fast-sentence-segment 1.2.1__tar.gz → 1.3.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (34) hide show
  1. {fast_sentence_segment-1.2.1 → fast_sentence_segment-1.3.0}/PKG-INFO +27 -33
  2. {fast_sentence_segment-1.2.1 → fast_sentence_segment-1.3.0}/README.md +17 -27
  3. fast_sentence_segment-1.3.0/fast_sentence_segment/__init__.py +51 -0
  4. fast_sentence_segment-1.3.0/fast_sentence_segment/cli.py +144 -0
  5. {fast_sentence_segment-1.2.1 → fast_sentence_segment-1.3.0}/fast_sentence_segment/dmo/__init__.py +4 -0
  6. {fast_sentence_segment-1.2.1 → fast_sentence_segment-1.3.0}/fast_sentence_segment/dmo/abbreviations.py +55 -2
  7. fast_sentence_segment-1.3.0/fast_sentence_segment/dmo/group_quoted_sentences.py +141 -0
  8. fast_sentence_segment-1.3.0/fast_sentence_segment/dmo/normalize_quotes.py +80 -0
  9. {fast_sentence_segment-1.2.1 → fast_sentence_segment-1.3.0}/fast_sentence_segment/dmo/spacy_doc_segmenter.py +24 -11
  10. fast_sentence_segment-1.3.0/fast_sentence_segment/dmo/strip_trailing_period_after_quote.py +70 -0
  11. fast_sentence_segment-1.3.0/fast_sentence_segment/dmo/unwrap_hard_wrapped_text.py +34 -0
  12. {fast_sentence_segment-1.2.1 → fast_sentence_segment-1.3.0}/fast_sentence_segment/svc/perform_sentence_segmentation.py +5 -0
  13. {fast_sentence_segment-1.2.1 → fast_sentence_segment-1.3.0}/pyproject.toml +15 -2
  14. fast_sentence_segment-1.3.0/setup.py +39 -0
  15. fast_sentence_segment-1.2.1/fast_sentence_segment/__init__.py +0 -18
  16. fast_sentence_segment-1.2.1/fast_sentence_segment/cli.py +0 -56
  17. fast_sentence_segment-1.2.1/setup.py +0 -38
  18. {fast_sentence_segment-1.2.1 → fast_sentence_segment-1.3.0}/LICENSE +0 -0
  19. {fast_sentence_segment-1.2.1 → fast_sentence_segment-1.3.0}/fast_sentence_segment/bp/__init__.py +0 -0
  20. {fast_sentence_segment-1.2.1 → fast_sentence_segment-1.3.0}/fast_sentence_segment/bp/segmenter.py +0 -0
  21. {fast_sentence_segment-1.2.1 → fast_sentence_segment-1.3.0}/fast_sentence_segment/core/__init__.py +0 -0
  22. {fast_sentence_segment-1.2.1 → fast_sentence_segment-1.3.0}/fast_sentence_segment/core/base_object.py +0 -0
  23. {fast_sentence_segment-1.2.1 → fast_sentence_segment-1.3.0}/fast_sentence_segment/core/stopwatch.py +0 -0
  24. {fast_sentence_segment-1.2.1 → fast_sentence_segment-1.3.0}/fast_sentence_segment/dmo/abbreviation_merger.py +0 -0
  25. {fast_sentence_segment-1.2.1 → fast_sentence_segment-1.3.0}/fast_sentence_segment/dmo/abbreviation_splitter.py +0 -0
  26. {fast_sentence_segment-1.2.1 → fast_sentence_segment-1.3.0}/fast_sentence_segment/dmo/bullet_point_cleaner.py +0 -0
  27. {fast_sentence_segment-1.2.1 → fast_sentence_segment-1.3.0}/fast_sentence_segment/dmo/ellipsis_normalizer.py +0 -0
  28. {fast_sentence_segment-1.2.1 → fast_sentence_segment-1.3.0}/fast_sentence_segment/dmo/newlines_to_periods.py +0 -0
  29. {fast_sentence_segment-1.2.1 → fast_sentence_segment-1.3.0}/fast_sentence_segment/dmo/numbered_list_normalizer.py +0 -0
  30. {fast_sentence_segment-1.2.1 → fast_sentence_segment-1.3.0}/fast_sentence_segment/dmo/post_process_sentences.py +0 -0
  31. {fast_sentence_segment-1.2.1 → fast_sentence_segment-1.3.0}/fast_sentence_segment/dmo/question_exclamation_splitter.py +0 -0
  32. {fast_sentence_segment-1.2.1 → fast_sentence_segment-1.3.0}/fast_sentence_segment/dmo/title_name_merger.py +0 -0
  33. {fast_sentence_segment-1.2.1 → fast_sentence_segment-1.3.0}/fast_sentence_segment/svc/__init__.py +0 -0
  34. {fast_sentence_segment-1.2.1 → fast_sentence_segment-1.3.0}/fast_sentence_segment/svc/perform_paragraph_segmentation.py +0 -0
@@ -1,25 +1,29 @@
1
- Metadata-Version: 2.4
1
+ Metadata-Version: 2.1
2
2
  Name: fast-sentence-segment
3
- Version: 1.2.1
3
+ Version: 1.3.0
4
4
  Summary: Fast and Efficient Sentence Segmentation
5
+ Home-page: https://github.com/craigtrim/fast-sentence-segment
5
6
  License: MIT
6
- License-File: LICENSE
7
7
  Keywords: nlp,text,preprocess,segment
8
8
  Author: Craig Trim
9
9
  Author-email: craigtrim@gmail.com
10
10
  Maintainer: Craig Trim
11
11
  Maintainer-email: craigtrim@gmail.com
12
12
  Requires-Python: >=3.9,<4.0
13
- Classifier: Development Status :: 4 - Beta
13
+ Classifier: Development Status :: 5 - Production/Stable
14
+ Classifier: Intended Audience :: Developers
15
+ Classifier: Intended Audience :: Science/Research
14
16
  Classifier: License :: OSI Approved :: MIT License
17
+ Classifier: Operating System :: OS Independent
15
18
  Classifier: Programming Language :: Python :: 3
16
19
  Classifier: Programming Language :: Python :: 3.9
17
20
  Classifier: Programming Language :: Python :: 3.10
18
21
  Classifier: Programming Language :: Python :: 3.11
19
22
  Classifier: Programming Language :: Python :: 3.12
20
- Classifier: Programming Language :: Python :: 3.13
21
- Classifier: Programming Language :: Python :: 3.14
23
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
22
24
  Classifier: Topic :: Software Development :: Libraries :: Python Modules
25
+ Classifier: Topic :: Text Processing :: Linguistic
26
+ Classifier: Typing :: Typed
23
27
  Requires-Dist: spacy (>=3.8.0,<4.0.0)
24
28
  Project-URL: Bug Tracker, https://github.com/craigtrim/fast-sentence-segment/issues
25
29
  Project-URL: Repository, https://github.com/craigtrim/fast-sentence-segment
@@ -31,6 +35,8 @@ Description-Content-Type: text/markdown
31
35
  [![Python versions](https://img.shields.io/pypi/pyversions/fast-sentence-segment.svg)](https://pypi.org/project/fast-sentence-segment/)
32
36
  [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
33
37
  [![spaCy](https://img.shields.io/badge/spaCy-3.8-blue.svg)](https://spacy.io/)
38
+ [![Downloads](https://static.pepy.tech/badge/fast-sentence-segment)](https://pepy.tech/project/fast-sentence-segment)
39
+ [![Downloads/Month](https://static.pepy.tech/badge/fast-sentence-segment/month)](https://pepy.tech/project/fast-sentence-segment)
34
40
 
