fast-sentence-segment 1.2.0__tar.gz → 1.2.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/PKG-INFO +55 -17
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/README.md +54 -16
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/pyproject.toml +1 -1
- fast_sentence_segment-1.2.1/setup.py +38 -0
- fast_sentence_segment-1.2.0/setup.py +0 -38
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/LICENSE +0 -0
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/__init__.py +0 -0
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/bp/__init__.py +0 -0
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/bp/segmenter.py +0 -0
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/cli.py +0 -0
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/core/__init__.py +0 -0
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/core/base_object.py +0 -0
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/core/stopwatch.py +0 -0
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/dmo/__init__.py +0 -0
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/dmo/abbreviation_merger.py +0 -0
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/dmo/abbreviation_splitter.py +0 -0
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/dmo/abbreviations.py +0 -0
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/dmo/bullet_point_cleaner.py +0 -0
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/dmo/ellipsis_normalizer.py +0 -0
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/dmo/newlines_to_periods.py +0 -0
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/dmo/numbered_list_normalizer.py +0 -0
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/dmo/post_process_sentences.py +0 -0
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/dmo/question_exclamation_splitter.py +0 -0
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/dmo/spacy_doc_segmenter.py +0 -0
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/dmo/title_name_merger.py +0 -0
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/svc/__init__.py +0 -0
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/svc/perform_paragraph_segmentation.py +0 -0
- {fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/svc/perform_sentence_segmentation.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: fast-sentence-segment
|
|
3
|
-
Version: 1.2.
|
|
3
|
+
Version: 1.2.1
|
|
4
4
|
Summary: Fast and Efficient Sentence Segmentation
|
|
5
5
|
License: MIT
|
|
6
6
|
License-File: LICENSE
|
|
@@ -67,12 +67,21 @@ python -m spacy download en_core_web_sm
|
|
|
67
67
|
```python
|
|
68
68
|
from fast_sentence_segment import segment_text
|
|
69
69
|
|
|
70
|
-
text = "
|
|
70
|
+
text = "Do you like Dr. Who? I prefer Dr. Strange! Mr. T is also cool."
|
|
71
71
|
|
|
72
|
-
results = segment_text(text)
|
|
73
|
-
# Returns: [['Here is a Dr. who says something.', 'And then again, what else?', "I don't know.", 'Do you?']]
|
|
72
|
+
results = segment_text(text, flatten=True)
|
|
74
73
|
```
|
|
75
74
|
|
|
75
|
+
```json
|
|
76
|
+
[
|
|
77
|
+
"Do you like Dr. Who?",
|
|
78
|
+
"I prefer Dr. Strange!",
|
|
79
|
+
"Mr. T is also cool."
|
|
80
|
+
]
|
|
81
|
+
```
|
|
82
|
+
|
|
83
|
+
Notice how "Dr. Who?" stays together as a single sentence—the library correctly recognizes that a title followed by a single-word name ending in `?` or `!` is a name reference, not a sentence boundary.
|
|
84
|
+
|
|
76
85
|
## Usage
|
|
77
86
|
|
|
78
87
|
### Basic Segmentation
|
|
@@ -82,16 +91,24 @@ The `segment_text` function returns a list of lists, where each inner list repre
|
|
|
82
91
|
```python
|
|
83
92
|
from fast_sentence_segment import segment_text
|
|
84
93
|
|
|
85
|
-
text = """
|
|
94
|
+
text = """Gandalf spoke softly. "All we have to decide is what to do with the time given us."
|
|
86
95
|
|
|
87
|
-
|
|
96
|
+
Frodo nodded. The weight of the Ring pressed against his chest."""
|
|
88
97
|
|
|
89
98
|
results = segment_text(text)
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
99
|
+
```
|
|
100
|
+
|
|
101
|
+
```json
|
|
102
|
+
[
|
|
103
|
+
[
|
|
104
|
+
"Gandalf spoke softly.",
|
|
105
|
+
"\"All we have to decide is what to do with the time given us.\"."
|
|
106
|
+
],
|
|
107
|
+
[
|
|
108
|
+
"Frodo nodded.",
|
|
109
|
+
"The weight of the Ring pressed against his chest."
