flwr-nightly 1.4.0.dev20230319__tar.gz → 1.4.0.dev20230322__tar.gz
Sign up to get free protection for your applications and to get access to all the features.
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/PKG-INFO +5 -1
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/README.md +4 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/pyproject.toml +1 -1
- flwr_nightly-1.4.0.dev20230322/setup.py +71 -0
- flwr_nightly-1.4.0.dev20230319/setup.py +0 -71
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/LICENSE +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/client/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/client/app.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/client/client.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/client/dpfedavg_numpy_client.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/client/grpc_client/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/client/grpc_client/connection.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/client/message_handler/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/client/message_handler/message_handler.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/client/message_handler/task_handler.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/client/numpy_client.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/client/rest_client/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/client/rest_client/connection.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/common/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/common/date.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/common/dp.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/common/grpc.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/common/logger.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/common/parameter.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/common/serde.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/common/telemetry.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/common/typing.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/common/version.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/driver/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/driver/driver.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/driver_pb2.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/driver_pb2.pyi +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/driver_pb2_grpc.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/driver_pb2_grpc.pyi +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/fleet_pb2.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/fleet_pb2.pyi +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/fleet_pb2_grpc.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/fleet_pb2_grpc.pyi +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/node_pb2.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/node_pb2.pyi +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/node_pb2_grpc.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/node_pb2_grpc.pyi +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/task_pb2.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/task_pb2.pyi +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/task_pb2_grpc.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/task_pb2_grpc.pyi +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/transport_pb2.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/transport_pb2.pyi +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/transport_pb2_grpc.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/transport_pb2_grpc.pyi +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/py.typed +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/app.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/client_manager.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/client_proxy.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/criterion.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/driver/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/driver/driver_servicer.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/fleet/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/fleet/fleet_servicer.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/grpc_server/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/grpc_server/driver_client_manager.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/grpc_server/flower_service_servicer.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/grpc_server/grpc_bridge.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/grpc_server/grpc_client_proxy.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/grpc_server/grpc_server.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/grpc_server/ins_scheduler.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/history.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/rest_server/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/rest_server/rest_api.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/server.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/state/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/state/in_memory_state.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/state/sqlite_state.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/state/state.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/state/state_factory.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/strategy/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/strategy/aggregate.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/strategy/dpfedavg_adaptive.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/strategy/dpfedavg_fixed.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/strategy/fault_tolerant_fedavg.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/strategy/fedadagrad.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/strategy/fedadam.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/strategy/fedavg.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/strategy/fedavg_android.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/strategy/fedavgm.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/strategy/fedmedian.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/strategy/fedopt.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/strategy/fedprox.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/strategy/fedxgb.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/strategy/fedxgb_nn_avg.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/strategy/fedyogi.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/strategy/krum.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/strategy/qfedavg.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/strategy/strategy.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/utils/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/utils/tensorboard.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/utils/validator.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/simulation/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/simulation/app.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/simulation/ray_transport/__init__.py +0 -0
- {flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/simulation/ray_transport/ray_client_proxy.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: flwr-nightly
|
3
|
-
Version: 1.4.0.
|
3
|
+
Version: 1.4.0.dev20230322
|
4
4
|
Summary: Flower: A Friendly Federated Learning Framework
|
5
5
|
Home-page: https://flower.dev
|
6
6
|
License: Apache-2.0
|
@@ -102,6 +102,10 @@ Meet the Flower community on [flower.dev](https://flower.dev)!
|
|
102
102
|
|
103
103
|
Flower's goal is to make federated learning accessible to everyone. This series of tutorials introduces the fundamentals of federated learning and how to implement them in Flower.
|
104
104
|
|
105
|
+
0. **What is Federated Learning?**
|
106
|
+
|
107
|
+
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-0-What-is-FL.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-0-What-is-FL.ipynb))
|
108
|
+
|
105
109
|
1. **An Introduction to Federated Learning**
|
106
110
|
|
107
111
|
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-1-Intro-to-FL-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-1-Intro-to-FL-PyTorch.ipynb))
|
@@ -47,6 +47,10 @@ Meet the Flower community on [flower.dev](https://flower.dev)!