35
41
  Fast and efficient sentence segmentation using spaCy with surgical post-processing fixes. Handles complex edge cases like abbreviations (Dr., Mr., etc.), ellipses, quoted text, and multi-paragraph documents.
36
42
 
@@ -142,48 +148,36 @@ results = segmenter.input_text("Your text here.")
142
148
 
143
149
  ### Command Line Interface
144
150
 
145
- Segment text directly from the terminal:
146
-
147
151
  ```bash
148
- # Direct text input
149
- echo "Have you seen Dr. Who? It's brilliant!" | segment
150
- ```
152
+ # Inline text
153
+ segment "Gandalf paused... You shall not pass! The Balrog roared."
151
154
 
152
- ```
153
- Have you seen Dr. Who?
154
- It's brilliant!
155
- ```
155
+ # Pipe from stdin
156
+ echo "Have you seen Dr. Who? It's brilliant!" | segment
156
157
 
157
- ```bash
158
158
  # Numbered output
159
- segment -n "Gandalf paused... You shall not pass! The Balrog roared."
160
- ```
159
+ segment -n -f silmarillion.txt
161
160
 
162
- ```
163
- 1. Gandalf paused...
164
- 2. You shall not pass!
165
- 3. The Balrog roared.
166
- ```
161
+ # File-to-file (one sentence per line)
162
+ segment-file --input-file book.txt --output-file sentences.txt
167
163
 
168
- ```bash
169
- # From file
170
- segment -f silmarillion.txt
164
+ # Unwrap hard-wrapped e-texts (Project Gutenberg, etc.)
165
+ segment-file --input-file book.txt --output-file sentences.txt --unwrap
171
166
  ```
172
167
 
173
168
  ## API Reference
174
169
 
175
170
  | Function | Parameters | Returns | Description |
176
171
  |----------|------------|---------|-------------|
177
- | `segment_text()` | `input_text: str`, `flatten: bool = False` | `list` | Main entry point for segmentation |
172
+ | `segment_text()` | `input_text: str`, `flatten: bool = False`, `unwrap: bool = False` | `list` | Main entry point for segmentation |
178
173
  | `Segmenter.input_text()` | `input_text: str` | `list[list[str]]` | Cached paragraph-aware segmentation |
179
174
 
180
- ### CLI Options
175
+ ### CLI Commands
181
176
 
182
- | Option | Description |
183
- |--------|-------------|
184
- | `text` | Text to segment (positional argument) |
185
- | `-f, --file` | Read text from file |
186
- | `-n, --numbered` | Number output lines |
177
+ | Command | Description |
178
+ |---------|-------------|
179
+ | `segment [text]` | Segment text from argument, `-f FILE`, or stdin. Use `-n` for numbered output. |
180
+ | `segment-file --input-file IN --output-file OUT [--unwrap]` | Segment a file and write one sentence per line. Use `--unwrap` for hard-wrapped e-texts. |
187
181
 
188
182
  ## Why Nested Lists?
189
183
 
@@ -4,6 +4,8 @@
4
4
  [![Python versions](https://img.shields.io/pypi/pyversions/fast-sentence-segment.svg)](https://pypi.org/project/fast-sentence-segment/)
5
5
  [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
6
6
  [![spaCy](https://img.shields.io/badge/spaCy-3.8-blue.svg)](https://spacy.io/)
7
+ [![Downloads](https://static.pepy.tech/badge/fast-sentence-segment)](https://pepy.tech/project/fast-sentence-segment)
8
+ [![Downloads/Month](https://static.pepy.tech/badge/fast-sentence-segment/month)](https://pepy.tech/project/fast-sentence-segment)
7
9
 
8
10
  Fast and efficient sentence segmentation using spaCy with surgical post-processing fixes. Handles complex edge cases like abbreviations (Dr., Mr., etc.), ellipses, quoted text, and multi-paragraph documents.
9
11
 
@@ -115,48 +117,36 @@ results = segmenter.input_text("Your text here.")
115
117
 
116
118
  ### Command Line Interface
117
119
 
118
- Segment text directly from the terminal:
119
-
120
120
  ```bash
121
- # Direct text input
122
- echo "Have you seen Dr. Who? It's brilliant!" | segment
123
- ```
121
+ # Inline text
122
+ segment "Gandalf paused... You shall not pass! The Balrog roared."
124
123
 
125
- ```
126
- Have you seen Dr. Who?
127
- It's brilliant!
128
- ```
124
+ # Pipe from stdin
125
+ echo "Have you seen Dr. Who? It's brilliant!" | segment
129
126
 
130
- ```bash
131
127
  # Numbered output
132
- segment -n "Gandalf paused... You shall not pass! The Balrog roared."
133
- ```
128
+ segment -n -f silmarillion.txt
134
129
 
135
- ```
136
- 1. Gandalf paused...
137
- 2. You shall not pass!
138
- 3. The Balrog roared.
139
- ```
130
+ # File-to-file (one sentence per line)
131
+ segment-file --input-file book.txt --output-file sentences.txt
140
132
 
141
- ```bash
142
- # From file
143
- segment -f silmarillion.txt
133
+ # Unwrap hard-wrapped e-texts (Project Gutenberg, etc.)
134
+ segment-file --input-file book.txt --output-file sentences.txt --unwrap
144
135
  ```
145
136
 
146
137
  ## API Reference
147
138
 
148
139
  | Function | Parameters | Returns | Description |
149
140
  |----------|------------|---------|-------------|
150
- | `segment_text()` | `input_text: str`, `flatten: bool = False` | `list` | Main entry point for segmentation |
141
+ | `segment_text()` | `input_text: str`, `flatten: bool = False`, `unwrap: bool = False` | `list` | Main entry point for segmentation |
151
142
  | `Segmenter.input_text()` | `input_text: str` | `list[list[str]]` | Cached paragraph-aware segmentation |
152
143
 
153
- ### CLI Options
144
+ ### CLI Commands
154
145
 
155
- | Option | Description |
156
- |--------|-------------|
157
- | `text` | Text to segment (positional argument) |
158
- | `-f, --file` | Read text from file |
159
- | `-n, --numbered` | Number output lines |
146
+ | Command | Description |
147
+ |---------|-------------|
148
+ | `segment [text]` | Segment text from argument, `-f FILE`, or stdin. Use `-n` for numbered output. |
149
+ | `segment-file --input-file IN --output-file OUT [--unwrap]` | Segment a file and write one sentence per line. Use `--unwrap` for hard-wrapped e-texts. |
160
150
 
