fast-sentence-segment 1.4.1__tar.gz → 1.4.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (33) hide show
  1. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/PKG-INFO +2 -1
  2. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/README.md +1 -0
  3. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/cli.py +43 -14
  4. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/svc/perform_sentence_segmentation.py +37 -1
  5. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/pyproject.toml +1 -1
  6. fast_sentence_segment-1.4.2/setup.py +39 -0
  7. fast_sentence_segment-1.4.1/setup.py +0 -39
  8. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/LICENSE +0 -0
  9. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/__init__.py +0 -0
  10. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/bp/__init__.py +0 -0
  11. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/bp/segmenter.py +0 -0
  12. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/core/__init__.py +0 -0
  13. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/core/base_object.py +0 -0
  14. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/core/stopwatch.py +0 -0
  15. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/dmo/__init__.py +0 -0
  16. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/dmo/abbreviation_merger.py +0 -0
  17. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/dmo/abbreviation_splitter.py +0 -0
  18. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/dmo/abbreviations.py +0 -0
  19. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/dmo/bullet_point_cleaner.py +0 -0
  20. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/dmo/dehyphenator.py +0 -0
  21. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/dmo/ellipsis_normalizer.py +0 -0
  22. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/dmo/group_quoted_sentences.py +0 -0
  23. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/dmo/newlines_to_periods.py +0 -0
  24. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/dmo/normalize_quotes.py +0 -0
  25. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/dmo/numbered_list_normalizer.py +0 -0
  26. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/dmo/post_process_sentences.py +0 -0
  27. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/dmo/question_exclamation_splitter.py +0 -0
  28. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/dmo/spacy_doc_segmenter.py +0 -0
  29. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/dmo/strip_trailing_period_after_quote.py +0 -0
  30. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/dmo/title_name_merger.py +0 -0
  31. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/dmo/unwrap_hard_wrapped_text.py +0 -0
  32. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/svc/__init__.py +0 -0
  33. {fast_sentence_segment-1.4.1 → fast_sentence_segment-1.4.2}/fast_sentence_segment/svc/perform_paragraph_segmentation.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: fast-sentence-segment
3
- Version: 1.4.1
3
+ Version: 1.4.2
4
4
  Summary: Fast and Efficient Sentence Segmentation
5
5
  Home-page: https://github.com/craigtrim/fast-sentence-segment
6
6
  License: MIT
@@ -34,6 +34,7 @@ Description-Content-Type: text/markdown
34
34
  [![PyPI version](https://img.shields.io/pypi/v/fast-sentence-segment.svg)](https://pypi.org/project/fast-sentence-segment/)
35
35
  [![Python versions](https://img.shields.io/pypi/pyversions/fast-sentence-segment.svg)](https://pypi.org/project/fast-sentence-segment/)
36
36
  [![CI](https://img.shields.io/github/actions/workflow/status/craigtrim/fast-sentence-segment/ci.yml?branch=master&label=CI)](https://github.com/craigtrim/fast-sentence-segment/actions/workflows/ci.yml)
37
+ [![Tests](https://img.shields.io/badge/tests-664-brightgreen)](https://github.com/craigtrim/fast-sentence-segment/tree/master/tests)
37
38
  [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
38
39
  [![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)
39
40
  [![Downloads](https://static.pepy.tech/badge/fast-sentence-segment)](https://pepy.tech/project/fast-sentence-segment)
@@ -3,6 +3,7 @@
3
3
  [![PyPI version](https://img.shields.io/pypi/v/fast-sentence-segment.svg)](https://pypi.org/project/fast-sentence-segment/)
4
4
  [![Python versions](https://img.shields.io/pypi/pyversions/fast-sentence-segment.svg)](https://pypi.org/project/fast-sentence-segment/)
5
5
  [![CI](https://img.shields.io/github/actions/workflow/status/craigtrim/fast-sentence-segment/ci.yml?branch=master&label=CI)](https://github.com/craigtrim/fast-sentence-segment/actions/workflows/ci.yml)
6
+ [![Tests](https://img.shields.io/badge/tests-664-brightgreen)](https://github.com/craigtrim/fast-sentence-segment/tree/master/tests)
6
7
  [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
7
8
  [![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)
8
9
  [![Downloads](https://static.pepy.tech/badge/fast-sentence-segment)](https://pepy.tech/project/fast-sentence-segment)
@@ -2,9 +2,11 @@
2
2
  """CLI for fast-sentence-segment."""
3
3
 
