\n```\n\nPlease also consider adding your publication to the list of Flower-based publications in the docs, just open a Pull Request.\n\n## Contributing to Flower\n\nWe welcome contributions. Please see [CONTRIBUTING.md](CONTRIBUTING.md) to get started!\n',
|
56
55
|
'author': 'The Flower Authors',
|
@@ -16,10 +16,11 @@
|
|
16
16
|
|
17
17
|
from flwr.common.version import package_version as _package_version
|
18
18
|
|
19
|
-
from . import client, server, simulation
|
19
|
+
from . import client, common, server, simulation
|
20
20
|
|
21
21
|
__all__ = [
|
22
22
|
"client",
|
23
|
+
"common",
|
23
24
|
"server",
|
24
25
|
"simulation",
|
25
26
|
]
|
@@ -49,7 +49,6 @@ from .numpy_client import has_evaluate as numpyclient_has_evaluate
|
|
49
49
|
from .numpy_client import has_fit as numpyclient_has_fit
|
50
50
|
from .numpy_client import has_get_parameters as numpyclient_has_get_parameters
|
51
51
|
from .numpy_client import has_get_properties as numpyclient_has_get_properties
|
52
|
-
from .rest_client.connection import http_request_response
|
53
52
|
|
54
53
|
EXCEPTION_MESSAGE_WRONG_RETURN_TYPE_FIT = """
|
55
54
|
NumPyClient.fit did not return a tuple with 3 elements.
|
@@ -81,6 +80,7 @@ Example
|
|
81
80
|
ClientLike = Union[Client, NumPyClient]
|
82
81
|
|
83
82
|
|
83
|
+
# pylint: disable=import-outside-toplevel
|
84
84
|
def start_client(
|
85
85
|
*,
|
86
86
|
server_address: str,
|
@@ -138,7 +138,17 @@ def start_client(
|
|
138
138
|
event(EventType.START_CLIENT_ENTER)
|
139
139
|
|
140
140
|
# Use either gRPC bidirectional streaming or REST request/response
|
141
|
-
|
141
|
+
if rest:
|
142
|
+
try:
|
143
|
+
from .rest_client.connection import http_request_response
|
144
|
+
except ImportError as missing_dep:
|
145
|
+
raise ImportError(
|
146
|
+
"To use the REST API you must install the "
|
147
|
+
"extra dependencies by running `pip install flwr['rest']`."
|
148
|
+
) from missing_dep
|
149
|
+
connection = http_request_response
|
150
|
+
else:
|
151
|
+
connection = grpc_connection
|
142
152
|
while True:
|
143
153
|
sleep_duration: int = 0
|
144
154
|
with connection(
|
@@ -19,7 +19,13 @@ from contextlib import contextmanager
|
|
19
19
|
from logging import ERROR, INFO, WARN
|
20
20
|
from typing import Callable, Dict, Iterator, Optional, Tuple
|
21
21
|
|
22
|
-
|
22
|
+
try:
|
23
|
+
import requests
|
24
|
+
except ImportError as missing_dep:
|
25
|
+
raise ImportError(
|
26
|
+
"To use the REST API you must install the "
|
27
|
+
"extra dependencies by running `pip install flwr['rest']`."
|
28
|
+
) from missing_dep
|
23
29
|
|
24
30
|
from flwr.client.message_handler.task_handler import get_server_message
|
25
31
|
from flwr.common import GRPC_MAX_MESSAGE_LENGTH
|
@@ -25,7 +25,6 @@ from types import FrameType
|
|
25
25
|
from typing import List, Optional, Tuple
|
26
26
|
|
27
27
|
import grpc
|
28
|
-
import uvicorn
|
29
28
|
|
30
29
|
from flwr.common import GRPC_MAX_MESSAGE_LENGTH, EventType, event
|
31
30
|
from flwr.common.logger import log
|
@@ -40,7 +39,6 @@ from flwr.server.grpc_server.grpc_server import (
|
|
40
39
|
start_grpc_server,
|
41
40
|
)
|
42
41
|
from flwr.server.history import History
|
43
|
-
from flwr.server.rest_server.rest_api import app as fast_api_app
|
44
42
|
from flwr.server.server import Server
|
45
43
|
from flwr.server.state import StateFactory
|
46
44
|
from flwr.server.strategy import FedAvg, Strategy
|
@@ -436,11 +434,22 @@ def _run_fleet_api_grpc_bidi(
|
|
436
434
|
return fleet_grpc_server
|
437
435
|
|
438
436
|
|
437
|
+
# pylint: disable=import-outside-toplevel
|
439
438
|
def _run_fleet_api_rest(
|
440
439
|
address: str,
|
441
440
|
state_factory: StateFactory,
|
442
441
|
) -> None:
|
443
442
|
"""Run Driver API (REST-based)."""