161
151
  ## Why Nested Lists?
162
152
 
@@ -0,0 +1,51 @@
1
+ from .bp import *
2
+ from .svc import *
3
+ from .dmo import *
4
+
5
+ from .bp.segmenter import Segmenter
6
+ from .dmo.unwrap_hard_wrapped_text import unwrap_hard_wrapped_text
7
+ from .dmo.normalize_quotes import normalize_quotes
8
+
9
+ segment = Segmenter().input_text
10
+
11
+
12
+ def segment_text(
13
+ input_text: str,
14
+ flatten: bool = False,
15
+ unwrap: bool = False,
16
+ normalize: bool = True,
17
+ ) -> list:
18
+ """Segment text into sentences.
19
+
20
+ Args:
21
+ input_text: The text to segment.
22
+ flatten: If True, return a flat list of sentences instead of
23
+ nested paragraphs.
24
+ unwrap: If True, unwrap hard-wrapped lines (e.g., Project
25
+ Gutenberg e-texts) before segmenting.
26
+ normalize: If True (default), normalize unicode quote variants
27
+ to ASCII equivalents before segmenting. Ensures consistent
28
+ quote characters for downstream processing.
29
+
30
+ Returns:
31
+ List of sentences (if flatten=True) or list of paragraph
32
+ groups, each containing a list of sentences.
33
+
34
+ Related GitHub Issue:
35
+ #6 - Review findings from Issue #5
36
+ https://github.com/craigtrim/fast-sentence-segment/issues/6
37
+ """
38
+ if unwrap:
39
+ input_text = unwrap_hard_wrapped_text(input_text)
40
+
41
+ if normalize:
42
+ input_text = normalize_quotes(input_text)
43
+
44
+ results = segment(input_text)
45
+
46
+ if flatten:
47
+ flat = []
48
+ [[flat.append(y) for y in x] for x in results]
49
+ return flat
50
+
51
+ return results
@@ -0,0 +1,144 @@
1
+ # -*- coding: UTF-8 -*-
2
+ """CLI for fast-sentence-segment."""
3
+
4
+ import argparse
5
+ import logging
6
+ import os
7
+ import sys
8
+ import time
9
+
10
+ from fast_sentence_segment import segment_text
11
+ from fast_sentence_segment.dmo.group_quoted_sentences import format_grouped_sentences
12
+
13
+ logging.disable(logging.CRITICAL)
14
+
15
+ # ANSI color codes
16
+ BOLD = "\033[1m"
17
+ DIM = "\033[2m"
18
+ CYAN = "\033[36m"
19
+ GREEN = "\033[32m"
20
+ YELLOW = "\033[33m"
21
+ RESET = "\033[0m"
22
+
23
+
24
+ def _header(title: str):
25
+ print(f"\n{BOLD}{CYAN}{title}{RESET}")
26
+ print(f"{DIM}{'─' * 40}{RESET}")
27
+
28
+
29
+ def _param(label: str, value: str):
30
+ print(f" {DIM}{label}:{RESET} {value}")
31
+
32
+
33
+ def _done(msg: str):
34
+ print(f"\n {GREEN}✓{RESET} {msg}")
35
+
36
+
37
+ def _file_size(path: str) -> str:
38
+ size = os.path.getsize(path)
39
+ if size < 1024:
40
+ return f"{size} B"
41
+ elif size < 1024 * 1024:
42
+ return f"{size / 1024:.1f} KB"
43
+ return f"{size / (1024 * 1024):.1f} MB"
44
+
45
+
46
+ def main():
47
+ parser = argparse.ArgumentParser(
48
+ prog="segment",
49
+ description="Segment text into sentences",
50
+ )
51
+ parser.add_argument(
52
+ "text",
53
+ nargs="?",
54
+ help="Text to segment (or use stdin)",
55
+ )
56
+ parser.add_argument(
57
+ "-f", "--file",
58
+ help="Read text from file",
59
+ )
60
+ parser.add_argument(
61
+ "-n", "--numbered",
62
+ action="store_true",
63
+ help="Number output lines",
64
+ )
65
+ args = parser.parse_args()
66
+
67
+ # Get input text
68
+ if args.file:
69
+ with open(args.file, "r", encoding="utf-8") as f:
70
+ text = f.read()
71
+ elif args.text:
72
+ text = args.text
73
+ elif not sys.stdin.isatty():
74
+ text = sys.stdin.read()
75
+ else:
76
+ parser.print_help()
77
+ sys.exit(1)
78
+
79
+ # Segment and output
80
+ sentences = segment_text(text.strip(), flatten=True)
81
+ for i, sentence in enumerate(sentences, 1):
82
+ if args.numbered:
83
+ print(f"{i}. {sentence}")
84
+ else:
85
+ print(sentence)
86
+
87
+
88
+ def file_main():
89
+ parser = argparse.ArgumentParser(
90
+ prog="segment-file",
91
+ description="Segment a text file into sentences and write to an output file",
92
+ )
93
+ parser.add_argument(
94
+ "--input-file", required=True,
95
+ help="Path to input text file",
96
+ )
97
+ parser.add_argument(
98
+ "--output-file", required=True,
99
+ help="Path to output file",
100
+ )
101
+ parser.add_argument(
102
+ "--unwrap", action="store_true",
103
+ help="Unwrap hard-wrapped lines (e.g., Project Gutenberg e-texts)",
104
+ )
105
+ parser.add_argument(
106
+ "--no-normalize-quotes", action="store_true",
107
+ help="Disable unicode quote normalization to ASCII equivalents",
108
+ )
109
+ args = parser.parse_args()
110
+
111
+ _header("segment-file")
112
+ _param("Input", args.input_file)
113
+ _param("Output", args.output_file)
114
+ _param("Size", _file_size(args.input_file))
115
+ if args.unwrap:
116
+ _param("Unwrap", "enabled")
117
+
118
+ print(f"\n {YELLOW}Segmenting...{RESET}", end="", flush=True)
119
+
120
+ with open(args.input_file, "r", encoding="utf-8") as f:
121
+ text = f.read()
122
+
123
+ start = time.perf_counter()
124
+ normalize = not args.no_normalize_quotes
125
+ sentences = segment_text(
126
+ text.strip(), flatten=True, unwrap=args.unwrap, normalize=normalize,
127
+ )
128
+ elapsed = time.perf_counter() - start
129
+
130
+ with open(args.output_file, "w", encoding="utf-8") as f:
131
+ if args.unwrap:
132
+ f.write(format_grouped_sentences(sentences) + "\n")
133
+ else:
134
+ for sentence in sentences:
135
+ f.write(sentence + "\n")
136
+
137
+ print(f"\r {' ' * 20}\r", end="")
138
+ _done(f"{len(sentences):,} sentences in {elapsed:.2f}s")
139
+ _done(f"Written to {args.output_file}")
140
+ print()
141
+
142
+
143
+ if __name__ == "__main__":
144
+ main()
@@ -8,3 +8,7 @@ from .post_process_sentences import PostProcessStructure
8
8
  from .question_exclamation_splitter import QuestionExclamationSplitter
9
9
  from .spacy_doc_segmenter import SpacyDocSegmenter
10
10
  from .numbered_list_normalizer import NumberedListNormalizer
11
+ from .unwrap_hard_wrapped_text import unwrap_hard_wrapped_text
12
+ from .normalize_quotes import normalize_quotes
13
+ from .group_quoted_sentences import group_quoted_sentences, format_grouped_sentences
14
+ from .strip_trailing_period_after_quote import StripTrailingPeriodAfterQuote
@@ -20,6 +20,8 @@ SENTENCE_ENDING_ABBREVIATIONS: List[str] = [
20
20
  # Common sentence-enders
21
21
  "etc.",
22
22
  "ext.",
23
+ "approx.",
24
+ "dept.",
23
25
 
24
26
  # Academic degrees (when at end of sentence)
25
27
  "Ph.D.",
@@ -32,6 +34,9 @@ SENTENCE_ENDING_ABBREVIATIONS: List[str] = [
32
34
  "J.D.",
33
35
  "D.D.S.",
34
36
  "R.N.",
37
+ "M.B.A.",
38
+ "LL.B.",
39
+ "LL.M.",
35
40
 
36
41
  # Business (when at end of sentence)
37
42
  "Inc.",
@@ -39,6 +44,14 @@ SENTENCE_ENDING_ABBREVIATIONS: List[str] = [
39
44
  "Ltd.",
40
45
  "Co.",
41
46
  "Bros.",
47
+ "LLC.",
48
+ "LLP.",
49
+
50
+ # Academic/legal citations (can end sentences)
51
+ "ibid.",
52
+ "Ibid.",
53
+ "cf.",
54
+ "Cf.",
42
55
 