4
4
  import argparse
5
+ import itertools
5
6
  import logging
6
7
  import os
7
8
  import sys
9
+ import threading
8
10
  import time
9
11
 
10
12
  from fast_sentence_segment import segment_text
@@ -21,6 +23,34 @@ YELLOW = "\033[33m"
21
23
  RESET = "\033[0m"
22
24
 
23
25
 
26
+ class Spinner:
27
+ """Animated spinner for long-running operations."""
28
+
29
+ def __init__(self, message: str):
30
+ self.message = message
31
+ self.running = False
32
+ self.thread = None
33
+ self.frames = itertools.cycle(["⠋", "⠙", "⠹", "⠸", "⠼", "⠴", "⠦", "⠧", "⠇", "⠏"])
34
+
35
+ def _spin(self):
36
+ while self.running:
37
+ frame = next(self.frames)
38
+ print(f"\r {YELLOW}{frame}{RESET} {self.message}", end="", flush=True)
39
+ time.sleep(0.08)
40
+
41
+ def __enter__(self):
42
+ self.running = True
43
+ self.thread = threading.Thread(target=self._spin)
44
+ self.thread.start()
45
+ return self
46
+
47
+ def __exit__(self, *args):
48
+ self.running = False
49
+ if self.thread:
50
+ self.thread.join()
51
+ print(f"\r {' ' * (len(self.message) + 4)}\r", end="", flush=True)
52
+
53
+
24
54
  def _header(title: str):
25
55
  print(f"\n{BOLD}{CYAN}{title}{RESET}")
26
56
  print(f"{DIM}{'─' * 40}{RESET}")
@@ -117,29 +147,28 @@ def file_main():
117
147
  _param("Input", args.input_file)
118
148
  _param("Output", args.output_file)
119
149
  _param("Size", _file_size(args.input_file))
120
- if args.unwrap:
121
- _param("Unwrap", "enabled")
122
-
123
- print(f"\n {YELLOW}Segmenting...{RESET}", end="", flush=True)
150
+ _param("Unwrap", "enabled" if args.unwrap else "disabled")
151
+ _param("Normalize quotes", "disabled" if args.no_normalize_quotes else "enabled")
124
152
 
125
153
  with open(args.input_file, "r", encoding="utf-8") as f:
126
154
  text = f.read()
127
155
 
128
156
  start = time.perf_counter()
129
157
  normalize = not args.no_normalize_quotes
130
- sentences = segment_text(
131
- text.strip(), flatten=True, unwrap=args.unwrap, normalize=normalize,
132
- )
158
+ with Spinner("Segmenting text..."):
159
+ sentences = segment_text(
160
+ text.strip(), flatten=True, unwrap=args.unwrap, normalize=normalize,
161
+ )
133
162
  elapsed = time.perf_counter() - start
134
163
 
135
- with open(args.output_file, "w", encoding="utf-8") as f:
136
- if args.unwrap:
137
- f.write(format_grouped_sentences(sentences) + "\n")
138
- else:
139
- for sentence in sentences:
140
- f.write(sentence + "\n")
164
+ with Spinner("Writing output..."):
165
+ with open(args.output_file, "w", encoding="utf-8") as f:
166
+ if args.unwrap:
167
+ f.write(format_grouped_sentences(sentences) + "\n")
168
+ else:
169
+ for sentence in sentences:
170
+ f.write(sentence + "\n")
141
171
 
142
- print(f"\r {' ' * 20}\r", end="")
143
172
  _done(f"{len(sentences):,} sentences in {elapsed:.2f}s")
144
173
  _done(f"Written to {args.output_file}")
145
174
  print()
@@ -3,10 +3,46 @@
3
3
  """ Sentence Segmentation """
4
4
 