|
|
47
47
|
|
48
48
|
Flower's goal is to make federated learning accessible to everyone. This series of tutorials introduces the fundamentals of federated learning and how to implement them in Flower.
|
49
49
|
|
50
|
+
0. **What is Federated Learning?**
|
51
|
+
|
52
|
+
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-0-What-is-FL.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-0-What-is-FL.ipynb))
|
53
|
+
|
50
54
|
1. **An Introduction to Federated Learning**
|
51
55
|
|
52
56
|
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-1-Intro-to-FL-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-1-Intro-to-FL-PyTorch.ipynb))
|
@@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
|
|
4
4
|
|
5
5
|
[tool.poetry]
|
6
6
|
name = "flwr-nightly"
|
7
|
-
version = "1.4.0-
|
7
|
+
version = "1.4.0-dev20230322"
|
8
8
|
description = "Flower: A Friendly Federated Learning Framework"
|
9
9
|
license = "Apache-2.0"
|
10
10
|
authors = ["The Flower Authors <hello@flower.dev>"]
|
@@ -0,0 +1,71 @@
|
|
1
|
+
# -*- coding: utf-8 -*-
|
2
|
+
from setuptools import setup
|
3
|
+
|
4
|
+
package_dir = \
|
5
|
+
{'': 'src/py'}
|
6
|
+
|
7
|
+
packages = \
|
8
|
+
['flwr',
|
9
|
+
'flwr.client',
|
10
|
+
'flwr.client.grpc_client',
|
11
|
+
'flwr.client.message_handler',
|
12
|
+
'flwr.client.rest_client',
|
13
|
+
'flwr.common',
|
14
|
+
'flwr.driver',
|
15
|
+
'flwr.proto',
|
16
|
+
'flwr.server',
|
17
|
+
'flwr.server.driver',
|
18
|
+
'flwr.server.fleet',
|
19
|
+
'flwr.server.grpc_server',
|
20
|
+
'flwr.server.rest_server',
|
21
|
+
'flwr.server.state',
|
22
|
+
'flwr.server.strategy',
|
23
|
+
'flwr.server.utils',
|
24
|
+
'flwr.simulation',
|
25
|
+
'flwr.simulation.ray_transport']
|
26
|
+
|
27
|
+
package_data = \
|
28
|
+
{'': ['*']}
|
29
|
+
|
30
|
+
install_requires = \
|
31
|
+
['grpcio>=1.43.0,<2.0.0,!=1.52.0',
|
32
|
+
'iterators>=0.0.2,<0.0.3',
|
33
|
+
'numpy>=1.21.0,<2.0.0',
|
34
|
+
'protobuf>=3.19.0,<4.0.0',
|
35
|
+
'starlette>=0.25.0,<0.26.0']
|
36
|
+
|
37
|
+
extras_require = \
|
38
|
+
{':extra == "rest"': ['requests>=2.28.2,<3.0.0',
|
39
|
+
'fastapi>=0.92.0,<0.93.0',
|
40
|
+
'uvicorn[standard]>=0.20.0,<0.21.0'],
|
41
|
+
':python_version < "3.8"': ['importlib-metadata>=4.0.0,<5.0.0'],
|
42
|
+
'simulation': ['ray[default]>=2.3.0,<2.4.0'],
|
43
|
+
'xgboost': ['xgboost>=1.6.2,<2.0.0']}
|
44
|
+
|
45
|
+
entry_points = \
|
46
|
+
{'console_scripts': ['flower-client = flwr.client:run_client',
|
47
|
+
'flower-driver-api = flwr.server:run_driver_api',
|
48
|
+
'flower-fleet-api = flwr.server:run_fleet_api',
|
49
|
+
'flower-server = flwr.server:run_server']}
|
50
|
+
|
51
|
+
setup_kwargs = {
|
52
|
+
'name': 'flwr-nightly',
|
53
|
+
'version': '1.4.0.dev20230322',
|
54
|
+
'description': 'Flower: A Friendly Federated Learning Framework',
|
55
|
+
'long_description': '# Flower: A Friendly Federated Learning Framework\n\n<p align="center">\n <a href="https://flower.dev/">\n <img src="https://flower.dev/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Fflower_white_border.c2012e70.png&w=640&q=75" width="140px" alt="Flower Website" />\n </a>\n</p>\n<p align="center">\n <a href="https://flower.dev/">Website</a> |\n <a href="https://flower.dev/blog">Blog</a> |\n <a href="https://flower.dev/docs/">Docs</a> |\n <a href="https://flower.dev/conf/flower-summit-2022">Conference</a> |\n <a href="https://flower.dev/join-slack">Slack</a>\n <br /><br />\n</p>\n\n[![GitHub license](https://img.shields.io/github/license/adap/flower)](https://github.com/adap/flower/blob/main/LICENSE)\n[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](https://github.com/adap/flower/blob/main/CONTRIBUTING.md)\n![Build](https://github.com/adap/flower/actions/workflows/flower.yml/badge.svg)\n![Downloads](https://pepy.tech/badge/flwr)\n[![Slack](https://img.shields.io/badge/Chat-Slack-red)](https://flower.dev/join-slack)\n\nFlower (`flwr`) is a framework for building federated learning systems. The\ndesign of Flower is based on a few guiding principles:\n\n* **Customizable**: Federated learning systems vary wildly from one use case to\n another. Flower allows for a wide range of different configurations depending\n on the needs of each individual use case.