43
56
  # Countries/Regions (when at end of sentence)
44
57
  "U.S.",
@@ -62,23 +75,59 @@ TITLE_ABBREVIATIONS: List[str] = [
62
75
  "Sr.",
63
76
  "Jr.",
64
77
  "Rev.",
78
+ "Hon.",
79
+ "Esq.",
80
+
81
+ # French/formal titles (common in translated literature)
82
+ "Mme.",
83
+ "Mlle.",
84
+ "Messrs.",
85
+
86
+ # Military ranks
65
87
  "Gen.",
66
88
  "Col.",
67
89
  "Capt.",
68
90
  "Lt.",
69
91
  "Sgt.",
92
+ "Maj.",
93
+ "Cpl.",
94
+ "Pvt.",
95
+ "Adm.",
96
+ "Cmdr.",
97
+
98
+ # Political titles
70
99
  "Rep.",
71
100
  "Sen.",
72
101
  "Gov.",
73
102
  "Pres.",
74
- "Hon.",
103
+
104
+ # Ecclesiastical titles
105
+ "Fr.",
106
+ "Msgr.",
75
107
 
76
108
  # Geographic prefixes
77
109
  "St.",
78
110
  "Mt.",
79
111
  "Ft.",
112
+ "Ave.",
113
+ "Blvd.",
114
+ "Rd.",
80
115
 
81
- # Other prefixes
116
+ # Latin terms (never end sentences -- always introduce clauses)
117
+ # Include common inconsistent forms: with/without internal periods,
118
+ # and with trailing comma (the most common real-world form)
119
+ "i.e.",
120
+ "i.e.,",
121
+ "ie.",
122
+ "ie.,",
123
+ "e.g.",
124
+ "e.g.,",
125
+ "eg.",
126
+ "eg.,",
127
+ "viz.",
128
+ "viz.,",
129
+
130
+ # Reference/numbering prefixes
82
131
  "Fig.",
83
132
  "fig.",
84
133
  "Sec.",
@@ -93,4 +142,8 @@ TITLE_ABBREVIATIONS: List[str] = [
93
142
  "no.",
94
143
  "Pt.",
95
144
  "pt.",
145
+
146
+ # Legal / adversarial
147
+ "vs.",
148
+ "Vs.",
96
149
  ]
@@ -0,0 +1,141 @@
1
+ # -*- coding: UTF-8 -*-
2
+ """Group sentences that belong to the same open-quote span.
3
+
4
+ When outputting segmented text with blank-line separators, sentences
5
+ that open with a double quote but do not close it should be grouped
6
+ with subsequent sentences (no blank line between them) until the
7
+ closing quote is found.
8
+
9
+ Related GitHub Issues:
10
+ #5 - Normalize quotes and group open-quote sentences in unwrap mode
11
+ https://github.com/craigtrim/fast-sentence-segment/issues/5
12
+
13
+ #6 - Review findings from Issue #5
14
+ https://github.com/craigtrim/fast-sentence-segment/issues/6
15
+ """
16
+
17
+ from typing import List
18
+
19
+ # Maximum number of sentences that can be grouped under a single
20
+ # open-quote span before the quote state is forcibly reset. This
21
+ # bounds the damage from a stray quote character (e.g., OCR artifact)
22
+ # which would otherwise corrupt grouping for all subsequent sentences.
23
+ #
24
+ # A typical quoted passage in literature rarely exceeds 20 sentences.
25
+ # This limit is deliberately generous to avoid false resets on
26
+ # legitimately long quoted passages while still preventing runaway
27
+ # grouping on malformed input.
28
+ MAX_QUOTE_GROUP_SIZE = 20
29
+
30
+
31
+ def group_quoted_sentences(sentences: List[str]) -> List[List[str]]:
32
+ """Group sentences into blocks based on open/close quote tracking.
33
+
34
+ Sentences within an unclosed double-quote span are grouped together
35
+ into the same block. Sentences outside of a quote span each form
36
+ their own block.
37
+
38
+ When rendered, each block is joined by newlines, and blocks are
39
+ separated by blank lines (double newlines).
40
+
41
+ The algorithm tracks the quote state by counting ASCII double quote
42
+ characters in each sentence. An odd count toggles the open/close
43
+ state. When a quote is open, subsequent sentences are appended to
44
+ the current group rather than starting a new one.
45
+
46
+ A safety limit (MAX_QUOTE_GROUP_SIZE) prevents a stray or malformed
47
+ quote from swallowing all remaining sentences into one group. When
48
+ the limit is reached, the current group is flushed and the quote
49
+ state is reset. This bounds corruption from OCR artifacts or
50
+ encoding errors to a bounded window rather than the entire document.
51
+
52
+ Args:
53
+ sentences: Flat list of segmented sentences.
54
+
55
+ Returns:
56
+ List of sentence groups. Each group is a list of sentences
57
+ that should be rendered together without blank-line separators.
58
+
59
+ Example:
60
+ >>> groups = group_quoted_sentences([
61
+ ... '"The probability lies in that direction.',
62
+ ... 'And if we take this as a working hypothesis."',
63
+ ... 'He paused.',
64
+ ... ])
65
+ >>> groups
66
+ [['"The probability lies in that direction.',
67
+ 'And if we take this as a working hypothesis."'],
68
+ ['He paused.']]
69
+
70
+ Related GitHub Issues:
71
+ #5 - Normalize quotes and group open-quote sentences in unwrap mode
72
+ https://github.com/craigtrim/fast-sentence-segment/issues/5
73
+
74
+ #6 - Review findings from Issue #5
75
+ https://github.com/craigtrim/fast-sentence-segment/issues/6
76
+ """
77
+ if not sentences:
78
+ return []
79
+
80
+ groups: List[List[str]] = []
81
+ current_group: List[str] = []
82
+ quote_open = False
83
+
84
+ for sentence in sentences:
85
+ quote_count = sentence.count('"')
86
+
87
+ if not quote_open:
88
+ # Starting a new group
89
+ if current_group:
90
+ groups.append(current_group)
91
+ current_group = [sentence]
92
+ else:
93
+ # Inside an open quote span -- append to current group
94
+ current_group.append(sentence)
95
+
96
+ # Toggle quote state on odd quote count
97
+ if quote_count % 2 == 1:
98
+ quote_open = not quote_open
99
+
100
+ # Safety: if a group grows beyond the limit, the quote is
101
+ # likely corrupted (stray quote character). Flush the group
102
+ # and reset state to prevent runaway grouping.
103
+ if quote_open and len(current_group) >= MAX_QUOTE_GROUP_SIZE:
104
+ groups.append(current_group)
105
+ current_group = []
106
+ quote_open = False
107
+
108
+ # Flush the final group
109
+ if current_group:
110
+ groups.append(current_group)
111
+
112
+ return groups
113
+
114
+
115
+ def format_grouped_sentences(sentences: List[str]) -> str:
116
+ """Format sentences with quote-aware blank-line separation.
117
+
118
+ Sentences within the same quoted span are separated by single
119
+ newlines. Sentence groups are separated by blank lines (double
120
+ newlines).
121
+
122
+ Args:
123
+ sentences: Flat list of segmented sentences.
124
+
125
+ Returns:
126
+ Formatted string with appropriate line separation.
127
+
128
+ Example:
129
+ >>> text = format_grouped_sentences([
130
+ ... '"The probability lies in that direction.',
131
+ ... 'And if we take this as a working hypothesis."',
132
+ ... 'He paused.',
133
+ ... ])
134
+ >>> print(text)
135
+ "The probability lies in that direction.
136
+ And if we take this as a working hypothesis."
137
+ <BLANKLINE>
138
+ He paused.
139
+ """
140
+ groups = group_quoted_sentences(sentences)
141
+ return '\n\n'.join('\n'.join(group) for group in groups)
@@ -0,0 +1,80 @@
1
+ # -*- coding: UTF-8 -*-
2
+ """Normalize unicode quote variants to ASCII equivalents.
3
+
4
+ E-texts use a variety of quote characters (curly/smart quotes, unicode
5
+ variants, primes, guillemets). This module normalizes all quote variants
6
+ to their standard ASCII equivalents: double quote (") and single
7
+ quote/apostrophe (').
8
+
9
+ Related GitHub Issues:
10
+ #5 - Normalize quotes and group open-quote sentences in unwrap mode
11
+ https://github.com/craigtrim/fast-sentence-segment/issues/5
12
+
13
+ #6 - Review findings from Issue #5
14
+ https://github.com/craigtrim/fast-sentence-segment/issues/6
15
+ """
16
+
17
+ import re
18
+
19
+ # Unicode double quote variants to normalize to ASCII " (U+0022).
20
+ #
21
+ # U+201C " LEFT DOUBLE QUOTATION MARK
22
+ # U+201D " RIGHT DOUBLE QUOTATION MARK
23
+ # U+201E „ DOUBLE LOW-9 QUOTATION MARK
24
+ # U+201F ‟ DOUBLE HIGH-REVERSED-9 QUOTATION MARK
25
+ # U+00AB « LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
26
+ # U+00BB » RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
27
+ # U+2033 ″ DOUBLE PRIME
28
+ # U+301D 〝 REVERSED DOUBLE PRIME QUOTATION MARK
29
+ # U+301E 〞 DOUBLE PRIME QUOTATION MARK
30
+ # U+301F 〟 LOW DOUBLE PRIME QUOTATION MARK
31
+ # U+FF02 " FULLWIDTH QUOTATION MARK
32
+ DOUBLE_QUOTE_PATTERN = re.compile(
33
+ '[\u201c\u201d\u201e\u201f\u00ab\u00bb\u2033\u301d\u301e\u301f\uff02]'
34
+ )
35
+
36
+ # Unicode single quote variants to normalize to ASCII ' (U+0027).
37
+ #
38
+ # U+2018 ' LEFT SINGLE QUOTATION MARK
39
+ # U+2019 ' RIGHT SINGLE QUOTATION MARK
40
+ # U+201A ‚ SINGLE LOW-9 QUOTATION MARK
41
+ # U+201B ‛ SINGLE HIGH-REVERSED-9 QUOTATION MARK
42
+ # U+2039 ‹ SINGLE LEFT-POINTING ANGLE QUOTATION MARK
43
+ # U+203A › SINGLE RIGHT-POINTING ANGLE QUOTATION MARK
44
+ # U+2032 ′ PRIME
45
+ # U+FF07 ' FULLWIDTH APOSTROPHE
46
+ # U+0060 ` GRAVE ACCENT (used as opening quote in some e-texts)
47
+ # U+00B4 ´ ACUTE ACCENT (used as closing quote in some e-texts)
48
+ SINGLE_QUOTE_PATTERN = re.compile(
49
+ '[\u2018\u2019\u201a\u201b\u2039\u203a\u2032\uff07\u0060\u00b4]'
50
+ )
51
+
52
+
53
+ def normalize_quotes(text: str) -> str:
54
+ """Replace all unicode quote variants with their ASCII equivalents.
55
+
56
+ Double quote variants are normalized to ASCII " (U+0022).
57
+ Single quote variants are normalized to ASCII ' (U+0027).
58
+
59
+ Args:
60
+ text: Input text potentially containing unicode quotes.
61
+
62
+ Returns:
63
+ Text with all quote variants replaced by ASCII equivalents.
64
+
65
+ Example:
66
+ >>> normalize_quotes('\u201cHello,\u201d she said.')
67
+ '"Hello," she said.'
68
+ >>> normalize_quotes('It\u2019s fine.')
69
+ "It's fine."
70
+
71
+ Related GitHub Issues:
72
+ #5 - Normalize quotes and group open-quote sentences in unwrap mode
73
+ https://github.com/craigtrim/fast-sentence-segment/issues/5
74
+
75
+ #6 - Review findings from Issue #5
76
+ https://github.com/craigtrim/fast-sentence-segment/issues/6
77
+ """
78
+ text = DOUBLE_QUOTE_PATTERN.sub('"', text)
79
+ text = SINGLE_QUOTE_PATTERN.sub("'", text)
80
+ return text
@@ -23,18 +23,31 @@ class SpacyDocSegmenter(BaseObject):
23
23
 
