fastMONAI 0.4.0.2__tar.gz → 0.5.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fastmonai-0.5.1/PKG-INFO +149 -0
- fastmonai-0.5.1/README.md +99 -0
- fastmonai-0.5.1/fastMONAI/__init__.py +1 -0
- {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI/_modidx.py +64 -2
- {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI/dataset_info.py +4 -4
- fastmonai-0.5.1/fastMONAI/utils.py +411 -0
- {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI/vision_core.py +156 -14
- {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI/vision_data.py +20 -18
- {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI/vision_inference.py +17 -3
- fastmonai-0.5.1/fastMONAI.egg-info/PKG-INFO +149 -0
- {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI.egg-info/SOURCES.txt +1 -0
- fastmonai-0.5.1/fastMONAI.egg-info/requires.txt +18 -0
- fastmonai-0.5.1/pyproject.toml +11 -0
- {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/settings.ini +4 -4
- {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/setup.py +1 -1
- fastMONAI-0.4.0.2/PKG-INFO +0 -91
- fastMONAI-0.4.0.2/README.md +0 -69
- fastMONAI-0.4.0.2/fastMONAI/__init__.py +0 -1
- fastMONAI-0.4.0.2/fastMONAI/utils.py +0 -45
- fastMONAI-0.4.0.2/fastMONAI.egg-info/PKG-INFO +0 -91
- fastMONAI-0.4.0.2/fastMONAI.egg-info/requires.txt +0 -15
- {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/CONTRIBUTING.md +0 -0
- {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/LICENSE +0 -0
- {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/MANIFEST.in +0 -0
- {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI/external_data.py +0 -0
- {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI/research_utils.py +0 -0
- {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI/vision_all.py +0 -0
- {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI/vision_augmentation.py +0 -0
- {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI/vision_loss.py +0 -0
- {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI/vision_metrics.py +0 -0
- {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI/vision_plot.py +0 -0
- {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI.egg-info/dependency_links.txt +0 -0
- {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI.egg-info/entry_points.txt +0 -0
- {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI.egg-info/not-zip-safe +0 -0
- {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/fastMONAI.egg-info/top_level.txt +0 -0
- {fastMONAI-0.4.0.2 → fastmonai-0.5.1}/setup.cfg +0 -0
fastmonai-0.5.1/PKG-INFO
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: fastMONAI
|
|
3
|
+
Version: 0.5.1
|
|
4
|
+
Summary: fastMONAI library
|
|
5
|
+
Home-page: https://github.com/MMIV-ML/fastMONAI
|
|
6
|
+
Author: Satheshkumar Kaliyugarasan
|
|
7
|
+
Author-email: skaliyugarasan@hotmail.com
|
|
8
|
+
License: Apache Software License 2.0
|
|
9
|
+
Keywords: deep learning,medical imaging
|
|
10
|
+
Classifier: Development Status :: 3 - Alpha
|
|
11
|
+
Classifier: Intended Audience :: Developers
|
|
12
|
+
Classifier: Natural Language :: English
|
|
13
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
14
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
15
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
16
|
+
Classifier: License :: OSI Approved :: Apache Software License
|
|
17
|
+
Requires-Python: >=3.10
|
|
18
|
+
Description-Content-Type: text/markdown
|
|
19
|
+
License-File: LICENSE
|
|
20
|
+
Requires-Dist: fastai==2.8.3
|
|
21
|
+
Requires-Dist: monai==1.5.0
|
|
22
|
+
Requires-Dist: torchio==0.20.19
|
|
23
|
+
Requires-Dist: xlrd>=1.2.0
|
|
24
|
+
Requires-Dist: scikit-image==0.25.2
|
|
25
|
+
Requires-Dist: imagedata==3.8.4