5
5
 
6
+ import subprocess
7
+ import sys
8
+
6
9
  import spacy
7
10
 
8
11
  from fast_sentence_segment.core import BaseObject
9
12
 
13
+
14
+ def _load_spacy_model(model_name: str = "en_core_web_sm"):
15
+ """Load spaCy model, auto-downloading if not found."""
16
+ # ANSI color codes
17
+ bold = "\033[1m"
18
+ cyan = "\033[36m"
19
+ green = "\033[32m"
20
+ yellow = "\033[33m"
21
+ reset = "\033[0m"
22
+
23
+ try:
24
+ return spacy.load(model_name)
25
+ except OSError:
26
+ print(f"\n{bold}{cyan}fast-sentence-segment{reset}", file=sys.stderr)
27
+ print(f"{'─' * 40}", file=sys.stderr)
28
+ print(
29
+ f" {yellow}⚠{reset} spaCy model '{model_name}' not found.",
30
+ file=sys.stderr,
31
+ )
32
+ print(f" {yellow}⏳{reset} Downloading model (one-time setup)...", file=sys.stderr)
33
+ print(file=sys.stderr)
34
+
35
+ subprocess.check_call(
36
+ [sys.executable, "-m", "spacy", "download", model_name],
37
+ )
38
+
39
+ print(file=sys.stderr)
40
+ print(f" {green}✓{reset} Model '{model_name}' installed successfully.", file=sys.stderr)
41
+ print(f" {green}✓{reset} You won't see this message again.", file=sys.stderr)
42
+ print(file=sys.stderr)
43
+
44
+ return spacy.load(model_name)
45
+
10
46
  from fast_sentence_segment.dmo import AbbreviationMerger
11
47
  from fast_sentence_segment.dmo import AbbreviationSplitter
12
48
  from fast_sentence_segment.dmo import TitleNameMerger
@@ -45,7 +81,7 @@ class PerformSentenceSegmentation(BaseObject):
45
81
  """
46
82
  BaseObject.__init__(self, __name__)
47
83
  if not self.__nlp:
48
- self.__nlp = spacy.load("en_core_web_sm")
84
+ self.__nlp = _load_spacy_model("en_core_web_sm")
49
85
 
50
86
  self._dehyphenate = Dehyphenator.process
51
87
  self._newlines_to_periods = NewlinesToPeriods.process
@@ -11,7 +11,7 @@ description = "Fast and Efficient Sentence Segmentation"
11
11
  license = "MIT"
12
12
  name = "fast-sentence-segment"
13
13
  readme = "README.md"
14
- version = "1.4.1"
14
+ version = "1.4.2"
15
15
 