\n\n* **Extendable**: Flower originated from a research project at the University of\n Oxford, so it was built with AI research in mind. Many components can be\n extended and overridden to build new state-of-the-art systems.\n\n* **Framework-agnostic**: Different machine learning frameworks have different\n strengths. Flower can be used with any machine learning framework, for\n example, [PyTorch](https://pytorch.org),\n [TensorFlow](https://tensorflow.org), [Hugging Face Transformers](https://huggingface.co/), [PyTorch Lightning](https://pytorchlightning.ai/), [MXNet](https://mxnet.apache.org/), [scikit-learn](https://scikit-learn.org/), [JAX](https://jax.readthedocs.io/), [TFLite](https://tensorflow.org/lite/), [fastai](https://www.fast.ai/), [Pandas](https://pandas.pydata.org/\n) for federated analytics, or even raw [NumPy](https://numpy.org/)\n for users who enjoy computing gradients by hand.\n\n* **Understandable**: Flower is written with maintainability in mind. The\n community is encouraged to both read and contribute to the codebase.\n\nMeet the Flower community on [flower.dev](https://flower.dev)!\n\n## Federated Learning Tutorial\n\nFlower\'s goal is to make federated learning accessible to everyone. This series of tutorials introduces the fundamentals of federated learning and how to implement them in Flower.\n\n0. **What is Federated Learning?**\n\n [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-0-What-is-FL.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-0-What-is-FL.ipynb))\n\n1. **An Introduction to Federated Learning**\n\n [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-1-Intro-to-FL-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-1-Intro-to-FL-PyTorch.ipynb))\n\n2. **Using Strategies in Federated Learning**\n\n [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-2-Strategies-in-FL-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-2-Strategies-in-FL-PyTorch.ipynb))\n \n3. **Building Strategies for Federated Learning**\n\n [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-3-Building-a-Strategy-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-3-Building-a-Strategy-PyTorch.ipynb))\n \n4. **Custom Clients for Federated Learning**\n\n [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-4-Client-and-NumPyClient-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-4-Client-and-NumPyClient-PyTorch.ipynb))\n\nStay tuned, more tutorials are coming soon. Topics include **Privacy and Security in Federated Learning**, and **Scaling Federated Learning**.\n\n## Documentation\n\n[Flower Docs](https://flower.dev/docs):\n* [Installation](https://flower.dev/docs/installation.html)\n* [Quickstart (TensorFlow)](https://flower.dev/docs/quickstart-tensorflow.html)\n* [Quickstart (PyTorch)](https://flower.dev/docs/quickstart-pytorch.html)\n* [Quickstart (Hugging Face [code example])](https://flower.dev/docs/quickstart-huggingface.html)\n* [Quickstart (PyTorch Lightning [code example])](https://flower.dev/docs/quickstart-pytorch-lightning.html)\n* [Quickstart (MXNet)](https://flower.dev/docs/example-mxnet-walk-through.html)\n* [Quickstart (Pandas)](https://flower.dev/docs/quickstart-pandas.html)\n* [Quickstart (fastai)](https://flower.dev/docs/quickstart-fastai.html)\n* [Quickstart (JAX)](https://github.com/adap/flower/tree/main/examples/quickstart_jax)\n* [Quickstart (scikit-learn)](https://github.com/adap/flower/tree/main/examples/sklearn-logreg-mnist)\n* [Quickstart (TFLite on Android [code example])](https://github.com/adap/flower/tree/main/examples/android)\n\n## Flower Baselines\n\nFlower Baselines is a collection of community-contributed experiments that reproduce the experiments performed in popular federated learning publications. Researchers can build on Flower Baselines to quickly evaluate new ideas:\n\n* [FedAvg](https://arxiv.org/abs/1602.05629):\n * [MNIST](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/fedavg_mnist)\n* [FedProx](https://arxiv.org/abs/1812.06127):\n * [MNIST](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/fedprox_mnist)\n* [FedBN: Federated Learning on non-IID Features via Local Batch Normalization](https://arxiv.org/abs/2102.07623):\n * [Convergence Rate](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/fedbn/convergence_rate)\n* [Adaptive Federated Optimization](https://arxiv.org/abs/2003.00295):\n * [CIFAR-10/100](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/adaptive_federated_optimization)\n\nCheck the Flower documentation to learn more: [Using Baselines](https://flower.dev/docs/using-baselines.html)\n\nThe Flower community loves contributions! Make your work more visible and enable others to build on it by contributing it as a baseline: [Contributing Baselines](https://flower.dev/docs/contributing-baselines.html)\n\n## Flower Usage Examples\n\nSeveral code examples show different usage scenarios of Flower (in combination with popular machine learning frameworks such as PyTorch or TensorFlow).\n\nQuickstart examples:\n\n* [Quickstart (TensorFlow)](https://github.com/adap/flower/tree/main/examples/quickstart_tensorflow)\n* [Quickstart (PyTorch)](https://github.com/adap/flower/tree/main/examples/quickstart_pytorch)\n* [Quickstart (Hugging Face)](https://github.com/adap/flower/tree/main/examples/quickstart_huggingface)\n* [Quickstart (PyTorch Lightning)](https://github.com/adap/flower/tree/main/examples/quickstart_pytorch_lightning)\n* [Quickstart (fastai)](https://github.com/adap/flower/tree/main/examples/quickstart_fastai)\n* [Quickstart (Pandas)](https://github.com/adap/flower/tree/main/examples/quickstart_pandas)\n* [Quickstart (MXNet)](https://github.com/adap/flower/tree/main/examples/quickstart_mxnet)\n* [Quickstart (JAX)](https://github.com/adap/flower/tree/main/examples/quickstart_jax)\n* [Quickstart (scikit-learn)](https://github.com/adap/flower/tree/main/examples/sklearn-logreg-mnist)\n* [Quickstart (TFLite on Android)](https://github.com/adap/flower/tree/main/examples/android)\n\nOther [examples](https://github.com/adap/flower/tree/main/examples):\n\n* [Raspberry Pi & Nvidia Jetson Tutorial](https://github.com/adap/flower/tree/main/examples/embedded_devices)\n* [Android & TFLite](https://github.com/adap/flower/tree/main/examples/android)\n* [PyTorch: From Centralized to Federated](https://github.com/adap/flower/tree/main/examples/pytorch_from_centralized_to_federated)\n* [MXNet: From Centralized to Federated](https://github.com/adap/flower/tree/main/examples/mxnet_from_centralized_to_federated)\n* [Advanced Flower with TensorFlow/Keras](https://github.com/adap/flower/tree/main/examples/advanced_tensorflow)\n* [Advanced Flower with PyTorch](https://github.com/adap/flower/tree/main/examples/advanced_pytorch)\n* Single-Machine Simulation of Federated Learning Systems ([PyTorch](https://github.com/adap/flower/tree/main/examples/simulation_pytorch)) ([Tensorflow](https://github.com/adap/flower/tree/main/examples/simulation_tensorflow))\n\n## Community\n\nFlower is built by a wonderful community of researchers and engineers. [Join Slack](https://flower.dev/join-slack) to meet them, [contributions](#contributing-to-flower) are welcome.