fastMONAI 0.4.0.2__tar.gz → 0.5.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (36) hide show
  1. fastmonai-0.5.1/PKG-INFO +149 -0
  2. fastmonai-0.5.1/README.md +99 -0
  3. fastmonai-0.5.1/fastMONAI/__init__.py +1 -0
  4. {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI/_modidx.py +64 -2
  5. {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI/dataset_info.py +4 -4
  6. fastmonai-0.5.1/fastMONAI/utils.py +411 -0
  7. {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI/vision_core.py +156 -14
  8. {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI/vision_data.py +20 -18
  9. {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI/vision_inference.py +17 -3
  10. fastmonai-0.5.1/fastMONAI.egg-info/PKG-INFO +149 -0
  11. {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI.egg-info/SOURCES.txt +1 -0
  12. fastmonai-0.5.1/fastMONAI.egg-info/requires.txt +18 -0
  13. fastmonai-0.5.1/pyproject.toml +11 -0
  14. {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/settings.ini +4 -4
  15. {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/setup.py +1 -1
  16. fastMONAI-0.4.0.2/PKG-INFO +0 -91
  17. fastMONAI-0.4.0.2/README.md +0 -69
  18. fastMONAI-0.4.0.2/fastMONAI/__init__.py +0 -1
  19. fastMONAI-0.4.0.2/fastMONAI/utils.py +0 -45
  20. fastMONAI-0.4.0.2/fastMONAI.egg-info/PKG-INFO +0 -91
  21. fastMONAI-0.4.0.2/fastMONAI.egg-info/requires.txt +0 -15
  22. {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/CONTRIBUTING.md +0 -0
  23. {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/LICENSE +0 -0
  24. {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/MANIFEST.in +0 -0
  25. {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI/external_data.py +0 -0
  26. {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI/research_utils.py +0 -0
  27. {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI/vision_all.py +0 -0
  28. {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI/vision_augmentation.py +0 -0
  29. {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI/vision_loss.py +0 -0
  30. {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI/vision_metrics.py +0 -0
  31. {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI/vision_plot.py +0 -0
  32. {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI.egg-info/dependency_links.txt +0 -0
  33. {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI.egg-info/entry_points.txt +0 -0
  34. {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI.egg-info/not-zip-safe +0 -0
  35. {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI.egg-info/top_level.txt +0 -0
  36. {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/setup.cfg +0 -0
@@ -0,0 +1,149 @@
1
+ Metadata-Version: 2.4
2
+ Name: fastMONAI
3
+ Version: 0.5.1
4
+ Summary: fastMONAI library
5
+ Home-page: https://github.com/MMIV-ML/fastMONAI
6
+ Author: Satheshkumar Kaliyugarasan
7
+ Author-email: skaliyugarasan@hotmail.com
8
+ License: Apache Software License 2.0
9
+ Keywords: deep learning,medical imaging
10
+ Classifier: Development Status :: 3 - Alpha
11
+ Classifier: Intended Audience :: Developers
12
+ Classifier: Natural Language :: English
13
+ Classifier: Programming Language :: Python :: 3.10
14
+ Classifier: Programming Language :: Python :: 3.11
15
+ Classifier: Programming Language :: Python :: 3.12
16
+ Classifier: License :: OSI Approved :: Apache Software License
17
+ Requires-Python: >=3.10
18
+ Description-Content-Type: text/markdown
19
+ License-File: LICENSE
20
+ Requires-Dist: fastai==2.8.3
21
+ Requires-Dist: monai==1.5.0
22
+ Requires-Dist: torchio==0.20.19
23