16
16
  keywords = ["nlp", "text", "preprocess", "segment"]
17
17
  repository = "https://github.com/craigtrim/fast-sentence-segment"
@@ -0,0 +1,39 @@
1
+ # -*- coding: utf-8 -*-
2
+ from setuptools import setup
3
+
4
+ packages = \
5
+ ['fast_sentence_segment',
6
+ 'fast_sentence_segment.bp',
7
+ 'fast_sentence_segment.core',
8
+ 'fast_sentence_segment.dmo',
9
+ 'fast_sentence_segment.svc']
10
+
11
+ package_data = \
12
+ {'': ['*']}
13
+
14
+ install_requires = \
15
+ ['spacy>=3.8.0,<4.0.0']
16
+
17
+ entry_points = \
18
+ {'console_scripts': ['segment = fast_sentence_segment.cli:main',
19
+ 'segment-file = fast_sentence_segment.cli:file_main']}
20
+
21
+ setup_kwargs = {
22
+ 'name': 'fast-sentence-segment',
23
+ 'version': '1.4.2',
24
+ 'description': 'Fast and Efficient Sentence Segmentation',
25
+ 'long_description': '# Fast Sentence Segmentation\n\n[![PyPI version](https://img.shields.io/pypi/v/fast-sentence-segment.svg)](https://pypi.org/project/fast-sentence-segment/)\n[![Python versions](https://img.shields.io/pypi/pyversions/fast-sentence-segment.svg)](https://pypi.org/project/fast-sentence-segment/)\n[![CI](https://img.shields.io/github/actions/workflow/status/craigtrim/fast-sentence-segment/ci.yml?branch=master&label=CI)](https://github.com/craigtrim/fast-sentence-segment/actions/workflows/ci.yml)\n[![Tests](https://img.shields.io/badge/tests-664-brightgreen)](https://github.com/craigtrim/fast-sentence-segment/tree/master/tests)\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n[![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)\n[![Downloads](https://static.pepy.tech/badge/fast-sentence-segment)](https://pepy.tech/project/fast-sentence-segment)\n[![Downloads/Month](https://static.pepy.tech/badge/fast-sentence-segment/month)](https://pepy.tech/project/fast-sentence-segment)\n\nFast and efficient sentence segmentation using spaCy with surgical post-processing fixes. Handles complex edge cases like abbreviations (Dr., Mr., etc.), ellipses, quoted text, and multi-paragraph documents.\n\n## Why This Library?\n\n1. **Keep it local**: LLM API calls cost money and send your data to third parties. Run sentence segmentation entirely on your machine.\n2. **spaCy perfected**: spaCy is a great local model, but it makes mistakes. This library fixes most of spaCy\'s shortcomings.\n\n## Features\n\n- **Paragraph-aware segmentation**: Returns sentences grouped by paragraph\n- **Abbreviation handling**: Correctly handles "Dr.", "Mr.", "etc.", "p.m.", "a.m." without false splits\n- **Ellipsis preservation**: Keeps `...` intact while detecting sentence boundaries\n- **Question/exclamation splitting**: Properly splits on `?` and `!` followed by capital letters\n- **Cached processing**: LRU cache for repeated text processing\n- **Flexible output**: Nested lists (by paragraph) or flattened list of sentences\n- **Bullet point & numbered list normalization**: Cleans common list formats\n- **CLI tool**: Command-line interface for quick segmentation\n\n## Installation\n\n```bash\npip install fast-sentence-segment\n```\n\nAfter installation, download the spaCy model:\n\n```bash\npython -m spacy download en_core_web_sm\n```\n\n## Quick Start\n\n```python\nfrom fast_sentence_segment import segment_text\n\ntext = "Do you like Dr. Who? I prefer Dr. Strange! Mr. T is also cool."\n\nresults = segment_text(text, flatten=True)\n```\n\n```json\n[\n "Do you like Dr. Who?",\n "I prefer Dr. Strange!",\n "Mr. T is also cool."\n]\n```\n\nNotice how "Dr. Who?" stays together as a single sentence—the library correctly recognizes that a title followed by a single-word name ending in `?` or `!` is a name reference, not a sentence boundary.\n\n## Usage\n\n### Basic Segmentation\n\nThe `segment_text` function returns a list of lists, where each inner list represents a paragraph containing its sentences:\n\n```python\nfrom fast_sentence_segment import segment_text\n\ntext = """Gandalf spoke softly. "All we have to decide is what to do with the time given us."