|
443
|
+
try:
|
444
|
+
import uvicorn
|
445
|
+
|
446
|
+
from flwr.server.rest_server.rest_api import app as fast_api_app
|
447
|
+
except ImportError as missing_dep:
|
448
|
+
raise ImportError(
|
449
|
+
"To use the REST API you must install the "
|
450
|
+
"extra dependencies by running "
|
451
|
+
"`pip install flwr['rest']`."
|
452
|
+
) from missing_dep
|
444
453
|
log(INFO, "Starting Flower REST server")
|
445
454
|
|
446
455
|
# See: https://www.starlette.io/applications/#accessing-the-app-instance
|
@@ -19,8 +19,14 @@ from logging import INFO
|
|
19
19
|
from typing import List, Optional
|
20
20
|
from uuid import UUID
|
21
21
|
|
22
|
-
|
23
|
-
from
|
22
|
+
try:
|
23
|
+
from fastapi import FastAPI, HTTPException, Request, Response
|
24
|
+
from starlette.datastructures import Headers
|
25
|
+
except ImportError as missing_dep:
|
26
|
+
raise ImportError(
|
27
|
+
"To use the REST API you must install the "
|
28
|
+
"extra dependencies by running `pip install flwr['rest']`."
|
29
|
+
) from missing_dep
|
24
30
|
|
25
31
|
from flwr.common.logger import log
|
26
32
|
from flwr.proto.fleet_pb2 import (
|
@@ -33,10 +39,10 @@ from flwr.proto.fleet_pb2 import (
|
|
33
39
|
from flwr.proto.task_pb2 import TaskIns, TaskRes
|
34
40
|
from flwr.server.state import State
|
35
41
|
|
36
|
-
app = FastAPI()
|
42
|
+
app: FastAPI = FastAPI()
|
37
43
|
|
38
44
|
|
39
|
-
@app.post("/api/v0/fleet/pull-task-ins", response_class=Response)
|
45
|
+
@app.post("/api/v0/fleet/pull-task-ins", response_class=Response) # type: ignore
|
40
46
|
async def pull_task_ins(request: Request) -> Response:
|
41
47
|
"""Pull TaskIns."""
|
42
48
|
_check_headers(request.headers)
|
@@ -72,7 +78,7 @@ async def pull_task_ins(request: Request) -> Response:
|
|
72
78
|
)
|
73
79
|
|
74
80
|
|
75
|
-
@app.post("/api/v0/fleet/push-task-res", response_class=Response)
|
81
|
+
@app.post("/api/v0/fleet/push-task-res", response_class=Response) # type: ignore
|
76
82
|
async def push_task_res(request: Request) -> Response: # Check if token is needed here
|
77
83
|
"""Push TaskRes."""
|
78
84
|
_check_headers(request.headers)
|
@@ -37,9 +37,6 @@ from flwr.server.client_proxy import ClientProxy
|
|
37
37
|
from .aggregate import aggregate
|
38
38
|
from .fedavg import FedAvg
|
39
39
|
|
40
|
-
# from xgboost import XGBClassifier, XGBRegressor # pylint: disable=W0611
|
41
|
-
|
42
|
-
|
43
40
|
WARNING_MIN_AVAILABLE_CLIENTS_TOO_LOW = """
|
44
41
|
Setting `min_available_clients` lower than `min_fit_clients` or
|
45
42
|
`min_evaluate_clients` can cause the server to fail when there are too few clients
|
@@ -1,153 +0,0 @@
|
|
1
|
-
# Copyright 2020 Adap GmbH. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
# ==============================================================================
|
15
|
-
"""Federated XGBoost utility functions."""