+ Requires-Dist: xlrd>=1.2.0
24
+ Requires-Dist: scikit-image==0.25.2
25
+ Requires-Dist: imagedata==3.8.4
26
+ Requires-Dist: mlflow==3.3.1
27
+ Requires-Dist: huggingface-hub
28
+ Requires-Dist: gdown
29
+ Requires-Dist: gradio
30
+ Requires-Dist: opencv-python
31
+ Requires-Dist: plum-dispatch
32
+ Provides-Extra: dev
33
+ Requires-Dist: ipywidgets; extra == "dev"
34
+ Requires-Dist: nbdev; extra == "dev"
35
+ Requires-Dist: tabulate; extra == "dev"
36
+ Requires-Dist: quarto; extra == "dev"
37
+ Dynamic: author
38
+ Dynamic: author-email
39
+ Dynamic: classifier
40
+ Dynamic: description
41
+ Dynamic: description-content-type
42
+ Dynamic: home-page
43
+ Dynamic: keywords
44
+ Dynamic: license
45
+ Dynamic: license-file
46
+ Dynamic: provides-extra
47
+ Dynamic: requires-dist
48
+ Dynamic: requires-python
49
+ Dynamic: summary
50
+
51
+ # Overview
52
+
53
+
54
+ <!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->
55
+
56
+ ![](https://raw.githubusercontent.com/skaliy/skaliy.github.io/master/assets/fastmonai_v1.png)
57
+
58
+ ![CI](https://github.com/MMIV-ML/fastMONAI/workflows/CI/badge.svg)
59
+ [![Docs](https://github.com/MMIV-ML/fastMONAI/actions/workflows/deploy.yaml/badge.svg)](https://fastmonai.no)
60
+ [![PyPI](https://img.shields.io/pypi/v/fastMONAI?color=blue&label=PyPI%20version&logo=python&logoColor=white.png)](https://pypi.org/project/fastMONAI)
61
+
62
+ A low-code Python-based open source deep learning library built on top
63
+ of [fastai](https://github.com/fastai/fastai),
64
+ [MONAI](https://monai.io/), [TorchIO](https://torchio.readthedocs.io/),
65
+ and [Imagedata](https://imagedata.readthedocs.io/).
66
+
67
+ fastMONAI simplifies the use of state-of-the-art deep learning
68
+ techniques in 3D medical image analysis for solving classification,
69
+ regression, and segmentation tasks. fastMONAI provides the users with
70
+ functionalities to step through data loading, preprocessing, training,
71
+ and result interpretations.
72
+
73
+ <b>Note:</b> This documentation is also available as interactive
74
+ notebooks.
75
+
76
+ ## Requirements
77
+
78
+ - **Python:** 3.10, 3.11, or 3.12 (Python 3.11 recommended)
79
+ - **GPU:** CUDA-compatible GPU recommended for training (CPU supported
80
+ for inference)
81
+
82
+ # Installation
83
+
84
+ ## Environment setup (recommended)
85
+
86
+ We recommend using a conda environment to avoid dependency conflicts:
87
+
88
+ `conda create -n fastmonai python=3.11`
89
+
90
+ `conda activate fastmonai`
91
+
92
+ ## Quick Install [(PyPI)](https://pypi.org/project/fastMONAI/)
93
+
94
+ `pip install fastMONAI`
95
+
96
+ ## Development install [(GitHub)](https://github.com/MMIV-ML/fastMONAI)
97
+
98
+ If you want to install an editable version of fastMONAI for development:
99
+
100
+ git clone https://github.com/MMIV-ML/fastMONAI
101
+ cd fastMONAI
102
+
103
+ # Create development environment
104
+ conda create -n fastmonai-dev python=3.11
105
+ conda activate fastmonai-dev
106
+
107
+ # Install in development mode
108
+ pip install -e '.[dev]'
109
+
110
+ # Getting started
111
+
112
+ The best way to get started using fastMONAI is to read our
113
+ [paper](https://www.sciencedirect.com/science/article/pii/S2665963823001203)
114
+ and dive into our beginner-friendly [video
115
+ tutorial](https://fastmonai.no/tutorial_beginner_video). For a deeper
116
+ understanding and hands-on experience, our comprehensive instructional
117
+ notebooks will walk you through model training for various tasks like
118
+ classification, regression, and segmentation. See the docs at
119
+ https://fastmonai.no for more information.