\n\nFrodo nodded. The weight of the Ring pressed against his chest."""\n\nresults = segment_text(text)\n```\n\n```json\n[\n [\n "Gandalf spoke softly.",\n "\\"All we have to decide is what to do with the time given us.\\"."\n ],\n [\n "Frodo nodded.",\n "The weight of the Ring pressed against his chest."\n ]\n]\n```\n\n### Flattened Output\n\nIf you don\'t need paragraph boundaries, use the `flatten` parameter:\n\n```python\ntext = "At 9 a.m. the hobbits set out. By 3 p.m. they reached Rivendell. Mr. Frodo was exhausted."\n\nresults = segment_text(text, flatten=True)\n```\n\n```json\n[\n "At 9 a.m. the hobbits set out.",\n "By 3 p.m. they reached Rivendell.",\n "Mr. Frodo was exhausted."\n]\n```\n\n### Direct Segmenter Access\n\nFor more control, use the `Segmenter` class directly:\n\n```python\nfrom fast_sentence_segment import Segmenter\n\nsegmenter = Segmenter()\nresults = segmenter.input_text("Your text here.")\n```\n\n### Command Line Interface\n\n```bash\n# Inline text\nsegment "Gandalf paused... You shall not pass! The Balrog roared."\n\n# Pipe from stdin\necho "Have you seen Dr. Who? It\'s brilliant!" | segment\n\n# Numbered output\nsegment -n -f silmarillion.txt\n\n# File-to-file (one sentence per line)\nsegment-file --input-file book.txt --output-file sentences.txt\n\n# Unwrap hard-wrapped e-texts (Project Gutenberg, etc.)\nsegment-file --input-file book.txt --output-file sentences.txt --unwrap\n```\n\n## API Reference\n\n| Function | Parameters | Returns | Description |\n|----------|------------|---------|-------------|\n| `segment_text()` | `input_text: str`, `flatten: bool = False`, `unwrap: bool = False` | `list` | Main entry point for segmentation |\n| `Segmenter.input_text()` | `input_text: str` | `list[list[str]]` | Cached paragraph-aware segmentation |\n\n### CLI Commands\n\n| Command | Description |\n|---------|-------------|\n| `segment [text]` | Segment text from argument, `-f FILE`, or stdin. Use `-n` for numbered output. |\n| `segment-file --input-file IN --output-file OUT [--unwrap]` | Segment a file and write one sentence per line. Use `--unwrap` for hard-wrapped e-texts. |\n\n## Why Nested Lists?\n\nThe segmentation process preserves document structure by segmenting into both paragraphs and sentences. Each outer list represents a paragraph, and each inner list contains that paragraph\'s sentences. This is useful for:\n\n- Document structure analysis\n- Paragraph-level processing\n- Maintaining original text organization\n\nUse `flatten=True` when you only need sentences without paragraph context.\n\n## Requirements\n\n- Python 3.9+\n- spaCy 3.8+\n- en_core_web_sm spaCy model\n\n## How It Works\n\nThis library uses spaCy for initial sentence segmentation, then applies surgical post-processing fixes for cases where spaCy\'s default behavior is incorrect:\n\n1. **Pre-processing**: Normalize numbered lists, preserve ellipses with placeholders\n2. **spaCy segmentation**: Use spaCy\'s sentence boundary detection\n3. **Post-processing**: Split on abbreviation boundaries, handle `?`/`!` + capital patterns\n4. **Denormalization**: Restore placeholders to original text\n\n## License\n\nMIT License - see [LICENSE](LICENSE) for details.\n\n## Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request.\n\n1. Fork the repository\n2. Create your feature branch (`git checkout -b feature/amazing-feature`)\n3. Run tests (`make test`)\n4. Commit your changes\n5. Push to the branch\n6. Open a Pull Request\n',
26
+ 'author': 'Craig Trim',
27
+ 'author_email': 'craigtrim@gmail.com',
28
+ 'maintainer': 'Craig Trim',
29
+ 'maintainer_email': 'craigtrim@gmail.com',
30
+ 'url': 'https://github.com/craigtrim/fast-sentence-segment',
31
+ 'packages': packages,
32
+ 'package_data': package_data,
33
+ 'install_requires': install_requires,