|
16
|
-
|
17
|
-
from typing import Any, List, Optional, Tuple, Union
|
18
|
-
|
19
|
-
import numpy as np
|
20
|
-
import torch # pylint: disable=E0401
|
21
|
-
import xgboost as xgb # pylint: disable=E0401
|
22
|
-
from matplotlib import pyplot as plt # pylint: disable=E0401
|
23
|
-
from torch.utils.data import DataLoader, Dataset # pylint: disable=E0401
|
24
|
-
from xgboost import XGBClassifier, XGBRegressor # pylint: disable=E0401
|
25
|
-
|
26
|
-
from flwr.common.typing import NDArray
|
27
|
-
|
28
|
-
|
29
|
-
def plot_xgbtree(tree: Union[XGBClassifier, XGBRegressor], n_tree: int) -> None:
|
30
|
-
"""Visualize the built xgboost tree."""
|
31
|
-
xgb.plot_tree(tree, num_trees=n_tree)
|
32
|
-
plt.rcParams["figure.figsize"] = [50, 10]
|
33
|
-
plt.show()
|
34
|
-
|
35
|
-
|
36
|
-
def construct_tree(
|
37
|
-
dataset: Dataset, label: NDArray, n_estimators: int, tree_type: str
|
38
|
-
) -> Union[XGBClassifier, XGBRegressor]:
|
39
|
-
"""Construct a xgboost tree form tabular dataset."""
|
40
|
-
if tree_type == "BINARY":
|
41
|
-
tree = xgb.XGBClassifier(
|
42
|
-
objective="binary:logistic",
|
43
|
-
learning_rate=0.1,
|
44
|
-
max_depth=8,
|
45
|
-
n_estimators=n_estimators,
|
46
|
-
subsample=0.8,
|
47
|
-
colsample_bylevel=1,
|
48
|
-
colsample_bynode=1,
|
49
|
-
colsample_bytree=1,
|
50
|
-
alpha=5,
|
51
|
-
gamma=5,
|
52
|
-
num_parallel_tree=1,
|
53
|
-
min_child_weight=1,
|
54
|
-
)
|
55
|
-
|
56
|
-
elif tree_type == "REG":
|
57
|
-
tree = xgb.XGBRegressor(
|
58
|
-
objective="reg:squarederror",
|
59
|
-
learning_rate=0.1,
|
60
|
-
max_depth=8,
|
61
|
-
n_estimators=n_estimators,
|
62
|
-
subsample=0.8,
|
63
|
-
colsample_bylevel=1,
|
64
|
-
colsample_bynode=1,
|
65
|
-
colsample_bytree=1,
|
66
|
-
alpha=5,
|
67
|
-
gamma=5,
|
68
|
-
num_parallel_tree=1,
|
69
|
-
min_child_weight=1,
|
70
|
-
)
|
71
|
-
|
72
|
-
tree.fit(dataset, label)
|
73
|
-
return tree
|
74
|
-
|
75
|
-
|
76
|
-
def construct_tree_from_loader(
|
77
|
-
dataset_loader: DataLoader, n_estimators: int, tree_type: str
|
78
|
-
) -> Union[XGBClassifier, XGBRegressor]:
|
79
|
-
"""Construct a xgboost tree form tabular dataset loader."""
|
80
|
-
for dataset in dataset_loader:
|
81
|
-
data, label = dataset[0], dataset[1]
|
82
|
-
return construct_tree(data, label, n_estimators, tree_type)
|
83
|
-
|
84
|
-
|
85
|
-
def single_tree_prediction(
|
86
|
-
tree: Union[XGBClassifier, XGBRegressor], n_tree: int, dataset: NDArray
|
87
|
-
) -> Optional[NDArray]:
|
88
|
-
"""Extract the prediction result of a single tree in the xgboost tree
|
89
|
-
ensemble."""
|
90
|
-
# How to access a single tree
|
91
|
-
# https://github.com/bmreiniger/datascience.stackexchange/blob/master/57905.ipynb
|
92
|
-
num_t = len(tree.get_booster().get_dump())
|
93
|
-
if n_tree > num_t:
|
94
|
-
print(
|
95
|
-
"The tree index to be extracted is larger than the total number of trees."