\n\n<a href="https://github.com/adap/flower/graphs/contributors">\n <img src="https://contrib.rocks/image?repo=adap/flower" />\n</a>\n\n## Citation\n\nIf you publish work that uses Flower, please cite Flower as follows: \n\n```bibtex\n@article{beutel2020flower,\n title={Flower: A Friendly Federated Learning Research Framework},\n author={Beutel, Daniel J and Topal, Taner and Mathur, Akhil and Qiu, Xinchi and Fernandez-Marques, Javier and Gao, Yan and Sani, Lorenzo and Kwing, Hei Li and Parcollet, Titouan and Gusmão, Pedro PB de and Lane, Nicholas D}, \n journal={arXiv preprint arXiv:2007.14390},\n year={2020}\n}\n```\n\nPlease also consider adding your publication to the list of Flower-based publications in the docs, just open a Pull Request.\n\n## Contributing to Flower\n\nWe welcome contributions. Please see [CONTRIBUTING.md](CONTRIBUTING.md) to get started!\n',
|
56
|
+
'author': 'The Flower Authors',
|
57
|
+
'author_email': 'hello@flower.dev',
|
58
|
+
'maintainer': 'None',
|
59
|
+
'maintainer_email': 'None',
|
60
|
+
'url': 'https://flower.dev',
|
61
|
+
'package_dir': package_dir,
|
62
|
+
'packages': packages,
|
63
|
+
'package_data': package_data,
|
64
|
+
'install_requires': install_requires,
|
65
|
+
'extras_require': extras_require,
|
66
|
+
'entry_points': entry_points,
|
67
|
+
'python_requires': '>=3.7,<4.0',
|
68
|
+
}
|
69
|
+
|
70
|
+
|
71
|
+
setup(**setup_kwargs)
|
@@ -1,71 +0,0 @@
|
|
1
|
-
# -*- coding: utf-8 -*-
|
2
|
-
from setuptools import setup
|
3
|
-
|
4
|
-
package_dir = \
|
5
|
-
{'': 'src/py'}
|
6
|
-
|
7
|
-
packages = \
|
8
|
-
['flwr',
|
9
|
-
'flwr.client',
|
10
|
-
'flwr.client.grpc_client',
|
11
|
-
'flwr.client.message_handler',
|
12
|
-
'flwr.client.rest_client',
|
13
|
-
'flwr.common',
|
14
|
-
'flwr.driver',
|
15
|
-
'flwr.proto',
|
16
|
-
'flwr.server',
|
17
|
-
'flwr.server.driver',
|
18
|
-
'flwr.server.fleet',
|
19
|
-
'flwr.server.grpc_server',
|
20
|
-
'flwr.server.rest_server',
|
21
|
-
'flwr.server.state',
|
22
|
-
'flwr.server.strategy',
|
23
|
-
'flwr.server.utils',
|
24
|
-
'flwr.simulation',
|
25
|
-
'flwr.simulation.ray_transport']
|
26
|
-
|
27
|
-
package_data = \
|
28
|
-
{'': ['*']}
|
29
|
-
|
30
|
-
install_requires = \
|
31
|
-
['grpcio>=1.43.0,<2.0.0,!=1.52.0',
|
32
|
-
'iterators>=0.0.2,<0.0.3',
|
33
|
-
'numpy>=1.21.0,<2.0.0',
|
34
|
-
'protobuf>=3.19.0,<4.0.0',
|
35
|
-
'starlette>=0.25.0,<0.26.0']
|
36
|
-
|
37
|
-
extras_require = \
|
38
|
-
{':extra == "rest"': ['requests>=2.28.2,<3.0.0',
|
39
|
-
'fastapi>=0.92.0,<0.93.0',
|
40
|
-
'uvicorn[standard]>=0.20.0,<0.21.0'],
|
41
|
-
':python_version < "3.8"': ['importlib-metadata>=4.0.0,<5.0.0'],
|
42
|
-
'simulation': ['ray[default]>=2.3.0,<2.4.0'],
|
43
|
-
'xgboost': ['xgboost>=1.6.2,<2.0.0']}
|
44
|
-
|
45
|
-
entry_points = \
|
46
|
-
{'console_scripts': ['flower-client = flwr.client:run_client',
|
47
|
-
'flower-driver-api = flwr.server:run_driver_api',
|
48
|
-
'flower-fleet-api = flwr.server:run_fleet_api',
|
49
|
-
'flower-server = flwr.server:run_server']}
|
50
|
-
|
51
|
-
setup_kwargs = {
|
52
|
-
'name': 'flwr-nightly',
|
53
|
-
'version': '1.4.0.dev20230319',
|
54
|
-
'description': 'Flower: A Friendly Federated Learning Framework',
|
55
|
-
'long_description': '# Flower: A Friendly Federated Learning Framework\n\n<p align="center">\n <a href="https://flower.dev/">\n <img src="https://flower.dev/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Fflower_white_border.c2012e70.png&w=640&q=75" width="140px" alt="Flower Website" />\n </a>\n</p>\n<p align="center">\n <a href="https://flower.dev/">Website</a> |\n <a href="https://flower.dev/blog">Blog</a> |\n <a href="https://flower.dev/docs/">Docs</a> |\n <a href="https://flower.dev/conf/flower-summit-2022">Conference</a> |\n <a href="https://flower.dev/join-slack">Slack</a>\n <br /><br />\n</p>\n\n[![GitHub