featrixsphere 0.2.1230__tar.gz → 0.2.1231__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (19) hide show
  1. {featrixsphere-0.2.1230/featrixsphere.egg-info → featrixsphere-0.2.1231}/PKG-INFO +1 -1
  2. featrixsphere-0.2.1231/VERSION +1 -0
  3. {featrixsphere-0.2.1230 → featrixsphere-0.2.1231}/featrixsphere/__init__.py +1 -1
  4. {featrixsphere-0.2.1230 → featrixsphere-0.2.1231}/featrixsphere/client.py +1 -11
  5. {featrixsphere-0.2.1230 → featrixsphere-0.2.1231/featrixsphere.egg-info}/PKG-INFO +1 -1
  6. featrixsphere-0.2.1230/VERSION +0 -1
  7. {featrixsphere-0.2.1230 → featrixsphere-0.2.1231}/MANIFEST.in +0 -0
  8. {featrixsphere-0.2.1230 → featrixsphere-0.2.1231}/README.md +0 -0
  9. {featrixsphere-0.2.1230 → featrixsphere-0.2.1231}/featrixsphere/cli.py +0 -0
  10. {featrixsphere-0.2.1230 → featrixsphere-0.2.1231}/featrixsphere/test_client.py +0 -0
  11. {featrixsphere-0.2.1230 → featrixsphere-0.2.1231}/featrixsphere.egg-info/SOURCES.txt +0 -0
  12. {featrixsphere-0.2.1230 → featrixsphere-0.2.1231}/featrixsphere.egg-info/dependency_links.txt +0 -0
  13. {featrixsphere-0.2.1230 → featrixsphere-0.2.1231}/featrixsphere.egg-info/entry_points.txt +0 -0
  14. {featrixsphere-0.2.1230 → featrixsphere-0.2.1231}/featrixsphere.egg-info/not-zip-safe +0 -0
  15. {featrixsphere-0.2.1230 → featrixsphere-0.2.1231}/featrixsphere.egg-info/requires.txt +0 -0
  16. {featrixsphere-0.2.1230 → featrixsphere-0.2.1231}/featrixsphere.egg-info/top_level.txt +0 -0
  17. {featrixsphere-0.2.1230 → featrixsphere-0.2.1231}/requirements.txt +0 -0
  18. {featrixsphere-0.2.1230 → featrixsphere-0.2.1231}/setup.cfg +0 -0
  19. {featrixsphere-0.2.1230 → featrixsphere-0.2.1231}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: featrixsphere
3
- Version: 0.2.1230
3
+ Version: 0.2.1231
4
4
  Summary: Transform any CSV into a production-ready ML model in minutes, not months.
5
5
  Home-page: https://github.com/Featrix/sphere
6
6
  Author: Featrix
@@ -0,0 +1 @@
1
+ 0.2.1231
@@ -38,7 +38,7 @@ Example:
38
38
  ... labels=['Experiment A', 'Experiment B'])
39
39
  """
40
40
 
41
- __version__ = "0.2.1230"
41
+ __version__ = "0.2.1231"
42
42
  __author__ = "Featrix"
43
43
  __email__ = "support@featrix.com"
44
44
  __license__ = "MIT"
@@ -4114,7 +4114,7 @@ class FeatrixSphereClient:
4114
4114
  df = None,
4115
4115
  name: str = None,
4116
4116
  session_name_prefix: str = None,
4117
- epochs: int = 0, batch_size: int = 0, learning_rate: float = 0.001,
4117
+ epochs: int = 0,
4118
4118
  rare_label_value: str = None,
4119
4119
  class_imbalance: dict = None,
4120
4120
  optimize_for: str = "balanced",
@@ -4138,8 +4138,6 @@ class FeatrixSphereClient:
4138
4138
  name: Optional name for the new session
4139
4139
  session_name_prefix: Optional prefix for session ID. Session will be named <prefix>-<uuid>
4140
4140
  epochs: Number of training epochs (default: 0; automatic)
4141
- batch_size: Training batch size (default: 0; automatic)
4142
- learning_rate: Learning rate for training (default: 0.001)
4143
4141
  rare_label_value: For binary classification, which class is the rare/minority class for metrics (default: None)
4144
4142
  class_imbalance: Expected class ratios/counts from real world for sampled data (default: None)
4145
4143
  optimize_for: Optimization target - "balanced" (F1 score), "precision", or "recall" (default: "balanced")
@@ -4201,8 +4199,6 @@ class FeatrixSphereClient:
4201
4199
  "target_column": target_column,
4202
4200
  "target_column_type": target_column_type,
4203
4201
  "epochs": epochs,
4204
- "batch_size": batch_size,
4205
- "learning_rate": learning_rate,
4206
4202
  "optimize_for": optimize_for,
4207
4203
  }
4208
4204
 
@@ -5048,7 +5044,6 @@ class FeatrixSphereClient:
5048
5044
 
5049
5045
  def train_predictor_more(self, session_id: str, epochs: int = 50,
5050
5046
  predictor_id: str = None, target_column: str = None,
5051
- batch_size: int = 0, learning_rate: float = None,
5052
5047
  poll_interval: int = 30, max_poll_time: int = 3600,
5053
5048
  verbose: bool = True, webhooks: Dict[str, str] = None) -> Dict[str, Any]:
5054
5049
  """
@@ -5060,8 +5055,6 @@ class FeatrixSphereClient:
5060
5055
  epochs: Additional epochs to train (required)
5061
5056
  predictor_id: Predictor ID to continue training (optional, highest priority)
5062
5057
  target_column: Target column name to find predictor (optional, alternative to predictor_id)
5063
- batch_size: Batch size for continuation (0 = use existing from predictor)
5064
- learning_rate: Learning rate for continuation (None = use existing from predictor)
5065
5058
  poll_interval: Seconds between status checks (default: 30)
5066
5059
  max_poll_time: Maximum time to poll in seconds (default: 3600 = 1 hour)
5067
5060
  verbose: Whether to print status updates (default: True)
@@ -5088,15 +5081,12 @@ class FeatrixSphereClient:
5088
5081
 
5089
5082
  data = {
5090
5083
  "epochs": epochs,
5091
- "batch_size": batch_size,
5092
5084
  }
5093
5085
 
5094
5086
  if predictor_id:
5095
5087
  data["predictor_id"] = predictor_id
5096
5088
  if target_column:
5097
5089
  data["target_column"] = target_column
5098
- if learning_rate is not None:
5099
- data["learning_rate"] = learning_rate
5100
5090
  if webhooks:
5101
5091
  data["webhooks"] = webhooks
5102
5092
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: featrixsphere
3
- Version: 0.2.1230
3
+ Version: 0.2.1231
4
4
  Summary: Transform any CSV into a production-ready ML model in minutes, not months.
5
5
  Home-page: https://github.com/Featrix/sphere
6
6
  Author: Featrix
@@ -1 +0,0 @@
1
- 0.2.1230