24
24
  @staticmethod
25
25
  def _append_period(a_sentence: str) -> str:
26
+ """Append a period if the sentence lacks terminal punctuation.
27
+
28
+ Checks for terminal punctuation (. ? ! :) after stripping any
29
+ trailing quote characters (" '). This prevents a spurious period
30
+ from being appended to sentences like:
31
+ 'He said "Hello."' -> unchanged (not 'He said "Hello.".')
32
+
33
+ Related GitHub Issue:
34
+ #7 - Spurious trailing period appended after sentence-final
35
+ closing quote
36
+ https://github.com/craigtrim/fast-sentence-segment/issues/7
37
+
38
+ Args:
39
+ a_sentence: A sentence that may or may not have terminal
40
+ punctuation.
41
+
42
+ Returns:
43
+ The sentence with a period appended if it lacked terminal
44
+ punctuation, otherwise unchanged.
26
45
  """
27
- Purpose:
28
- if the sentence is not terminated with a period, then add one
29
- :return:
30
- a sentence terminated by a period
31
- """
32
- __blacklist = [':', '?', '!']
33
- if not a_sentence.strip().endswith('.'):
34
- for ch in __blacklist:
35
- if not a_sentence.endswith(ch):
36
- return f"{a_sentence}."
37
- return a_sentence
46
+ # Strip trailing quotes to inspect the actual punctuation
47
+ stripped = a_sentence.strip().rstrip('"\'')
48
+ if stripped and stripped[-1] in '.?!:':
49
+ return a_sentence
50
+ return f"{a_sentence}."
38
51
 