|
|
26
|
+
Requires-Dist: mlflow==3.3.1
|
|
27
|
+
Requires-Dist: huggingface-hub
|
|
28
|
+
Requires-Dist: gdown
|
|
29
|
+
Requires-Dist: gradio
|
|
30
|
+
Requires-Dist: opencv-python
|
|
31
|
+
Requires-Dist: plum-dispatch
|
|
32
|
+
Provides-Extra: dev
|
|
33
|
+
Requires-Dist: ipywidgets; extra == "dev"
|
|
34
|
+
Requires-Dist: nbdev; extra == "dev"
|
|
35
|
+
Requires-Dist: tabulate; extra == "dev"
|
|
36
|
+
Requires-Dist: quarto; extra == "dev"
|
|
37
|
+
Dynamic: author
|
|
38
|
+
Dynamic: author-email
|
|
39
|
+
Dynamic: classifier
|
|
40
|
+
Dynamic: description
|
|
41
|
+
Dynamic: description-content-type
|
|
42
|
+
Dynamic: home-page
|
|
43
|
+
Dynamic: keywords
|
|
44
|
+
Dynamic: license
|
|
45
|
+
Dynamic: license-file
|
|
46
|
+
Dynamic: provides-extra
|
|
47
|
+
Dynamic: requires-dist
|
|
48
|
+
Dynamic: requires-python
|
|
49
|
+
Dynamic: summary
|
|
50
|
+
|
|
51
|
+
# Overview
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->
|
|
55
|
+
|
|
56
|
+

|
|
57
|
+
|
|
58
|
+

|
|
59
|
+
[](https://fastmonai.no)
|
|
60
|
+
[](https://pypi.org/project/fastMONAI)
|
|
61
|
+
|
|
62
|
+
A low-code Python-based open source deep learning library built on top
|
|
63
|
+
of [fastai](https://github.com/fastai/fastai),
|
|
64
|
+
[MONAI](https://monai.io/), [TorchIO](https://torchio.readthedocs.io/),
|
|
65
|
+
and [Imagedata](https://imagedata.readthedocs.io/).
|
|
66
|
+
|
|
67
|
+
fastMONAI simplifies the use of state-of-the-art deep learning
|
|
68
|
+
techniques in 3D medical image analysis for solving classification,
|
|
69
|
+
regression, and segmentation tasks. fastMONAI provides the users with
|
|
70
|
+
functionalities to step through data loading, preprocessing, training,
|
|
71
|
+
and result interpretations.
|
|
72
|
+
|
|
73
|
+
<b>Note:</b> This documentation is also available as interactive
|
|
74
|
+
notebooks.
|
|
75
|
+
|
|
76
|
+
## Requirements
|
|
77
|
+
|
|
78
|
+
- **Python:** 3.10, 3.11, or 3.12 (Python 3.11 recommended)
|
|
79
|
+
- **GPU:** CUDA-compatible GPU recommended for training (CPU supported
|
|
80
|
+
for inference)
|
|
81
|
+
|
|
82
|
+
# Installation
|
|
83
|
+
|
|
84
|
+
## Environment setup (recommended)
|
|
85
|
+
|
|
86
|
+
We recommend using a conda environment to avoid dependency conflicts:
|
|
87
|
+
|
|
88
|
+
`conda create -n fastmonai python=3.11`
|
|
89
|
+
|
|
90
|
+
`conda activate fastmonai`
|
|
91
|
+
|
|
92
|
+
## Quick Install [(PyPI)](https://pypi.org/project/fastMONAI/)
|
|
93
|
+
|
|
94
|
+
`pip install fastMONAI`
|
|
95
|
+
|
|
96
|
+
## Development install [(GitHub)](https://github.com/MMIV-ML/fastMONAI)
|
|
97
|
+
|
|
98
|
+
If you want to install an editable version of fastMONAI for development:
|
|
99
|
+
|
|
100
|
+
git clone https://github.com/MMIV-ML/fastMONAI
|
|
101
|
+
cd fastMONAI
|
|
102
|
+
|
|
103
|
+
# Create development environment
|
|
104
|
+
conda create -n fastmonai-dev python=3.11
|
|
105
|
+
conda activate fastmonai-dev
|
|
106
|
+
|
|
107
|
+
# Install in development mode
|
|
108
|
+
pip install -e '.[dev]'
|
|
109
|
+
|
|
110
|
+
# Getting started
|
|
111
|
+
|
|
112
|
+
The best way to get started using fastMONAI is to read our
|
|
113
|
+
[paper](https://www.sciencedirect.com/science/article/pii/S2665963823001203)
|
|
114
|
+
and dive into our beginner-friendly [video
|
|
115
|
+
tutorial](https://fastmonai.no/tutorial_beginner_video). For a deeper
|
|
116
|
+
understanding and hands-on experience, our comprehensive instructional
|
|
117
|
+
notebooks will walk you through model training for various tasks like
|
|
118
|
+
classification, regression, and segmentation. See the docs at
|
|
119
|
+
https://fastmonai.no for more information.