|
96
|
-
)
|
97
|
-
return None
|
98
|
-
|
99
|
-
return tree.predict( # type: ignore
|
100
|
-
dataset, iteration_range=(n_tree, n_tree + 1), output_margin=True
|
101
|
-
)
|
102
|
-
|
103
|
-
|
104
|
-
def tree_encoding( # pylint: disable=R0914
|
105
|
-
trainloader: DataLoader,
|
106
|
-
client_trees: Union[
|
107
|
-
Tuple[XGBClassifier, int],
|
108
|
-
Tuple[XGBRegressor, int],
|
109
|
-
List[Union[Tuple[XGBClassifier, int], Tuple[XGBRegressor, int]]],
|
110
|
-
],
|
111
|
-
client_tree_num: int,
|
112
|
-
client_num: int,
|
113
|
-
) -> Optional[Tuple[NDArray, NDArray]]:
|
114
|
-
"""Transform the tabular dataset into prediction results using the
|
115
|
-
aggregated xgboost tree ensembles from all clients."""
|
116
|
-
if trainloader is None:
|
117
|
-
return None
|
118
|
-
|
119
|
-
for local_dataset in trainloader:
|
120
|
-
x_train, y_train = local_dataset[0], local_dataset[1]
|
121
|
-
|
122
|
-
x_train_enc = np.zeros((x_train.shape[0], client_num * client_tree_num))
|
123
|
-
x_train_enc = np.array(x_train_enc, copy=True)
|
124
|
-
|
125
|
-
temp_trees: Any = None
|
126
|
-
if isinstance(client_trees, list) is False:
|
127
|
-
temp_trees = [client_trees[0]] * client_num
|
128
|
-
elif isinstance(client_trees, list) and len(client_trees) != client_num:
|
129
|
-
temp_trees = [client_trees[0][0]] * client_num
|
130
|
-
else:
|
131
|
-
cids = []
|
132
|
-
temp_trees = []
|
133
|
-
for i, _ in enumerate(client_trees):
|
134
|
-
temp_trees.append(client_trees[i][0]) # type: ignore
|
135
|
-
cids.append(client_trees[i][1]) # type: ignore
|
136
|
-
sorted_index = np.argsort(np.asarray(cids))
|
137
|
-
temp_trees = np.asarray(temp_trees)[sorted_index]
|
138
|
-
|
139
|
-
for i, _ in enumerate(temp_trees):
|
140
|
-
for j in range(client_tree_num):
|
141
|
-
x_train_enc[:, i * client_tree_num + j] = single_tree_prediction(
|
142
|
-
temp_trees[i], j, x_train
|
143
|
-
)
|
144
|
-
|
145
|
-
x_train_enc32: Any = np.float32(x_train_enc)
|
146
|
-
y_train32: Any = np.float32(y_train)
|
147
|
-
|
148
|
-
x_train_enc32, y_train32 = torch.from_numpy(
|
149
|
-
np.expand_dims(x_train_enc32, axis=1) # type: ignore
|
150
|
-
), torch.from_numpy(
|
151
|
-
np.expand_dims(y_train32, axis=-1) # type: ignore
|
152
|
-
)
|
153
|
-
return x_train_enc32, y_train32
|
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/client/__init__.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/client/client.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/client/numpy_client.py
RENAMED
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/common/__init__.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/common/date.py
RENAMED
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/common/grpc.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/common/logger.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/common/parameter.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/common/serde.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/common/telemetry.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/common/typing.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/common/version.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/driver/__init__.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/driver/driver.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/__init__.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/driver_pb2.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/driver_pb2.pyi
RENAMED
File without changes
|
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/fleet_pb2.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/fleet_pb2.pyi
RENAMED
File without changes
|
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/node_pb2.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/node_pb2.pyi
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/node_pb2_grpc.py
RENAMED
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/task_pb2.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/task_pb2.pyi
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/task_pb2_grpc.py
RENAMED
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/proto/transport_pb2.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/__init__.py
RENAMED
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/client_proxy.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/criterion.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/history.py
RENAMED
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/server.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/server/state/state.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/simulation/__init__.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230322 → flwr_nightly-1.4.0.dev20230323}/src/py/flwr/simulation/app.py
RENAMED
File without changes
|
File without changes
|