34
+ 'entry_points': entry_points,
35
+ 'python_requires': '>=3.9,<3.13',
36
+ }
37
+
38
+
39
+ setup(**setup_kwargs)
@@ -1,39 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- from setuptools import setup
3
-
4
- packages = \
5
- ['fast_sentence_segment',
6
- 'fast_sentence_segment.bp',
7
- 'fast_sentence_segment.core',
8
- 'fast_sentence_segment.dmo',
9
- 'fast_sentence_segment.svc']
10
-
11
- package_data = \
12
- {'': ['*']}
13
-
14
- install_requires = \
15
- ['spacy>=3.8.0,<4.0.0']
16
-
17
- entry_points = \
18
- {'console_scripts': ['segment = fast_sentence_segment.cli:main',
19
- 'segment-file = fast_sentence_segment.cli:file_main']}
20
-
21
- setup_kwargs = {
22
- 'name': 'fast-sentence-segment',
23
- 'version': '1.4.1',
24
- 'description': 'Fast and Efficient Sentence Segmentation',
25
- 'long_description': '# Fast Sentence Segmentation\n\n[![PyPI version](https://img.shields.io/pypi/v/fast-sentence-segment.svg)](https://pypi.org/project/fast-sentence-segment/)\n[![Python versions](https://img.shields.io/pypi/pyversions/fast-sentence-segment.svg)](https://pypi.org/project/fast-sentence-segment/)\n[![CI](https://img.shields.io/github/actions/workflow/status/craigtrim/fast-sentence-segment/ci.yml?branch=master&label=CI)](https://github.com/craigtrim/fast-sentence-segment/actions/workflows/ci.yml)\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n[![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)\n[![Downloads](https://static.pepy.tech/badge/fast-sentence-segment)](https://pepy.tech/project/fast-sentence-segment)\n[![Downloads/Month](https://static.pepy.tech/badge/fast-sentence-segment/month)](https://pepy.tech/project/fast-sentence-segment)\n\nFast and efficient sentence segmentation using spaCy with surgical post-processing fixes. Handles complex edge cases like abbreviations (Dr., Mr., etc.), ellipses, quoted text, and multi-paragraph documents.\n\n## Why This Library?\n\n1. **Keep it local**: LLM API calls cost money and send your data to third parties. Run sentence segmentation entirely on your machine.\n2. **spaCy perfected**: spaCy is a great local model, but it makes mistakes. This library fixes most of spaCy\'s shortcomings.\n\n## Features\n\n- **Paragraph-aware segmentation**: Returns sentences grouped by paragraph\n- **Abbreviation handling**: Correctly handles "Dr.", "Mr.", "etc.", "p.m.", "a.m." without false splits\n- **Ellipsis preservation**: Keeps `...` intact while detecting sentence boundaries\n- **Question/exclamation splitting**: Properly splits on `?` and `!` followed by capital letters\n- **Cached processing**: LRU cache for repeated text processing\n- **Flexible output**: Nested lists (by paragraph) or flattened list of sentences\n- **Bullet point & numbered list normalization**: Cleans common list formats\n- **CLI tool**: Command-line interface for quick segmentation\n\n## Installation\n\n```bash\npip install fast-sentence-segment\n```\n\nAfter installation, download the spaCy model:\n\n```bash\npython -m spacy download en_core_web_sm\n```\n\n## Quick Start\n\n```python\nfrom fast_sentence_segment import segment_text\n\ntext = "Do you like Dr. Who? I prefer Dr. Strange! Mr. T is also cool."\n\nresults = segment_text(text, flatten=True)\n```\n\n```json\n[\n "Do you like Dr. Who?",\n "I prefer Dr. Strange!",\n "Mr. T is also cool."\n]\n```\n\nNotice how "Dr. Who?" stays together as a single sentence—the library correctly recognizes that a title followed by a single-word name ending in `?` or `!` is a name reference, not a sentence boundary.\n\n## Usage\n\n### Basic Segmentation\n\nThe `segment_text` function returns a list of lists, where each inner list represents a paragraph containing its sentences:\n\n```python\nfrom fast_sentence_segment import segment_text\n\ntext = """Gandalf spoke softly. "All we have to decide is what to do with the time given us."