|
|
120
|
+
|
|
121
|
+
| Notebook | 1-Click Notebook |
|
|
122
|
+
|:---|----|
|
|
123
|
+
| [10a_tutorial_classification.ipynb](https://nbviewer.org/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb) <br>shows how to construct a binary classification model based on MRI data. | [](https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb) |
|
|
124
|
+
| [10b_tutorial_regression.ipynb](https://nbviewer.org/github/MMIV-ML/fastMONAI/blob/master/nbs/10b_tutorial_regression.ipynb) <br>shows how to construct a model to predict the age of a subject from MRI scans (“brain age”). | [](https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10b_tutorial_regression.ipynb) |
|
|
125
|
+
| [10c_tutorial_binary_segmentation.ipynb](https://nbviewer.org/github/MMIV-ML/fastMONAI/blob/master/nbs/10c_tutorial_binary_segmentation.ipynb) <br>shows how to do binary segmentation (extract the left atrium from monomodal cardiac MRI). | [](https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10c_tutorial_binary_segmentation.ipynb) |
|
|
126
|
+
| [10d_tutorial_multiclass_segmentation.ipynb](https://nbviewer.org/github/MMIV-ML/fastMONAI/blob/master/nbs/10d_tutorial_multiclass_segmentation.ipynb) <br>shows how to perform segmentation from multimodal MRI (brain tumor segmentation). | [](https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10d_tutorial_multiclass_segmentation.ipynb) |
|
|
127
|
+
|
|
128
|
+
# How to contribute
|
|
129
|
+
|
|
130
|
+
We welcome contributions! See
|
|
131
|
+
[CONTRIBUTING.md](https://github.com/MMIV-ML/fastMONAI/blob/master/CONTRIBUTING.md)
|
|
132
|
+
|
|
133
|
+
# Citing fastMONAI
|
|
134
|
+
|
|
135
|
+
If you are using fastMONAI in your research, please use the following
|
|
136
|
+
citation:
|
|
137
|
+
|
|
138
|
+
@article{KALIYUGARASAN2023100583,
|
|
139
|
+
title = {fastMONAI: A low-code deep learning library for medical image analysis},
|
|
140
|
+
journal = {Software Impacts},
|
|
141
|
+
pages = {100583},
|
|
142
|
+
year = {2023},
|
|
143
|
+
issn = {2665-9638},
|
|
144
|
+
doi = {https://doi.org/10.1016/j.simpa.2023.100583},
|
|
145
|
+
url = {https://www.sciencedirect.com/science/article/pii/S2665963823001203},
|
|
146
|
+
author = {Satheshkumar Kaliyugarasan and Alexander S. Lundervold},
|
|
147
|
+
keywords = {Deep learning, Medical imaging, Radiology},
|
|
148
|
+
abstract = {We introduce fastMONAI, an open-source Python-based deep learning library for 3D medical imaging. Drawing upon the strengths of fastai, MONAI, and TorchIO, fastMONAI simplifies the use of advanced techniques for tasks like classification, regression, and segmentation. The library's design addresses domain-specific demands while promoting best practices, facilitating efficient model development. It offers newcomers an easier entry into the field while keeping the option to make advanced, lower-level customizations if needed. This paper describes the library's design, impact, limitations, and plans for future work.}
|
|
149
|
+
}
|
|
@@ -0,0 +1,99 @@
|
|
|
1
|
+
# Overview
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->
|
|
5
|
+
|
|
6
|
+

|
|
7
|
+
|
|
8
|
+

|
|
9
|
+
[](https://fastmonai.no)
|
|
10
|
+
[](https://pypi.org/project/fastMONAI)
|
|
11
|
+
|
|
12
|
+
A low-code Python-based open source deep learning library built on top
|
|
13
|
+
of [fastai](https://github.com/fastai/fastai),
|
|
14
|
+
[MONAI](https://monai.io/), [TorchIO](https://torchio.readthedocs.io/),
|
|
15
|
+
and [Imagedata](https://imagedata.readthedocs.io/).