39
52
  @staticmethod
40
53
  def _is_valid_sentence(a_sentence: str) -> bool:
@@ -0,0 +1,70 @@
1
+ # -*- coding: UTF-8 -*-
2
+ """Strip spurious trailing periods appended after sentence-final closing quotes.
3
+
4
+ The spaCy segmenter's _append_period method can produce sentences like:
5
+ 'He said "Hello.".' (spurious trailing period)
6
+ 'She asked "Why?".' (spurious trailing period)
7
+ 'He yelled "Stop!".' (spurious trailing period)
8
+
9
+ This post-processor removes the trailing period when the sentence ends
10
+ with a closing double quote preceded by terminal punctuation.
11
+
12
+ Related GitHub Issue:
13
+ #7 - Spurious trailing period appended after sentence-final
14
+ closing quote
15
+ https://github.com/craigtrim/fast-sentence-segment/issues/7
16
+ """
17
+
18
+ import re
19
+
20
+ from fast_sentence_segment.core import BaseObject
21
+
22
+ # Matches a sentence that ends with terminal punctuation (. ? !)
23
+ # followed by a closing double quote, followed by a spurious period.
24
+ # The fix strips the final period.
25
+ _SPURIOUS_PERIOD_PATTERN = re.compile(r'([.?!]")\.$')
26
+
27
+
28
+ class StripTrailingPeriodAfterQuote(BaseObject):
29
+ """Strip spurious trailing periods after sentence-final closing quotes.
30
+
31
+ Detects sentences ending with patterns like:
32
+ ."." -> ."
33
+ ?"." -> ?"
34
+ !"." -> !"
35
+
36
+ Applied as a post-processing step in the sentence segmentation
37
+ pipeline, after spaCy segmentation and after the existing
38
+ PostProcessStructure step.
39
+
40
+ Related GitHub Issue:
41
+ #7 - Spurious trailing period appended after sentence-final
42
+ closing quote
43
+ https://github.com/craigtrim/fast-sentence-segment/issues/7
44
+ """
45
+
46
+ def __init__(self):
47
+ """
48
+ Created:
49
+ 29-Jan-2026
50
+ """
51
+ BaseObject.__init__(self, __name__)
52
+
53
+ def process(self, sentences: list) -> list:
54
+ """Remove spurious trailing periods after closing quotes.
55
+
56
+ Args:
57
+ sentences: List of segmented sentences.
58
+
59
+ Returns:
60
+ List of sentences with spurious trailing periods removed.
61
+
62
+ Example:
63
+ >>> proc = StripTrailingPeriodAfterQuote()
64
+ >>> proc.process(['He said "Hello.".', 'She waved.'])
65
+ ['He said "Hello."', 'She waved.']
66
+ """
67
+ return [
68
+ _SPURIOUS_PERIOD_PATTERN.sub(r'\1', sentence)
69
+ for sentence in sentences
70
+ ]
@@ -0,0 +1,34 @@
1
+ # -*- coding: UTF-8 -*-
2
+ """Unwrap hard-wrapped text (e.g., Project Gutenberg e-texts).
3
+
4
+ Joins lines within paragraphs into continuous strings while
5
+ preserving paragraph boundaries (blank lines).
6
+ """
7
+
8
+ import re
9
+
10
+
11
+ def unwrap_hard_wrapped_text(text: str) -> str:
12
+ """Unwrap hard-wrapped paragraphs into continuous lines.
13
+
14
+ Splits on blank lines to identify paragraphs, then joins
15
+ lines within each paragraph into a single string with
16
+ single spaces.
17
+
18
+ Args:
19
+ text: Raw text with hard-wrapped lines.
20
+
21
+ Returns:
22
+ Text with paragraphs unwrapped into continuous strings,
23
+ separated by double newlines.
24
+ """
25
+ blocks = re.split(r'\n\s*\n', text)
26
+ unwrapped = []
27
+
28
+ for block in blocks:
29
+ lines = block.splitlines()
30
+ joined = ' '.join(line.strip() for line in lines if line.strip())
31
+ if joined:
32
+ unwrapped.append(joined)
33
+
34
+ return '\n\n'.join(unwrapped)
@@ -17,6 +17,7 @@ from fast_sentence_segment.dmo import NumberedListNormalizer
17
17
  from fast_sentence_segment.dmo import QuestionExclamationSplitter
18
18
  from fast_sentence_segment.dmo import SpacyDocSegmenter
19
19
  from fast_sentence_segment.dmo import PostProcessStructure
20
+ from fast_sentence_segment.dmo import StripTrailingPeriodAfterQuote
20
21
 
21
22
 
22
23
  class PerformSentenceSegmentation(BaseObject):
@@ -55,6 +56,7 @@ class PerformSentenceSegmentation(BaseObject):
55
56
  self._question_exclamation_splitter = QuestionExclamationSplitter().process
56
57
  self._title_name_merger = TitleNameMerger().process
57
58
  self._post_process = PostProcessStructure().process
59
+ self._strip_trailing_period = StripTrailingPeriodAfterQuote().process
58
60
 
59
61
  def _denormalize(self, text: str) -> str:
60
62
  """ Restore normalized placeholders to original form """
@@ -129,6 +131,9 @@ class PerformSentenceSegmentation(BaseObject):
129
131
 
130
132
  sentences = self._post_process(sentences)
131
133
 
134
+ # Strip spurious trailing periods after closing quotes (issue #7)
135
+ sentences = self._strip_trailing_period(sentences)
136
+
132
137
  sentences = [
133
138
  self._normalize_numbered_lists(x, denormalize=True)
134
139
  for x in sentences
@@ -11,14 +11,26 @@ description = "Fast and Efficient Sentence Segmentation"
11
11
  license = "MIT"
12
12
  name = "fast-sentence-segment"
13
13
  readme = "README.md"
14
- version = "1.2.1"
14
+ version = "1.3.0"
15
15
 
16
16
  keywords = ["nlp", "text", "preprocess", "segment"]
17
17
  repository = "https://github.com/craigtrim/fast-sentence-segment"
18
18
 
19
19
  classifiers = [
20
- "Development Status :: 4 - Beta",
20
+ "Development Status :: 5 - Production/Stable",
21
+ "Intended Audience :: Developers",
22
+ "Intended Audience :: Science/Research",
23
+ "License :: OSI Approved :: MIT License",
24
+ "Programming Language :: Python :: 3",
25
+ "Programming Language :: Python :: 3.9",
26
+ "Programming Language :: Python :: 3.10",
27
+ "Programming Language :: Python :: 3.11",
28
+ "Programming Language :: Python :: 3.12",
21
29
  "Topic :: Software Development :: Libraries :: Python Modules",
30
+ "Topic :: Text Processing :: Linguistic",
31
+ "Topic :: Scientific/Engineering :: Artificial Intelligence",
32
+ "Operating System :: OS Independent",
33
+ "Typing :: Typed",
22
34
  ]
23
35
 
24
36
  [tool.poetry.urls]
@@ -36,6 +48,7 @@ ruff = "*"
36
48
 
37
49
  [tool.poetry.scripts]
38
50
  segment = "fast_sentence_segment.cli:main"
51
+ segment-file = "fast_sentence_segment.cli:file_main"
39
52
 