|
|
110
|
+
]
|
|
111
|
+
]
|
|
95
112
|
```
|
|
96
113
|
|
|
97
114
|
### Flattened Output
|
|
@@ -99,8 +116,17 @@ results = segment_text(text)
|
|
|
99
116
|
If you don't need paragraph boundaries, use the `flatten` parameter:
|
|
100
117
|
|
|
101
118
|
```python
|
|
119
|
+
text = "At 9 a.m. the hobbits set out. By 3 p.m. they reached Rivendell. Mr. Frodo was exhausted."
|
|
120
|
+
|
|
102
121
|
results = segment_text(text, flatten=True)
|
|
103
|
-
|
|
122
|
+
```
|
|
123
|
+
|
|
124
|
+
```json
|
|
125
|
+
[
|
|
126
|
+
"At 9 a.m. the hobbits set out.",
|
|
127
|
+
"By 3 p.m. they reached Rivendell.",
|
|
128
|
+
"Mr. Frodo was exhausted."
|
|
129
|
+
]
|
|
104
130
|
```
|
|
105
131
|
|
|
106
132
|
### Direct Segmenter Access
|
|
@@ -120,16 +146,28 @@ Segment text directly from the terminal:
|
|
|
120
146
|
|
|
121
147
|
```bash
|
|
122
148
|
# Direct text input
|
|
123
|
-
|
|
149
|
+
echo "Have you seen Dr. Who? It's brilliant!" | segment
|
|
150
|
+
```
|
|
124
151
|
|
|
152
|
+
```
|
|
153
|
+
Have you seen Dr. Who?
|
|
154
|
+
It's brilliant!
|
|
155
|
+
```
|
|
156
|
+
|
|
157
|
+
```bash
|
|
125
158
|
# Numbered output
|
|
126
|
-
segment -n "
|
|
159
|
+
segment -n "Gandalf paused... You shall not pass! The Balrog roared."
|
|
160
|
+
```
|
|
127
161
|
|
|
128
|
-
|
|
129
|
-
|
|
162
|
+
```
|
|
163
|
+
1. Gandalf paused...
|
|
164
|
+
2. You shall not pass!
|
|
165
|
+
3. The Balrog roared.
|
|
166
|
+
```
|
|
130
167
|
|
|
168
|
+
```bash
|
|
131
169
|
# From file
|
|
132
|
-
segment -f
|
|
170
|
+
segment -f silmarillion.txt
|
|
133
171
|
```
|
|
134
172
|
|
|
135
173
|
## API Reference
|
|
@@ -40,12 +40,21 @@ python -m spacy download en_core_web_sm
|
|
|
40
40
|
```python
|
|
41
41
|
from fast_sentence_segment import segment_text
|
|
42
42
|
|
|
43
|
-
text = "
|
|
43
|
+
text = "Do you like Dr. Who? I prefer Dr. Strange! Mr. T is also cool."
|
|
44
44
|
|
|
45
|
-
results = segment_text(text)
|
|
46
|
-
# Returns: [['Here is a Dr. who says something.', 'And then again, what else?', "I don't know.", 'Do you?']]
|
|
45
|
+
results = segment_text(text, flatten=True)
|
|
47
46
|
```
|
|
48
47
|
|
|
48
|
+
```json
|
|
49
|
+
[
|
|
50
|
+
"Do you like Dr. Who?",
|
|
51
|
+
"I prefer Dr. Strange!",
|
|
52
|
+
"Mr. T is also cool."
|
|
53
|
+
]
|
|
54
|
+
```
|
|
55
|
+
|
|
56
|
+
Notice how "Dr. Who?" stays together as a single sentence—the library correctly recognizes that a title followed by a single-word name ending in `?` or `!` is a name reference, not a sentence boundary.
|
|
57
|
+
|
|
49
58
|
## Usage
|
|
50
59
|
|
|
51
60
|
### Basic Segmentation
|
|
@@ -55,16 +64,24 @@ The `segment_text` function returns a list of lists, where each inner list repre
|
|
|
55
64
|
```python
|
|
56
65
|
from fast_sentence_segment import segment_text
|
|
57
66
|
|
|
58
|
-
text = """
|
|
67
|
+
text = """Gandalf spoke softly. "All we have to decide is what to do with the time given us."