|
|
16
|
+
|
|
17
|
+
fastMONAI simplifies the use of state-of-the-art deep learning
|
|
18
|
+
techniques in 3D medical image analysis for solving classification,
|
|
19
|
+
regression, and segmentation tasks. fastMONAI provides the users with
|
|
20
|
+
functionalities to step through data loading, preprocessing, training,
|
|
21
|
+
and result interpretations.
|
|
22
|
+
|
|
23
|
+
<b>Note:</b> This documentation is also available as interactive
|
|
24
|
+
notebooks.
|
|
25
|
+
|
|
26
|
+
## Requirements
|
|
27
|
+
|
|
28
|
+
- **Python:** 3.10, 3.11, or 3.12 (Python 3.11 recommended)
|
|
29
|
+
- **GPU:** CUDA-compatible GPU recommended for training (CPU supported
|
|
30
|
+
for inference)
|
|
31
|
+
|
|
32
|
+
# Installation
|
|
33
|
+
|
|
34
|
+
## Environment setup (recommended)
|
|
35
|
+
|
|
36
|
+
We recommend using a conda environment to avoid dependency conflicts:
|
|
37
|
+
|
|
38
|
+
`conda create -n fastmonai python=3.11`
|
|
39
|
+
|
|
40
|
+
`conda activate fastmonai`
|
|
41
|
+
|
|
42
|
+
## Quick Install [(PyPI)](https://pypi.org/project/fastMONAI/)
|
|
43
|
+
|
|
44
|
+
`pip install fastMONAI`
|
|
45
|
+
|
|
46
|
+
## Development install [(GitHub)](https://github.com/MMIV-ML/fastMONAI)
|
|
47
|
+
|
|
48
|
+
If you want to install an editable version of fastMONAI for development:
|
|
49
|
+
|
|
50
|
+
git clone https://github.com/MMIV-ML/fastMONAI
|
|
51
|
+
cd fastMONAI
|
|
52
|
+
|
|
53
|
+
# Create development environment
|
|
54
|
+
conda create -n fastmonai-dev python=3.11
|
|
55
|
+
conda activate fastmonai-dev
|
|
56
|
+
|
|
57
|
+
# Install in development mode
|
|
58
|
+
pip install -e '.[dev]'
|
|
59
|
+
|
|
60
|
+
# Getting started
|
|
61
|
+
|
|
62
|
+
The best way to get started using fastMONAI is to read our
|
|
63
|
+
[paper](https://www.sciencedirect.com/science/article/pii/S2665963823001203)
|
|
64
|
+
and dive into our beginner-friendly [video
|
|
65
|
+
tutorial](https://fastmonai.no/tutorial_beginner_video). For a deeper
|
|
66
|
+
understanding and hands-on experience, our comprehensive instructional
|
|
67
|
+
notebooks will walk you through model training for various tasks like
|
|
68
|
+
classification, regression, and segmentation. See the docs at
|
|
69
|
+
https://fastmonai.no for more information.