license](https://img.shields.io/github/license/adap/flower)](https://github.com/adap/flower/blob/main/LICENSE)\n[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](https://github.com/adap/flower/blob/main/CONTRIBUTING.md)\n![Build](https://github.com/adap/flower/actions/workflows/flower.yml/badge.svg)\n![Downloads](https://pepy.tech/badge/flwr)\n[![Slack](https://img.shields.io/badge/Chat-Slack-red)](https://flower.dev/join-slack)\n\nFlower (`flwr`) is a framework for building federated learning systems. The\ndesign of Flower is based on a few guiding principles:\n\n* **Customizable**: Federated learning systems vary wildly from one use case to\n another. Flower allows for a wide range of different configurations depending\n on the needs of each individual use case.\n\n* **Extendable**: Flower originated from a research project at the University of\n Oxford, so it was built with AI research in mind. Many components can be\n extended and overridden to build new state-of-the-art systems.\n\n* **Framework-agnostic**: Different machine learning frameworks have different\n strengths. Flower can be used with any machine learning framework, for\n example, [PyTorch](https://pytorch.org),\n [TensorFlow](https://tensorflow.org), [Hugging Face Transformers](https://huggingface.co/), [PyTorch Lightning](https://pytorchlightning.ai/), [MXNet](https://mxnet.apache.org/), [scikit-learn](https://scikit-learn.org/), [JAX](https://jax.readthedocs.io/), [TFLite](https://tensorflow.org/lite/), [fastai](https://www.fast.ai/), [Pandas](https://pandas.pydata.org/\n) for federated analytics, or even raw [NumPy](https://numpy.org/)\n for users who enjoy computing gradients by hand.\n\n* **Understandable**: Flower is written with maintainability in mind. The\n community is encouraged to both read and contribute to the codebase.\n\nMeet the Flower community on [flower.dev](https://flower.dev)!\n\n## Federated Learning Tutorial\n\nFlower\'s goal is to make federated learning accessible to everyone. This series of tutorials introduces the fundamentals of federated learning and how to implement them in Flower.\n\n1. **An Introduction to Federated Learning**\n\n [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-1-Intro-to-FL-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-1-Intro-to-FL-PyTorch.ipynb))\n\n2. **Using Strategies in Federated Learning**\n\n [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-2-Strategies-in-FL-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-2-Strategies-in-FL-PyTorch.ipynb))\n \n3. **Building Strategies for Federated Learning**\n\n [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-3-Building-a-Strategy-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-3-Building-a-Strategy-PyTorch.ipynb))\n \n4. **Custom Clients for Federated Learning**\n\n [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-4-Client-and-NumPyClient-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-4-Client-and-NumPyClient-PyTorch.ipynb))\n\nStay tuned, more tutorials are coming soon. Topics include **Privacy and Security in Federated Learning**, and **Scaling Federated Learning**.\n\n## Documentation\n\n[Flower Docs](https://flower.dev/docs):\n* [Installation](https://flower.dev/docs/installation.html)\n* [Quickstart (TensorFlow)](https://flower.dev/docs/quickstart-tensorflow.html)\n* [Quickstart (PyTorch)](https://flower.dev/docs/quickstart-pytorch.html)\n* [Quickstart (Hugging Face [code example])](https://flower.dev/docs/quickstart-huggingface.html)\n* [Quickstart (PyTorch Lightning [code example])](https://flower.dev/docs/quickstart-pytorch-lightning.html)\n* [Quickstart (MXNet)](https://flower.dev/docs/example-mxnet-walk-through.html)\n* [Quickstart (Pandas)](https://flower.dev/docs/quickstart-pandas.html)\n* [Quickstart (fastai)](https://flower.dev/docs/quickstart-fastai.html)\n* [Quickstart (JAX)](https://github.com/adap/flower/tree/main/examples/quickstart_jax)\n* [Quickstart (scikit-learn)](https://github.com/adap/flower/tree/main/examples/sklearn-logreg-mnist)\n* [Quickstart (TFLite on Android [code example])](https://github.com/adap/flower/tree/main/examples/android)\n\n## Flower Baselines\n\nFlower Baselines is a collection of community-contributed experiments that reproduce the experiments performed in popular federated learning publications. Researchers can build on Flower Baselines to quickly evaluate new ideas:\n\n* [FedAvg](https://arxiv.org/abs/1602.05629):\n * [MNIST](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/fedavg_mnist)\n* [FedProx](https://arxiv.org/abs/1812.06127):\n * [MNIST](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/fedprox_mnist)\n* [FedBN: Federated Learning on non-IID Features via Local Batch Normalization](https://arxiv.org/abs/2102.07623):\n * [Convergence Rate](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/fedbn/convergence_rate)\n* [Adaptive Federated Optimization](https://arxiv.org/abs/2003.00295):\n * [CIFAR-10/100](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/adaptive_federated_optimization)\n\nCheck the Flower documentation to learn more: [Using Baselines](https://flower.dev/docs/using-baselines.html)\n\nThe Flower community loves contributions! Make your work more visible and enable others to build on it by contributing it as a baseline: [Contributing Baselines](https://flower.dev/docs/contributing-baselines.html)\n\n## Flower Usage Examples\n\nSeveral code examples show different usage scenarios of Flower (in combination with popular machine learning frameworks such as PyTorch or TensorFlow).\n\nQuickstart examples:\n\n* [Quickstart (TensorFlow)](https://github.com/adap/flower/tree/main/examples/quickstart_tensorflow)\n* [Quickstart (PyTorch)](https://github.com/adap/flower/tree/main/examples/quickstart_pytorch)\n* [Quickstart (Hugging Face)](https://github.com/adap/flower/tree/main/examples/quickstart_huggingface)\n* [Quickstart (PyTorch Lightning)](https://github.com/adap/flower/tree/main/examples/quickstart_pytorch_lightning)\n* [Quickstart (fastai)](https://github.com/adap/flower/tree/main/examples/quickstart_fastai)\n* [Quickstart (Pandas)](https://github.com/adap/flower/tree/main/examples/quickstart_pandas)\n* [Quickstart (MXNet)](https://github.com/adap/flower/tree/main/examples/quickstart_mxnet)\n* [Quickstart (JAX)](https://github.com/adap/flower/tree/main/examples/quickstart_jax)\n* [Quickstart (scikit-learn)](https://github.com/adap/flower/tree/main/examples/sklearn-logreg-mnist)\n* [Quickstart (TFLite on Android)](https://github.com/adap/flower/tree/main/examples/android)\n\nOther [examples](https://github.com/adap/flower/tree/main/examples):\n\n* [Raspberry Pi & Nvidia Jetson Tutorial](https://github.com/adap/flower/tree/main/examples/embedded_devices)\n* [Android & TFLite](https://github.com/adap/flower/tree/main/examples/android)\n* [PyTorch: From Centralized to Federated](https://github.com/adap/flower/tree/main/examples/pytorch_from_centralized_to_federated)\n* [MXNet: From Centralized to Federated](https://github.com/adap/flower/tree/main/examples/mxnet_from_centralized_to_federated)\n* [Advanced Flower with TensorFlow/Keras](https://github.com/adap/flower/tree/main/examples/advanced_tensorflow)\n* [Advanced Flower with PyTorch](https://github.com/adap/flower/tree/main/examples/advanced_pytorch)\n* Single-Machine Simulation of Federated Learning Systems ([PyTorch](https://github.com/adap/flower/tree/main/examples/simulation_pytorch)) ([Tensorflow](https://github.com/adap/flower/tree/main/examples/simulation_tensorflow))\n\n## Community\n\nFlower is built by a wonderful community of researchers and engineers. [Join Slack](https://flower.dev/join-slack) to meet them, [contributions](#contributing-to-flower) are welcome.