120
+
121
+ | Notebook | 1-Click Notebook |
122
+ |:---|----|
123
+ | [10a_tutorial_classification.ipynb](https://nbviewer.org/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb) <br>shows how to construct a binary classification model based on MRI data. | [![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb) |
124
+ | [10b_tutorial_regression.ipynb](https://nbviewer.org/github/MMIV-ML/fastMONAI/blob/master/nbs/10b_tutorial_regression.ipynb) <br>shows how to construct a model to predict the age of a subject from MRI scans (“brain age”). | [![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10b_tutorial_regression.ipynb) |
125
+ | [10c_tutorial_binary_segmentation.ipynb](https://nbviewer.org/github/MMIV-ML/fastMONAI/blob/master/nbs/10c_tutorial_binary_segmentation.ipynb) <br>shows how to do binary segmentation (extract the left atrium from monomodal cardiac MRI). | [![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10c_tutorial_binary_segmentation.ipynb) |
126
+ | [10d_tutorial_multiclass_segmentation.ipynb](https://nbviewer.org/github/MMIV-ML/fastMONAI/blob/master/nbs/10d_tutorial_multiclass_segmentation.ipynb) <br>shows how to perform segmentation from multimodal MRI (brain tumor segmentation). | [![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10d_tutorial_multiclass_segmentation.ipynb) |
127
+
128
+ # How to contribute
129
+
130
+ We welcome contributions! See
131
+ [CONTRIBUTING.md](https://github.com/MMIV-ML/fastMONAI/blob/master/CONTRIBUTING.md)
132
+
133
+ # Citing fastMONAI
134
+
135
+ If you are using fastMONAI in your research, please use the following
136
+ citation:
137
+
138
+ @article{KALIYUGARASAN2023100583,
139
+ title = {fastMONAI: A low-code deep learning library for medical image analysis},
140
+ journal = {Software Impacts},
141
+ pages = {100583},
142
+ year = {2023},
143
+ issn = {2665-9638},
144
+ doi = {https://doi.org/10.1016/j.simpa.2023.100583},
145
+ url = {https://www.sciencedirect.com/science/article/pii/S2665963823001203},
146
+ author = {Satheshkumar Kaliyugarasan and Alexander S. Lundervold},
147
+ keywords = {Deep learning, Medical imaging, Radiology},
148
+ abstract = {We introduce fastMONAI, an open-source Python-based deep learning library for 3D medical imaging. Drawing upon the strengths of fastai, MONAI, and TorchIO, fastMONAI simplifies the use of advanced techniques for tasks like classification, regression, and segmentation. The library's design addresses domain-specific demands while promoting best practices, facilitating efficient model development. It offers newcomers an easier entry into the field while keeping the option to make advanced, lower-level customizations if needed. This paper describes the library's design, impact, limitations, and plans for future work.}
149
+ }
@@ -0,0 +1,99 @@
1
+ # Overview
2
+
3
+
4
+ <!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->
5
+
6
+ ![](https://raw.githubusercontent.com/skaliy/skaliy.github.io/master/assets/fastmonai_v1.png)
7
+
8
+ ![CI](https://github.com/MMIV-ML/fastMONAI/workflows/CI/badge.svg)
9
+ [![Docs](https://github.com/MMIV-ML/fastMONAI/actions/workflows/deploy.yaml/badge.svg)](https://fastmonai.no)
10
+ [![PyPI](https://img.shields.io/pypi/v/fastMONAI?color=blue&label=PyPI%20version&logo=python&logoColor=white.png)](https://pypi.org/project/fastMONAI)
11
+
12
+ A low-code Python-based open source deep learning library built on top
13
+ of [fastai](https://github.com/fastai/fastai),
14
+ [MONAI](https://monai.io/), [TorchIO](https://torchio.readthedocs.io/),
15
+ and [Imagedata](https://imagedata.readthedocs.io/).
16
+
17
+ fastMONAI simplifies the use of state-of-the-art deep learning
18
+ techniques in 3D medical image analysis for solving classification,
19
+ regression, and segmentation tasks. fastMONAI provides the users with
20
+ functionalities to step through data loading, preprocessing, training,
21
+ and result interpretations.
22
+
23
+ <b>Note:</b> This documentation is also available as interactive
24
+ notebooks.