|
|
70
|
+
|
|
71
|
+
| Notebook | 1-Click Notebook |
|
|
72
|
+
|:---|----|
|
|
73
|
+
| [10a_tutorial_classification.ipynb](https://nbviewer.org/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb) <br>shows how to construct a binary classification model based on MRI data. | [](https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb) |
|
|
74
|
+
| [10b_tutorial_regression.ipynb](https://nbviewer.org/github/MMIV-ML/fastMONAI/blob/master/nbs/10b_tutorial_regression.ipynb) <br>shows how to construct a model to predict the age of a subject from MRI scans (“brain age”). | [](https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10b_tutorial_regression.ipynb) |
|
|
75
|
+
| [10c_tutorial_binary_segmentation.ipynb](https://nbviewer.org/github/MMIV-ML/fastMONAI/blob/master/nbs/10c_tutorial_binary_segmentation.ipynb) <br>shows how to do binary segmentation (extract the left atrium from monomodal cardiac MRI). | [](https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10c_tutorial_binary_segmentation.ipynb) |
|
|
76
|
+
| [10d_tutorial_multiclass_segmentation.ipynb](https://nbviewer.org/github/MMIV-ML/fastMONAI/blob/master/nbs/10d_tutorial_multiclass_segmentation.ipynb) <br>shows how to perform segmentation from multimodal MRI (brain tumor segmentation). | [](https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10d_tutorial_multiclass_segmentation.ipynb) |
|
|
77
|
+
|
|
78
|
+
# How to contribute
|
|
79
|
+
|
|
80
|
+
We welcome contributions! See
|
|
81
|
+
[CONTRIBUTING.md](https://github.com/MMIV-ML/fastMONAI/blob/master/CONTRIBUTING.md)
|
|
82
|
+
|
|
83
|
+
# Citing fastMONAI
|
|
84
|
+
|
|
85
|
+
If you are using fastMONAI in your research, please use the following
|
|
86
|
+
citation:
|
|
87
|
+
|
|
88
|
+
@article{KALIYUGARASAN2023100583,
|
|
89
|
+
title = {fastMONAI: A low-code deep learning library for medical image analysis},
|
|
90
|
+
journal = {Software Impacts},
|
|
91
|
+
pages = {100583},
|
|
92
|
+
year = {2023},
|
|
93
|
+
issn = {2665-9638},
|
|
94
|
+
doi = {https://doi.org/10.1016/j.simpa.2023.100583},
|
|
95
|
+
url = {https://www.sciencedirect.com/science/article/pii/S2665963823001203},
|
|
96
|
+
author = {Satheshkumar Kaliyugarasan and Alexander S. Lundervold},
|
|
97
|
+
keywords = {Deep learning, Medical imaging, Radiology},
|
|
98
|
+
abstract = {We introduce fastMONAI, an open-source Python-based deep learning library for 3D medical imaging. Drawing upon the strengths of fastai, MONAI, and TorchIO, fastMONAI simplifies the use of advanced techniques for tasks like classification, regression, and segmentation. The library's design addresses domain-specific demands while promoting best practices, facilitating efficient model development. It offers newcomers an easier entry into the field while keeping the option to make advanced, lower-level customizations if needed. This paper describes the library's design, impact, limitations, and plans for future work.}
|
|
99
|
+
}
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
__version__ = "0.5.1"
|
|
@@ -47,7 +47,41 @@ d = { 'settings': { 'branch': 'master',
|
|
|
47
47
|
'fastMONAI/external_data.py')},
|
|
48
48
|
'fastMONAI.research_utils': { 'fastMONAI.research_utils.pred_postprocess': ( 'research_utils.html#pred_postprocess',
|
|
49
49
|
'fastMONAI/research_utils.py')},
|
|
50
|
-
'fastMONAI.utils': { 'fastMONAI.utils.