40
53
  [tool.poetry.build]
41
54
  generate-setup-file = true
@@ -0,0 +1,39 @@
1
+ # -*- coding: utf-8 -*-
2
+ from setuptools import setup
3
+
4
+ packages = \
5
+ ['fast_sentence_segment',
6
+ 'fast_sentence_segment.bp',
7
+ 'fast_sentence_segment.core',
8
+ 'fast_sentence_segment.dmo',
9
+ 'fast_sentence_segment.svc']
10
+
11
+ package_data = \
12
+ {'': ['*']}
13
+
14
+ install_requires = \
15
+ ['spacy>=3.8.0,<4.0.0']
16
+
17
+ entry_points = \
18
+ {'console_scripts': ['segment = fast_sentence_segment.cli:main',
19
+ 'segment-file = fast_sentence_segment.cli:file_main']}
20
+
21
+ setup_kwargs = {
22
+ 'name': 'fast-sentence-segment',
23
+ 'version': '1.3.0',
24
+ 'description': 'Fast and Efficient Sentence Segmentation',
25
+ 'long_description': '# Fast Sentence Segmentation\n\n[![PyPI version](https://img.shields.io/pypi/v/fast-sentence-segment.svg)](https://pypi.org/project/fast-sentence-segment/)\n[![Python versions](https://img.shields.io/pypi/pyversions/fast-sentence-segment.svg)](https://pypi.org/project/fast-sentence-segment/)\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n[![spaCy](https://img.shields.io/badge/spaCy-3.8-blue.svg)](https://spacy.io/)\n[![Downloads](https://static.pepy.tech/badge/fast-sentence-segment)](https://pepy.tech/project/fast-sentence-segment)\n[![Downloads/Month](https://static.pepy.tech/badge/fast-sentence-segment/month)](https://pepy.tech/project/fast-sentence-segment)\n\nFast and efficient sentence segmentation using spaCy with surgical post-processing fixes. Handles complex edge cases like abbreviations (Dr., Mr., etc.), ellipses, quoted text, and multi-paragraph documents.\n\n## Why This Library?\n\n1. **Keep it local**: LLM API calls cost money and send your data to third parties. Run sentence segmentation entirely on your machine.\n2. **spaCy perfected**: spaCy is a great local model, but it makes mistakes. This library fixes most of spaCy\'s shortcomings.\n\n## Features\n\n- **Paragraph-aware segmentation**: Returns sentences grouped by paragraph\n- **Abbreviation handling**: Correctly handles "Dr.", "Mr.", "etc.", "p.m.", "a.m." without false splits\n- **Ellipsis preservation**: Keeps `...` intact while detecting sentence boundaries\n- **Question/exclamation splitting**: Properly splits on `?` and `!` followed by capital letters\n- **Cached processing**: LRU cache for repeated text processing\n- **Flexible output**: Nested lists (by paragraph) or flattened list of sentences\n- **Bullet point & numbered list normalization**: Cleans common list formats\n- **CLI tool**: Command-line interface for quick segmentation\n\n## Installation\n\n```bash\npip install fast-sentence-segment\n```\n\nAfter installation, download the spaCy model:\n\n```bash\npython -m spacy download en_core_web_sm\n```\n\n## Quick Start\n\n```python\nfrom fast_sentence_segment import segment_text\n\ntext = "Do you like Dr. Who? I prefer Dr. Strange! Mr. T is also cool."\n\nresults = segment_text(text, flatten=True)\n```\n\n```json\n[\n "Do you like Dr. Who?",\n "I prefer Dr. Strange!",\n "Mr. T is also cool."\n]\n```\n\nNotice how "Dr. Who?" stays together as a single sentence—the library correctly recognizes that a title followed by a single-word name ending in `?` or `!` is a name reference, not a sentence boundary.\n\n## Usage\n\n### Basic Segmentation\n\nThe `segment_text` function returns a list of lists, where each inner list represents a paragraph containing its sentences:\n\n```python\nfrom fast_sentence_segment import segment_text\n\ntext = """Gandalf spoke softly. "All we have to decide is what to do with the time given us."\n\nFrodo nodded. The weight of the Ring pressed against his chest."""\n\nresults = segment_text(text)\n```\n\n```json\n[\n [\n "Gandalf spoke softly.",\n "\\"All we have to decide is what to do with the time given us.\\"."\n ],\n [\n "Frodo nodded.",\n "The weight of the Ring pressed against his chest."\n ]\n]\n```\n\n### Flattened Output\n\nIf you don\'t need paragraph boundaries, use the `flatten` parameter:\n\n```python\ntext = "At 9 a.m. the hobbits set out. By 3 p.m. they reached Rivendell. Mr. Frodo was exhausted."\n\nresults = segment_text(text, flatten=True)\n```\n\n```json\n[\n "At 9 a.m. the hobbits set out.",\n "By 3 p.m. they reached Rivendell.",\n "Mr. Frodo was exhausted."\n]\n```\n\n### Direct Segmenter Access\n\nFor more control, use the `Segmenter` class directly:\n\n```python\nfrom fast_sentence_segment import Segmenter\n\nsegmenter = Segmenter()\nresults = segmenter.input_text("Your text here.")\n```\n\n### Command Line Interface\n\n```bash\n# Inline text\nsegment "Gandalf paused... You shall not pass! The Balrog roared."\n\n# Pipe from stdin\necho "Have you seen Dr. Who? It\'s brilliant!" | segment\n\n# Numbered output\nsegment -n -f silmarillion.txt\n\n# File-to-file (one sentence per line)\nsegment-file --input-file book.txt --output-file sentences.txt\n\n# Unwrap hard-wrapped e-texts (Project Gutenberg, etc.)\nsegment-file --input-file book.txt --output-file sentences.txt --unwrap\n```\n\n## API Reference\n\n| Function | Parameters | Returns | Description |\n|----------|------------|---------|-------------|\n| `segment_text()` | `input_text: str`, `flatten: bool = False`, `unwrap: bool = False` | `list` | Main entry point for segmentation |\n| `Segmenter.input_text()` | `input_text: str` | `list[list[str]]` | Cached paragraph-aware segmentation |\n\n### CLI Commands\n\n| Command | Description |\n|---------|-------------|\n| `segment [text]` | Segment text from argument, `-f FILE`, or stdin. Use `-n` for numbered output. |\n| `segment-file --input-file IN --output-file OUT [--unwrap]` | Segment a file and write one sentence per line. Use `--unwrap` for hard-wrapped e-texts. |\n\n## Why Nested Lists?\n\nThe segmentation process preserves document structure by segmenting into both paragraphs and sentences. Each outer list represents a paragraph, and each inner list contains that paragraph\'s sentences. This is useful for:\n\n- Document structure analysis\n- Paragraph-level processing\n- Maintaining original text organization\n\nUse `flatten=True` when you only need sentences without paragraph context.\n\n## Requirements\n\n- Python 3.9+\n- spaCy 3.8+\n- en_core_web_sm spaCy model\n\n## How It Works\n\nThis library uses spaCy for initial sentence segmentation, then applies surgical post-processing fixes for cases where spaCy\'s default behavior is incorrect:\n\n1. **Pre-processing**: Normalize numbered lists, preserve ellipses with placeholders\n2. **spaCy segmentation**: Use spaCy\'s sentence boundary detection\n3. **Post-processing**: Split on abbreviation boundaries, handle `?`/`!` + capital patterns\n4. **Denormalization**: Restore placeholders to original text\n\n## License\n\nMIT License - see [LICENSE](LICENSE) for details.\n\n## Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request.\n\n1. Fork the repository\n2. Create your feature branch (`git checkout -b feature/amazing-feature`)\n3. Run tests (`make test`)\n4. Commit your changes\n5. Push to the branch\n6. Open a Pull Request\n',
26
+ 'author': 'Craig Trim',
27
+ 'author_email': 'craigtrim@gmail.com',
28
+ 'maintainer': 'Craig Trim',
29
+ 'maintainer_email': 'craigtrim@gmail.com',
30
+ 'url': 'https://github.com/craigtrim/fast-sentence-segment',
31
+ 'packages': packages,
32
+ 'package_data': package_data,
33
+ 'install_requires': install_requires,
34
+ 'entry_points': entry_points,
35
+ 'python_requires': '>=3.9,<4.0',
36
+ }
37
+
38
+
39
+ setup(**setup_kwargs)
@@ -1,18 +0,0 @@
1
- from .bp import *
2
- from .svc import *
3
- from .dmo import *
4
-
5
- from .bp.segmenter import Segmenter
6
-
7
- segment = Segmenter().input_text
8
-
9
-
10
- def segment_text(input_text: str, flatten: bool = False) -> list:
11
- results = segment(input_text)
12
-
13
- if flatten:
14
- flat = []
15
- [[flat.append(y) for y in x] for x in results]
16
- return flat
17
-
18
- return results
@@ -1,56 +0,0 @@
1
- # -*- coding: UTF-8 -*-
2
- """CLI for fast-sentence-segment."""
3
-
4
- import argparse
5
- import logging
6
- import sys
7
-
8