25
+
26
+ ## Requirements
27
+
28
+ - **Python:** 3.10, 3.11, or 3.12 (Python 3.11 recommended)
29
+ - **GPU:** CUDA-compatible GPU recommended for training (CPU supported
30
+ for inference)
31
+
32
+ # Installation
33
+
34
+ ## Environment setup (recommended)
35
+
36
+ We recommend using a conda environment to avoid dependency conflicts:
37
+
38
+ `conda create -n fastmonai python=3.11`
39
+
40
+ `conda activate fastmonai`
41
+
42
+ ## Quick Install [(PyPI)](https://pypi.org/project/fastMONAI/)
43
+
44
+ `pip install fastMONAI`
45
+
46
+ ## Development install [(GitHub)](https://github.com/MMIV-ML/fastMONAI)
47
+
48
+ If you want to install an editable version of fastMONAI for development:
49
+
50
+ git clone https://github.com/MMIV-ML/fastMONAI
51
+ cd fastMONAI
52
+
53
+ # Create development environment
54
+ conda create -n fastmonai-dev python=3.11
55
+ conda activate fastmonai-dev
56
+
57
+ # Install in development mode
58
+ pip install -e '.[dev]'
59
+
60
+ # Getting started
61
+
62
+ The best way to get started using fastMONAI is to read our
63
+ [paper](https://www.sciencedirect.com/science/article/pii/S2665963823001203)
64
+ and dive into our beginner-friendly [video
65
+ tutorial](https://fastmonai.no/tutorial_beginner_video). For a deeper
66
+ understanding and hands-on experience, our comprehensive instructional
67
+ notebooks will walk you through model training for various tasks like
68
+ classification, regression, and segmentation. See the docs at
69
+ https://fastmonai.no for more information.
70
+
71
+ | Notebook | 1-Click Notebook |
72
+ |:---|----|
73
+ | [10a_tutorial_classification.ipynb](https://nbviewer.org/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb) <br>shows how to construct a binary classification model based on MRI data. | [![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb) |
74
+ | [10b_tutorial_regression.ipynb](https://nbviewer.org/github/MMIV-ML/fastMONAI/blob/master/nbs/10b_tutorial_regression.ipynb) <br>shows how to construct a model to predict the age of a subject from MRI scans (“brain age”). | [![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10b_tutorial_regression.ipynb) |
75
+ | [10c_tutorial_binary_segmentation.ipynb](https://nbviewer.org/github/MMIV-ML/fastMONAI/blob/master/nbs/10c_tutorial_binary_segmentation.ipynb) <br>shows how to do binary segmentation (extract the left atrium from monomodal cardiac MRI). | [![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10c_tutorial_binary_segmentation.ipynb) |
76
+ | [10d_tutorial_multiclass_segmentation.ipynb](https://nbviewer.org/github/MMIV-ML/fastMONAI/blob/master/nbs/10d_tutorial_multiclass_segmentation.ipynb) <br>shows how to perform segmentation from multimodal MRI (brain tumor segmentation). | [![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10d_tutorial_multiclass_segmentation.ipynb) |
77
+
78
+ # How to contribute
79
+
80
+ We welcome contributions! See
81
+ [CONTRIBUTING.md](https://github.com/MMIV-ML/fastMONAI/blob/master/CONTRIBUTING.md)
82
+
83
+ # Citing fastMONAI
84
+
85
+ If you are using fastMONAI in your research, please use the following
86
+ citation:
87
+
88
+ @article{KALIYUGARASAN2023100583,
89
+ title = {fastMONAI: A low-code deep learning library for medical image analysis},
90
+ journal = {Software Impacts},
91