|
|
50
|
+
'fastMONAI.utils': { 'fastMONAI.utils.MLflowUIManager': ('utils.html#mlflowuimanager', 'fastMONAI/utils.py'),
|
|
51
|
+
'fastMONAI.utils.MLflowUIManager.__init__': ('utils.html#mlflowuimanager.__init__', 'fastMONAI/utils.py'),
|
|
52
|
+
'fastMONAI.utils.MLflowUIManager.check_mlflow_installed': ( 'utils.html#mlflowuimanager.check_mlflow_installed',
|
|
53
|
+
'fastMONAI/utils.py'),
|
|
54
|
+
'fastMONAI.utils.MLflowUIManager.find_available_port': ( 'utils.html#mlflowuimanager.find_available_port',
|
|
55
|
+
'fastMONAI/utils.py'),
|
|
56
|
+
'fastMONAI.utils.MLflowUIManager.is_mlflow_running': ( 'utils.html#mlflowuimanager.is_mlflow_running',
|
|
57
|
+
'fastMONAI/utils.py'),
|
|
58
|
+
'fastMONAI.utils.MLflowUIManager.is_port_available': ( 'utils.html#mlflowuimanager.is_port_available',
|
|
59
|
+
'fastMONAI/utils.py'),
|
|
60
|
+
'fastMONAI.utils.MLflowUIManager.start_ui': ('utils.html#mlflowuimanager.start_ui', 'fastMONAI/utils.py'),
|
|
61
|
+
'fastMONAI.utils.MLflowUIManager.status': ('utils.html#mlflowuimanager.status', 'fastMONAI/utils.py'),
|
|
62
|
+
'fastMONAI.utils.MLflowUIManager.stop': ('utils.html#mlflowuimanager.stop', 'fastMONAI/utils.py'),
|
|
63
|
+
'fastMONAI.utils.ModelTrackingCallback': ('utils.html#modeltrackingcallback', 'fastMONAI/utils.py'),
|
|
64
|
+
'fastMONAI.utils.ModelTrackingCallback.__init__': ( 'utils.html#modeltrackingcallback.__init__',
|
|
65
|
+
'fastMONAI/utils.py'),
|
|
66
|
+
'fastMONAI.utils.ModelTrackingCallback._build_config': ( 'utils.html#modeltrackingcallback._build_config',
|
|
67
|
+
'fastMONAI/utils.py'),
|
|
68
|
+
'fastMONAI.utils.ModelTrackingCallback._extract_epoch_metrics': ( 'utils.html#modeltrackingcallback._extract_epoch_metrics',
|
|
69
|
+
'fastMONAI/utils.py'),
|
|
70
|
+
'fastMONAI.utils.ModelTrackingCallback._extract_training_params': ( 'utils.html#modeltrackingcallback._extract_training_params',
|
|
71
|
+
'fastMONAI/utils.py'),
|
|
72
|
+
'fastMONAI.utils.ModelTrackingCallback._register_pytorch_model': ( 'utils.html#modeltrackingcallback._register_pytorch_model',
|
|
73
|
+
'fastMONAI/utils.py'),
|
|
74
|
+
'fastMONAI.utils.ModelTrackingCallback._save_model_artifacts': ( 'utils.html#modeltrackingcallback._save_model_artifacts',
|
|
75
|
+
'fastMONAI/utils.py'),
|
|
76
|
+
'fastMONAI.utils.ModelTrackingCallback.after_epoch': ( 'utils.html#modeltrackingcallback.after_epoch',
|
|
77
|
+
'fastMONAI/utils.py'),
|
|
78
|
+
'fastMONAI.utils.ModelTrackingCallback.after_fit': ( 'utils.html#modeltrackingcallback.after_fit',
|
|
79
|
+
'fastMONAI/utils.py'),
|
|
80
|
+
'fastMONAI.utils.ModelTrackingCallback.before_fit': ( 'utils.html#modeltrackingcallback.before_fit',
|
|
81
|
+
'fastMONAI/utils.py'),
|
|
82
|
+
'fastMONAI.utils.ModelTrackingCallback.extract_all_params': ( 'utils.html#modeltrackingcallback.extract_all_params',
|
|
83
|
+
'fastMONAI/utils.py'),
|
|
84
|
+
'fastMONAI.utils.load_variables': ('utils.html#load_variables', 'fastMONAI/utils.py'),
|
|
51
85
|
'fastMONAI.utils.print_colab_gpu_info': ('utils.html#print_colab_gpu_info', 'fastMONAI/utils.py'),