\n\nFrodo nodded. The weight of the Ring pressed against his chest."""\n\nresults = segment_text(text)\n```\n\n```json\n[\n [\n "Gandalf spoke softly.",\n "\\"All we have to decide is what to do with the time given us.\\"."\n ],\n [\n "Frodo nodded.",\n "The weight of the Ring pressed against his chest."\n ]\n]\n```\n\n### Flattened Output\n\nIf you don\'t need paragraph boundaries, use the `flatten` parameter:\n\n```python\ntext = "At 9 a.m. the hobbits set out. By 3 p.m. they reached Rivendell. Mr. Frodo was exhausted."\n\nresults = segment_text(text, flatten=True)\n```\n\n```json\n[\n "At 9 a.m. the hobbits set out.",\n "By 3 p.m. they reached Rivendell.",\n "Mr. Frodo was exhausted."\n]\n```\n\n### Direct Segmenter Access\n\nFor more control, use the `Segmenter` class directly:\n\n```python\nfrom fast_sentence_segment import Segmenter\n\nsegmenter = Segmenter()\nresults = segmenter.input_text("Your text here.")\n```\n\n### Command Line Interface\n\n```bash\n# Inline text\nsegment "Gandalf paused... You shall not pass! The Balrog roared."\n\n# Pipe from stdin\necho "Have you seen Dr. Who? It\'s brilliant!" | segment\n\n# Numbered output\nsegment -n -f silmarillion.txt\n\n# File-to-file (one sentence per line)\nsegment-file --input-file book.txt --output-file sentences.txt\n\n# Unwrap hard-wrapped e-texts (Project Gutenberg, etc.)\nsegment-file --input-file book.txt --output-file sentences.txt --unwrap\n```\n\n## API Reference\n\n| Function | Parameters | Returns | Description |\n|----------|------------|---------|-------------|\n| `segment_text()` | `input_text: str`, `flatten: bool = False`, `unwrap: bool = False` | `list` | Main entry point for segmentation |\n| `Segmenter.input_text()` | `input_text: str` | `list[list[str]]` | Cached paragraph-aware segmentation |\n\n### CLI Commands\n\n| Command | Description |\n|---------|-------------|\n| `segment [text]` | Segment text from argument, `-f FILE`, or stdin. Use `-n` for numbered output. |\n| `segment-file --input-file IN --output-file OUT [--unwrap]` | Segment a file and write one sentence per line. Use `--unwrap` for hard-wrapped e-texts. |\n\n## Why Nested Lists?\n\nThe segmentation process preserves document structure by segmenting into both paragraphs and sentences. Each outer list represents a paragraph, and each inner list contains that paragraph\'s sentences. This is useful for:\n\n- Document structure analysis\n- Paragraph-level processing\n- Maintaining original text organization\n\nUse `flatten=True` when you only need sentences without paragraph context.\n\n## Requirements\n\n- Python 3.9+\n- spaCy 3.8+\n- en_core_web_sm spaCy model\n\n## How It Works\n\nThis library uses spaCy for initial sentence segmentation, then applies surgical post-processing fixes for cases where spaCy\'s default behavior is incorrect:\n\n1. **Pre-processing**: Normalize numbered lists, preserve ellipses with placeholders\n2. **spaCy segmentation**: Use spaCy\'s sentence boundary detection\n3. **Post-processing**: Split on abbreviation boundaries, handle `?`/`!` + capital patterns\n4. **Denormalization**: Restore placeholders to original text\n\n## License\n\nMIT License - see [LICENSE](LICENSE) for details.\n\n## Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request.\n\n1. Fork the repository\n2. Create your feature branch (`git checkout -b feature/amazing-feature`)\n3. Run tests (`make test`)\n4. Commit your changes\n5. Push to the branch\n6. Open a Pull Request\n',
26
- 'author': 'Craig Trim',
27
- 'author_email': 'craigtrim@gmail.com',
28
- 'maintainer': 'Craig Trim',
29
- 'maintainer_email': 'craigtrim@gmail.com',
30
- 'url': 'https://github.com/craigtrim/fast-sentence-segment',
31
- 'packages': packages,
32
- 'package_data': package_data,
33
- 'install_requires': install_requires,
34
- 'entry_points': entry_points,
35
- 'python_requires': '>=3.9,<3.13',
36
- }
37
-
38
-
39
- setup(**setup_kwargs)