+ pages = {100583},
92
+ year = {2023},
93
+ issn = {2665-9638},
94
+ doi = {https://doi.org/10.1016/j.simpa.2023.100583},
95
+ url = {https://www.sciencedirect.com/science/article/pii/S2665963823001203},
96
+ author = {Satheshkumar Kaliyugarasan and Alexander S. Lundervold},
97
+ keywords = {Deep learning, Medical imaging, Radiology},
98
+ abstract = {We introduce fastMONAI, an open-source Python-based deep learning library for 3D medical imaging. Drawing upon the strengths of fastai, MONAI, and TorchIO, fastMONAI simplifies the use of advanced techniques for tasks like classification, regression, and segmentation. The library's design addresses domain-specific demands while promoting best practices, facilitating efficient model development. It offers newcomers an easier entry into the field while keeping the option to make advanced, lower-level customizations if needed. This paper describes the library's design, impact, limitations, and plans for future work.}
99
+ }
@@ -0,0 +1 @@
1
+ __version__ = "0.5.1"
@@ -47,7 +47,41 @@ d = { 'settings': { 'branch': 'master',
47
47
  'fastMONAI/external_data.py')},
48
48
  'fastMONAI.research_utils': { 'fastMONAI.research_utils.pred_postprocess': ( 'research_utils.html#pred_postprocess',
49
49
  'fastMONAI/research_utils.py')},
50
- 'fastMONAI.utils': { 'fastMONAI.utils.load_variables': ('utils.html#load_variables', 'fastMONAI/utils.py'),
50
+ 'fastMONAI.utils': { 'fastMONAI.utils.MLflowUIManager': ('utils.html#mlflowuimanager', 'fastMONAI/utils.py'),
51
+ 'fastMONAI.utils.MLflowUIManager.__init__': ('utils.html#mlflowuimanager.__init__', 'fastMONAI/utils.py'),
52
+ 'fastMONAI.utils.MLflowUIManager.check_mlflow_installed': ( 'utils.html#mlflowuimanager.check_mlflow_installed',
53
+ 'fastMONAI/utils.py'),
54
+ 'fastMONAI.utils.MLflowUIManager.find_available_port': ( 'utils.html#mlflowuimanager.find_available_port',
55
+ 'fastMONAI/utils.py'),
56
+ 'fastMONAI.utils.MLflowUIManager.is_mlflow_running': ( 'utils.html#mlflowuimanager.is_mlflow_running',
57
+ 'fastMONAI/utils.py'),
58
+ 'fastMONAI.utils.MLflowUIManager.is_port_available': ( 'utils.html#mlflowuimanager.is_port_available',
59
+ 'fastMONAI/utils.py'),
60
+ 'fastMONAI.utils.MLflowUIManager.start_ui': ('utils.html#mlflowuimanager.start_ui', 'fastMONAI/utils.py'),
61
+ 'fastMONAI.utils.MLflowUIManager.status': ('utils.html#mlflowuimanager.status', 'fastMONAI/utils.py'),
62
+ 'fastMONAI.utils.MLflowUIManager.stop': ('utils.html#mlflowuimanager.stop', 'fastMONAI/utils.py'),
63
+ 'fastMONAI.utils.ModelTrackingCallback': ('utils.html#modeltrackingcallback', 'fastMONAI/utils.py'),
64
+ 'fastMONAI.utils.ModelTrackingCallback.__init__': ( 'utils.html#modeltrackingcallback.__init__',
65
+ 'fastMONAI/utils.py'),
66
+ 'fastMONAI.utils.ModelTrackingCallback._build_config': ( 'utils.html#modeltrackingcallback._build_config',
67
+ 'fastMONAI/utils.py'),
68
+ 'fastMONAI.utils.ModelTrackingCallback._extract_epoch_metrics': ( 'utils.html#modeltrackingcallback._extract_epoch_metrics',
69
+ 'fastMONAI/utils.py'),
70
+ 'fastMONAI.utils.ModelTrackingCallback._extract_training_params': ( 'utils.html#modeltrackingcallback._extract_training_params',
71
+ 'fastMONAI/utils.py'),
72
+ 'fastMONAI.utils.ModelTrackingCallback._register_pytorch_model': ( 'utils.html#modeltrackingcallback._register_pytorch_model',