|
|
52
86
|
'fastMONAI.utils.store_variables': ('utils.html#store_variables', 'fastMONAI/utils.py')},
|
|
53
87
|
'fastMONAI.vision_all': {},
|
|
@@ -138,23 +172,51 @@ d = { 'settings': { 'branch': 'master',
|
|
|
138
172
|
'fastMONAI.vision_augmentation.do_pad_or_crop': ( 'vision_augment.html#do_pad_or_crop',
|
|
139
173
|
'fastMONAI/vision_augmentation.py')},
|
|
140
174
|
'fastMONAI.vision_core': { 'fastMONAI.vision_core.MedBase': ('vision_core.html#medbase', 'fastMONAI/vision_core.py'),
|
|
175
|
+
'fastMONAI.vision_core.MedBase.__copy__': ( 'vision_core.html#medbase.__copy__',
|
|
176
|
+
'fastMONAI/vision_core.py'),
|
|
177
|
+
'fastMONAI.vision_core.MedBase.__deepcopy__': ( 'vision_core.html#medbase.__deepcopy__',
|
|
178
|
+
'fastMONAI/vision_core.py'),
|
|
179
|
+
'fastMONAI.vision_core.MedBase.__new__': ( 'vision_core.html#medbase.__new__',
|
|
180
|
+
'fastMONAI/vision_core.py'),
|
|
141
181
|
'fastMONAI.vision_core.MedBase.__repr__': ( 'vision_core.html#medbase.__repr__',
|
|
142
182
|
'fastMONAI/vision_core.py'),
|
|
143
183
|
'fastMONAI.vision_core.MedBase.create': ( 'vision_core.html#medbase.create',
|
|
144
184
|
'fastMONAI/vision_core.py'),
|
|
145
185
|
'fastMONAI.vision_core.MedBase.item_preprocessing': ( 'vision_core.html#medbase.item_preprocessing',
|
|
146
186
|
'fastMONAI/vision_core.py'),
|
|
187
|
+
'fastMONAI.vision_core.MedBase.new_empty': ( 'vision_core.html#medbase.new_empty',
|
|
188
|
+
'fastMONAI/vision_core.py'),
|
|
147
189
|
'fastMONAI.vision_core.MedBase.show': ('vision_core.html#medbase.show', 'fastMONAI/vision_core.py'),
|
|
148
190
|
'fastMONAI.vision_core.MedImage': ('vision_core.html#medimage', 'fastMONAI/vision_core.py'),
|
|
149
191
|
'fastMONAI.vision_core.MedMask': ('vision_core.html#medmask', 'fastMONAI/vision_core.py'),
|
|
150
192
|
'fastMONAI.vision_core.MetaResolver': ('vision_core.html#metaresolver', 'fastMONAI/vision_core.py'),
|
|
193
|
+
'fastMONAI.vision_core.VSCodeProgressCallback': ( 'vision_core.html#vscodeprogresscallback',
|
|
194
|
+
'fastMONAI/vision_core.py'),
|
|
195
|
+
'fastMONAI.vision_core.VSCodeProgressCallback.__init__': ( 'vision_core.html#vscodeprogresscallback.__init__',
|
|
196
|
+
'fastMONAI/vision_core.py'),
|
|
197
|
+
'fastMONAI.vision_core.VSCodeProgressCallback._detect_vscode_environment': ( 'vision_core.html#vscodeprogresscallback._detect_vscode_environment',
|
|
198
|
+
'fastMONAI/vision_core.py'),
|
|
199
|
+
'fastMONAI.vision_core.VSCodeProgressCallback.after_batch': ( 'vision_core.html#vscodeprogresscallback.after_batch',
|
|
200
|
+
'fastMONAI/vision_core.py'),
|
|
201
|
+
'fastMONAI.vision_core.VSCodeProgressCallback.after_fit': ( 'vision_core.html#vscodeprogresscallback.after_fit',
|
|
202
|
+
'fastMONAI/vision_core.py'),
|
|
203
|
+
'fastMONAI.vision_core.VSCodeProgressCallback.after_validate': ( 'vision_core.html#vscodeprogresscallback.after_validate',
|
|
204
|
+
'fastMONAI/vision_core.py'),
|
|
205
|
+
'fastMONAI.vision_core.VSCodeProgressCallback.before_epoch': ( 'vision_core.html#vscodeprogresscallback.before_epoch',