\n\n<a href="https://github.com/adap/flower/graphs/contributors">\n <img src="https://contrib.rocks/image?repo=adap/flower" />\n</a>\n\n## Citation\n\nIf you publish work that uses Flower, please cite Flower as follows: \n\n```bibtex\n@article{beutel2020flower,\n title={Flower: A Friendly Federated Learning Research Framework},\n author={Beutel, Daniel J and Topal, Taner and Mathur, Akhil and Qiu, Xinchi and Fernandez-Marques, Javier and Gao, Yan and Sani, Lorenzo and Kwing, Hei Li and Parcollet, Titouan and Gusmão, Pedro PB de and Lane, Nicholas D}, \n journal={arXiv preprint arXiv:2007.14390},\n year={2020}\n}\n```\n\nPlease also consider adding your publication to the list of Flower-based publications in the docs, just open a Pull Request.\n\n## Contributing to Flower\n\nWe welcome contributions. Please see [CONTRIBUTING.md](CONTRIBUTING.md) to get started!\n',
|
56
|
-
'author': 'The Flower Authors',
|
57
|
-
'author_email': 'hello@flower.dev',
|
58
|
-
'maintainer': 'None',
|
59
|
-
'maintainer_email': 'None',
|
60
|
-
'url': 'https://flower.dev',
|
61
|
-
'package_dir': package_dir,
|
62
|
-
'packages': packages,
|
63
|
-
'package_data': package_data,
|
64
|
-
'install_requires': install_requires,
|
65
|
-
'extras_require': extras_require,
|
66
|
-
'entry_points': entry_points,
|
67
|
-
'python_requires': '>=3.7,<4.0',
|
68
|
-
}
|
69
|
-
|
70
|
-
|
71
|
-
setup(**setup_kwargs)
|
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/client/__init__.py
RENAMED
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/client/client.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/client/numpy_client.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/common/__init__.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/common/date.py
RENAMED
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/common/grpc.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/common/logger.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/common/parameter.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/common/serde.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/common/telemetry.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/common/typing.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/common/version.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/driver/__init__.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/driver/driver.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/__init__.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/driver_pb2.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/driver_pb2.pyi
RENAMED
File without changes
|
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/fleet_pb2.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/fleet_pb2.pyi
RENAMED
File without changes
|
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/node_pb2.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/node_pb2.pyi
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/node_pb2_grpc.py
RENAMED
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/task_pb2.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/task_pb2.pyi
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/task_pb2_grpc.py
RENAMED
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/proto/transport_pb2.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/__init__.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/client_proxy.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/criterion.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/history.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/server.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/server/state/state.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/simulation/__init__.py
RENAMED
File without changes
|
{flwr_nightly-1.4.0.dev20230319 → flwr_nightly-1.4.0.dev20230322}/src/py/flwr/simulation/app.py
RENAMED
File without changes
|
File without changes
|