73
+ 'fastMONAI/utils.py'),
74
+ 'fastMONAI.utils.ModelTrackingCallback._save_model_artifacts': ( 'utils.html#modeltrackingcallback._save_model_artifacts',
75
+ 'fastMONAI/utils.py'),
76
+ 'fastMONAI.utils.ModelTrackingCallback.after_epoch': ( 'utils.html#modeltrackingcallback.after_epoch',
77
+ 'fastMONAI/utils.py'),
78
+ 'fastMONAI.utils.ModelTrackingCallback.after_fit': ( 'utils.html#modeltrackingcallback.after_fit',
79
+ 'fastMONAI/utils.py'),
80
+ 'fastMONAI.utils.ModelTrackingCallback.before_fit': ( 'utils.html#modeltrackingcallback.before_fit',
81
+ 'fastMONAI/utils.py'),
82
+ 'fastMONAI.utils.ModelTrackingCallback.extract_all_params': ( 'utils.html#modeltrackingcallback.extract_all_params',
83
+ 'fastMONAI/utils.py'),
84
+ 'fastMONAI.utils.load_variables': ('utils.html#load_variables', 'fastMONAI/utils.py'),
51
85
  'fastMONAI.utils.print_colab_gpu_info': ('utils.html#print_colab_gpu_info', 'fastMONAI/utils.py'),
52
86
  'fastMONAI.utils.store_variables': ('utils.html#store_variables', 'fastMONAI/utils.py')},
53
87
  'fastMONAI.vision_all': {},
@@ -138,23 +172,51 @@ d = { 'settings': { 'branch': 'master',
138
172
  'fastMONAI.vision_augmentation.do_pad_or_crop': ( 'vision_augment.html#do_pad_or_crop',
139
173
  'fastMONAI/vision_augmentation.py')},
140
174
  'fastMONAI.vision_core': { 'fastMONAI.vision_core.MedBase': ('vision_core.html#medbase', 'fastMONAI/vision_core.py'),
175
+ 'fastMONAI.vision_core.MedBase.__copy__': ( 'vision_core.html#medbase.__copy__',
176
+ 'fastMONAI/vision_core.py'),
177
+ 'fastMONAI.vision_core.MedBase.__deepcopy__': ( 'vision_core.html#medbase.__deepcopy__',
178
+ 'fastMONAI/vision_core.py'),
179
+ 'fastMONAI.vision_core.MedBase.__new__': ( 'vision_core.html#medbase.__new__',
180
+ 'fastMONAI/vision_core.py'),
141
181
  'fastMONAI.vision_core.MedBase.__repr__': ( 'vision_core.html#medbase.__repr__',
142
182
  'fastMONAI/vision_core.py'),
143
183
  'fastMONAI.vision_core.MedBase.create': ( 'vision_core.html#medbase.create',
144
184
  'fastMONAI/vision_core.py'),
145
185
  'fastMONAI.vision_core.MedBase.item_preprocessing': ( 'vision_core.html#medbase.item_preprocessing',
146
186
  'fastMONAI/vision_core.py'),
187
+ 'fastMONAI.vision_core.MedBase.new_empty': ( 'vision_core.html#medbase.new_empty',
188
+ 'fastMONAI/vision_core.py'),
147
189
  'fastMONAI.vision_core.MedBase.show': ('vision_core.html#medbase.show', 'fastMONAI/vision_core.py'),
148
190
  'fastMONAI.vision_core.MedImage': ('vision_core.html#medimage', 'fastMONAI/vision_core.py'),
149
191
  'fastMONAI.vision_core.MedMask': ('vision_core.html#medmask', 'fastMONAI/vision_core.py'),
150
192
  'fastMONAI.vision_core.MetaResolver': ('vision_core.html#metaresolver', 'fastMONAI/vision_core.py'),
193
+ 'fastMONAI.vision_core.VSCodeProgressCallback': ( 'vision_core.html#vscodeprogresscallback',
194
+ 'fastMONAI/vision_core.py'),
195
+ 'fastMONAI.vision_core.VSCodeProgressCallback.__init__': ( 'vision_core.html#vscodeprogresscallback.__init__',
196
+ 'fastMONAI/vision_core.py'),
197
+ 'fastMONAI.vision_core.VSCodeProgressCallback._detect_vscode_environment': ( 'vision_core.html#vscodeprogresscallback._detect_vscode_environment',
198
+ 'fastMONAI/vision_core.py'),
199
+ 'fastMONAI.vision_core.VSCodeProgressCallback.after_batch': ( 'vision_core.html#vscodeprogresscallback.after_batch',