|
|
206
|
+
'fastMONAI/vision_core.py'),
|
|
207
|
+
'fastMONAI.vision_core.VSCodeProgressCallback.before_fit': ( 'vision_core.html#vscodeprogresscallback.before_fit',
|
|
208
|
+
'fastMONAI/vision_core.py'),
|
|
209
|
+
'fastMONAI.vision_core.VSCodeProgressCallback.before_validate': ( 'vision_core.html#vscodeprogresscallback.before_validate',
|
|
210
|
+
'fastMONAI/vision_core.py'),
|
|
151
211
|
'fastMONAI.vision_core._load_and_preprocess': ( 'vision_core.html#_load_and_preprocess',
|
|
152
212
|
'fastMONAI/vision_core.py'),
|
|
153
213
|
'fastMONAI.vision_core._multi_channel': ( 'vision_core.html#_multi_channel',
|
|
154
214
|
'fastMONAI/vision_core.py'),
|
|
155
215
|
'fastMONAI.vision_core._preprocess': ('vision_core.html#_preprocess', 'fastMONAI/vision_core.py'),
|
|
156
216
|
'fastMONAI.vision_core.med_img_reader': ( 'vision_core.html#med_img_reader',
|
|
157
|
-
'fastMONAI/vision_core.py')
|
|
217
|
+
'fastMONAI/vision_core.py'),
|
|
218
|
+
'fastMONAI.vision_core.setup_vscode_progress': ( 'vision_core.html#setup_vscode_progress',
|
|
219
|
+
'fastMONAI/vision_core.py')},
|
|
158
220
|
'fastMONAI.vision_data': { 'fastMONAI.vision_data.MedDataBlock': ('vision_data.html#meddatablock', 'fastMONAI/vision_data.py'),
|
|
159
221
|
'fastMONAI.vision_data.MedDataBlock.__init__': ( 'vision_data.html#meddatablock.__init__',
|
|
160
222
|
'fastMONAI/vision_data.py'),
|
|
@@ -69,12 +69,12 @@ class MedDataset:
|
|
|
69
69
|
def suggestion(self):
|
|
70
70
|
"""Voxel value that appears most often in dim_0, dim_1 and dim_2, and whether the data should be reoriented."""
|
|
71
71
|
|
|
72
|
-
resample = [self.df.voxel_0.mode()[0], self.df.voxel_1.mode()[0], self.df.voxel_2.mode()[0]]
|
|
72
|
+
resample = [float(self.df.voxel_0.mode()[0]), float(self.df.voxel_1.mode()[0]), float(self.df.voxel_2.mode()[0])]
|
|
73
73
|
return resample, self.reorder
|
|
74
74
|
|
|
75
75
|
def _get_data_info(self, fn: str):
|
|
76
76
|
"""Private method to collect information about an image file."""
|
|
77
|
-
_, o, _ = med_img_reader(fn,
|
|
77
|
+
_, o, _ = med_img_reader(fn, reorder=self.reorder, only_tensor=False, dtype=self.dtype)
|
|
78
78
|
|
|
79
79
|
info_dict = {'path': fn, 'dim_0': o.shape[1], 'dim_1': o.shape[2], 'dim_2': o.shape[3],
|
|
80
80
|
'voxel_0': round(o.spacing[0], 4), 'voxel_1': round(o.spacing[1], 4), 'voxel_2': round(o.spacing[2], 4),
|
|
@@ -98,10 +98,10 @@ class MedDataset:
|
|
|
98
98
|
|
|
99
99
|
ratio = org_voxels/resample
|
|
100
100
|
new_dims = (org_dims * ratio).T
|
|
101
|
-
dims = [new_dims[0].max().round(), new_dims[1].max().round(), new_dims[2].max().round()]
|
|
101
|
+
dims = [float(new_dims[0].max().round()), float(new_dims[1].max().round()), float(new_dims[2].max().round())]
|
|
102
102
|
|
|
103
103
|
else:
|
|
104
|
-
dims = [df.dim_0.max(), df.dim_1.max(), df.dim_2.max()]
|
|
104
|
+
dims = [float(self.df.dim_0.max()), float(self.df.dim_1.max()), float(self.df.dim_2.max())]
|
|
105
105
|
|
|
106
106
|
return dims
|
|
107
107
|
|