- from fast_sentence_segment import segment_text
9
-
10
- logging.disable(logging.CRITICAL)
11
-
12
-
13
- def main():
14
- parser = argparse.ArgumentParser(
15
- prog="segment",
16
- description="Segment text into sentences",
17
- )
18
- parser.add_argument(
19
- "text",
20
- nargs="?",
21
- help="Text to segment (or use stdin)",
22
- )
23
- parser.add_argument(
24
- "-f", "--file",
25
- help="Read text from file",
26
- )
27
- parser.add_argument(
28
- "-n", "--numbered",
29
- action="store_true",
30
- help="Number output lines",
31
- )
32
- args = parser.parse_args()
33
-
34
- # Get input text
35
- if args.file:
36
- with open(args.file, "r", encoding="utf-8") as f:
37
- text = f.read()
38
- elif args.text:
39
- text = args.text
40
- elif not sys.stdin.isatty():
41
- text = sys.stdin.read()
42
- else:
43
- parser.print_help()
44
- sys.exit(1)
45
-
46
- # Segment and output
47
- sentences = segment_text(text.strip(), flatten=True)
48
- for i, sentence in enumerate(sentences, 1):
49
- if args.numbered:
50
- print(f"{i}. {sentence}")
51
- else:
52
- print(sentence)
53
-
54
-
55
- if __name__ == "__main__":
56
- main()
@@ -1,38 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- from setuptools import setup
3
-
4
- packages = \
5
- ['fast_sentence_segment',
6
- 'fast_sentence_segment.bp',
7
- 'fast_sentence_segment.core',
8
- 'fast_sentence_segment.dmo',
9
- 'fast_sentence_segment.svc']
10
-
11
- package_data = \
12
- {'': ['*']}
13
-
14
- install_requires = \
15
- ['spacy>=3.8.0,<4.0.0']
16
-
17
- entry_points = \
18
- {'console_scripts': ['segment = fast_sentence_segment.cli:main']}
19
-
20
- setup_kwargs = {
21
- 'name': 'fast-sentence-segment',
22
- 'version': '1.2.1',
23
- 'description': 'Fast and Efficient Sentence Segmentation',
24
- 'long_description': '# Fast Sentence Segmentation\n\n[![PyPI version](https://img.shields.io/pypi/v/fast-sentence-segment.svg)](https://pypi.org/project/fast-sentence-segment/)\n[![Python versions](https://img.shields.io/pypi/pyversions/fast-sentence-segment.svg)](https://pypi.org/project/fast-sentence-segment/)\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n[![spaCy](https://img.shields.io/badge/spaCy-3.8-blue.svg)](https://spacy.io/)\n\nFast and efficient sentence segmentation using spaCy with surgical post-processing fixes. Handles complex edge cases like abbreviations (Dr., Mr., etc.), ellipses, quoted text, and multi-paragraph documents.\n\n## Why This Library?\n\n1. **Keep it local**: LLM API calls cost money and send your data to third parties. Run sentence segmentation entirely on your machine.\n2. **spaCy perfected**: spaCy is a great local model, but it makes mistakes. This library fixes most of spaCy\'s shortcomings.\n\n## Features\n\n- **Paragraph-aware segmentation**: Returns sentences grouped by paragraph\n- **Abbreviation handling**: Correctly handles "Dr.", "Mr.", "etc.", "p.m.", "a.m." without false splits\n- **Ellipsis preservation**: Keeps `...` intact while detecting sentence boundaries\n- **Question/exclamation splitting**: Properly splits on `?` and `!` followed by capital letters\n- **Cached processing**: LRU cache for repeated text processing\n- **Flexible output**: Nested lists (by paragraph) or flattened list of sentences\n- **Bullet point & numbered list normalization**: Cleans common list formats\n- **CLI tool**: Command-line interface for quick segmentation\n\n## Installation\n\n```bash\npip install fast-sentence-segment\n```\n\nAfter installation, download the spaCy model:\n\n```bash\npython -m spacy download en_core_web_sm\n```\n\n## Quick Start\n\n```python\nfrom fast_sentence_segment import segment_text\n\ntext = "Do you like Dr. Who? I prefer Dr. Strange! Mr. T is also cool."\n\nresults = segment_text(text, flatten=True)\n```\n\n```json\n[\n "Do you like Dr. Who?",\n "I prefer Dr. Strange!",\n "Mr. T is also cool."\n]\n```\n\nNotice how "Dr. Who?" stays together as a single sentence—the library correctly recognizes that a title followed by a single-word name ending in `?` or `!` is a name reference, not a sentence boundary.\n\n## Usage\n\n### Basic Segmentation\n\nThe `segment_text` function returns a list of lists, where each inner list represents a paragraph containing its sentences:\n\n```python\nfrom fast_sentence_segment import segment_text\n\ntext = """Gandalf spoke softly. "All we have to decide is what to do with the time given us."\n\nFrodo nodded. The weight of the Ring pressed against his chest."""\n\nresults = segment_text(text)\n```\n\n```json\n[\n [\n "Gandalf spoke softly.",\n "\\"All we have to decide is what to do with the time given us.\\"."\n ],\n [\n "Frodo nodded.",\n "The weight of the Ring pressed against his chest."\n ]\n]\n```\n\n### Flattened Output\n\nIf you don\'t need paragraph boundaries, use the `flatten` parameter:\n\n```python\ntext = "At 9 a.m. the hobbits set out. By 3 p.m. they reached Rivendell. Mr. Frodo was exhausted."\n\nresults = segment_text(text, flatten=True)\n```\n\n```json\n[\n "At 9 a.m. the hobbits set out.",\n "By 3 p.m. they reached Rivendell.",\n "Mr. Frodo was exhausted."\n]\n```\n\n### Direct Segmenter Access\n\nFor more control, use the `Segmenter` class directly:\n\n```python\nfrom fast_sentence_segment import Segmenter\n\nsegmenter = Segmenter()\nresults = segmenter.input_text("Your text here.")\n```\n\n### Command Line Interface\n\nSegment text directly from the terminal:\n\n```bash\n# Direct text input\necho "Have you seen Dr. Who? It\'s brilliant!" | segment\n```\n\n```\nHave you seen Dr. Who?\nIt\'s brilliant!\n```\n\n```bash\n# Numbered output\nsegment -n "Gandalf paused... You shall not pass! The Balrog roared."\n```\n\n```\n1. Gandalf paused...\n2. You shall not pass!\n3. The Balrog roared.\n```\n\n```bash\n# From file\nsegment -f silmarillion.txt\n```\n\n## API Reference\n\n| Function | Parameters | Returns | Description |\n|----------|------------|---------|-------------|\n| `segment_text()` | `input_text: str`, `flatten: bool = False` | `list` | Main entry point for segmentation |\n| `Segmenter.input_text()` | `input_text: str` | `list[list[str]]` | Cached paragraph-aware segmentation |\n\n### CLI Options\n\n| Option | Description |\n|--------|-------------|\n| `text` | Text to segment (positional argument) |\n| `-f, --file` | Read text from file |\n| `-n, --numbered` | Number output lines |\n\n## Why Nested Lists?\n\nThe segmentation process preserves document structure by segmenting into both paragraphs and sentences. Each outer list represents a paragraph, and each inner list contains that paragraph\'s sentences. This is useful for:\n\n- Document structure analysis\n- Paragraph-level processing\n- Maintaining original text organization\n\nUse `flatten=True` when you only need sentences without paragraph context.\n\n## Requirements\n\n- Python 3.9+\n- spaCy 3.8+\n- en_core_web_sm spaCy model\n\n## How It Works\n\nThis library uses spaCy for initial sentence segmentation, then applies surgical post-processing fixes for cases where spaCy\'s default behavior is incorrect:\n\n1. **Pre-processing**: Normalize numbered lists, preserve ellipses with placeholders\n2. **spaCy segmentation**: Use spaCy\'s sentence boundary detection\n3. **Post-processing**: Split on abbreviation boundaries, handle `?`/`!` + capital patterns\n4. **Denormalization**: Restore placeholders to original text\n\n## License\n\nMIT License - see [LICENSE](LICENSE) for details.\n\n## Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request.\n\n1. Fork the repository\n2. Create your feature branch (`git checkout -b feature/amazing-feature`)\n3. Run tests (`make test`)\n4. Commit your changes\n5. Push to the branch\n6. Open a Pull Request\n',
25
- 'author': 'Craig Trim',
26
- 'author_email': 'craigtrim@gmail.com',
27
- 'maintainer': 'Craig Trim',
28
- 'maintainer_email': 'craigtrim@gmail.com',
29
- 'url': 'https://github.com/craigtrim/fast-sentence-segment',
30
- 'packages': packages,
31
- 'package_data': package_data,
32
- 'install_requires': install_requires,
33
- 'entry_points': entry_points,
34
- 'python_requires': '>=3.9,<4.0',
35
- }
36
-
37
-
38
- setup(**setup_kwargs)