200
+ 'fastMONAI/vision_core.py'),
201
+ 'fastMONAI.vision_core.VSCodeProgressCallback.after_fit': ( 'vision_core.html#vscodeprogresscallback.after_fit',
202
+ 'fastMONAI/vision_core.py'),
203
+ 'fastMONAI.vision_core.VSCodeProgressCallback.after_validate': ( 'vision_core.html#vscodeprogresscallback.after_validate',
204
+ 'fastMONAI/vision_core.py'),
205
+ 'fastMONAI.vision_core.VSCodeProgressCallback.before_epoch': ( 'vision_core.html#vscodeprogresscallback.before_epoch',
206
+ 'fastMONAI/vision_core.py'),
207
+ 'fastMONAI.vision_core.VSCodeProgressCallback.before_fit': ( 'vision_core.html#vscodeprogresscallback.before_fit',
208
+ 'fastMONAI/vision_core.py'),
209
+ 'fastMONAI.vision_core.VSCodeProgressCallback.before_validate': ( 'vision_core.html#vscodeprogresscallback.before_validate',
210
+ 'fastMONAI/vision_core.py'),
151
211
  'fastMONAI.vision_core._load_and_preprocess': ( 'vision_core.html#_load_and_preprocess',
152
212
  'fastMONAI/vision_core.py'),
153
213
  'fastMONAI.vision_core._multi_channel': ( 'vision_core.html#_multi_channel',
154
214
  'fastMONAI/vision_core.py'),
155
215
  'fastMONAI.vision_core._preprocess': ('vision_core.html#_preprocess', 'fastMONAI/vision_core.py'),
156
216
  'fastMONAI.vision_core.med_img_reader': ( 'vision_core.html#med_img_reader',
157
- 'fastMONAI/vision_core.py')},
217
+ 'fastMONAI/vision_core.py'),
218
+ 'fastMONAI.vision_core.setup_vscode_progress': ( 'vision_core.html#setup_vscode_progress',
219
+ 'fastMONAI/vision_core.py')},
158
220
  'fastMONAI.vision_data': { 'fastMONAI.vision_data.MedDataBlock': ('vision_data.html#meddatablock', 'fastMONAI/vision_data.py'),
159
221
  'fastMONAI.vision_data.MedDataBlock.__init__': ( 'vision_data.html#meddatablock.__init__',
160
222
  'fastMONAI/vision_data.py'),
@@ -69,12 +69,12 @@ class MedDataset:
69
69
  def suggestion(self):
70
70
  """Voxel value that appears most often in dim_0, dim_1 and dim_2, and whether the data should be reoriented."""
71
71
 
72
- resample = [self.df.voxel_0.mode()[0], self.df.voxel_1.mode()[0], self.df.voxel_2.mode()[0]]
72
+ resample = [float(self.df.voxel_0.mode()[0]), float(self.df.voxel_1.mode()[0]), float(self.df.voxel_2.mode()[0])]
73
73
  return resample, self.reorder
74
74
 
75
75
  def _get_data_info(self, fn: str):
76
76
  """Private method to collect information about an image file."""
77
- _, o, _ = med_img_reader(fn, dtype=self.dtype, reorder=self.reorder, only_tensor=False)
77
+ _, o, _ = med_img_reader(fn, reorder=self.reorder, only_tensor=False, dtype=self.dtype)
78
78
 
79
79
  info_dict = {'path': fn, 'dim_0': o.shape[1], 'dim_1': o.shape[2], 'dim_2': o.shape[3],
80
80
  'voxel_0': round(o.spacing[0], 4), 'voxel_1': round(o.spacing[1], 4), 'voxel_2': round(o.spacing[2], 4),
@@ -98,10 +98,10 @@ class MedDataset:
98
98
 
99
99
  ratio = org_voxels/resample
100
100
  new_dims = (org_dims * ratio).T
101
- dims = [new_dims[0].max().round(), new_dims[1].max().round(), new_dims[2].max().round()]
101
+ dims = [float(new_dims[0].max().round()), float(new_dims[1].max().round()), float(new_dims[2].max().round())]
102
102
 
103
103
  else:
104
- dims = [df.dim_0.max(), df.dim_1.max(), df.dim_2.max()]
104
+ dims = [float(self.df.dim_0.max()), float(self.df.dim_1.max()), float(self.df.dim_2.max())]
105
105
 
106
106
  return dims
107
107