|
|
59
68
|
|
|
60
|
-
|
|
69
|
+
Frodo nodded. The weight of the Ring pressed against his chest."""
|
|
61
70
|
|
|
62
71
|
results = segment_text(text)
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
72
|
+
```
|
|
73
|
+
|
|
74
|
+
```json
|
|
75
|
+
[
|
|
76
|
+
[
|
|
77
|
+
"Gandalf spoke softly.",
|
|
78
|
+
"\"All we have to decide is what to do with the time given us.\"."
|
|
79
|
+
],
|
|
80
|
+
[
|
|
81
|
+
"Frodo nodded.",
|
|
82
|
+
"The weight of the Ring pressed against his chest."
|
|
83
|
+
]
|
|
84
|
+
]
|
|
68
85
|
```
|
|
69
86
|
|
|
70
87
|
### Flattened Output
|
|
@@ -72,8 +89,17 @@ results = segment_text(text)
|
|
|
72
89
|
If you don't need paragraph boundaries, use the `flatten` parameter:
|
|
73
90
|
|
|
74
91
|
```python
|
|
92
|
+
text = "At 9 a.m. the hobbits set out. By 3 p.m. they reached Rivendell. Mr. Frodo was exhausted."
|
|
93
|
+
|
|
75
94
|
results = segment_text(text, flatten=True)
|
|
76
|
-
|
|
95
|
+
```
|
|
96
|
+
|
|
97
|
+
```json
|
|
98
|
+
[
|
|
99
|
+
"At 9 a.m. the hobbits set out.",
|
|
100
|
+
"By 3 p.m. they reached Rivendell.",
|
|
101
|
+
"Mr. Frodo was exhausted."
|
|
102
|
+
]
|
|
77
103
|
```
|
|
78
104
|
|
|
79
105
|
### Direct Segmenter Access
|
|
@@ -93,16 +119,28 @@ Segment text directly from the terminal:
|
|
|
93
119
|
|
|
94
120
|
```bash
|
|
95
121
|
# Direct text input
|
|
96
|
-
|
|
122
|
+
echo "Have you seen Dr. Who? It's brilliant!" | segment
|
|
123
|
+
```
|
|
97
124
|
|
|
125
|
+
```
|
|
126
|
+
Have you seen Dr. Who?
|
|
127
|
+
It's brilliant!
|
|
128
|
+
```
|
|
129
|
+
|
|
130
|
+
```bash
|
|
98
131
|
# Numbered output
|
|
99
|
-
segment -n "
|
|
132
|
+
segment -n "Gandalf paused... You shall not pass! The Balrog roared."
|
|
133
|
+
```
|
|
100
134
|
|
|
101
|
-
|
|
102
|
-
|
|
135
|
+
```
|
|
136
|
+
1. Gandalf paused...
|
|
137
|
+
2. You shall not pass!
|
|
138
|
+
3. The Balrog roared.
|
|
139
|
+
```
|
|
103
140
|
|
|
141
|
+
```bash
|
|
104
142
|
# From file
|
|
105
|
-
segment -f
|
|
143
|
+
segment -f silmarillion.txt
|
|
106
144
|
```
|
|
107
145
|
|
|
108
146
|
## API Reference
|
|
@@ -11,7 +11,7 @@ description = "Fast and Efficient Sentence Segmentation"
|
|
|
11
11
|
license = "MIT"
|
|
12
12
|
name = "fast-sentence-segment"
|
|
13
13
|
readme = "README.md"
|
|
14
|
-
version = "1.2.
|
|
14
|
+
version = "1.2.1"
|
|
15
15
|
|
|
16
16
|
keywords = ["nlp", "text", "preprocess", "segment"]
|
|
17
17
|
repository = "https://github.com/craigtrim/fast-sentence-segment"
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
from setuptools import setup
|
|
3
|
+
|
|
4
|
+
packages = \
|
|
5
|
+
['fast_sentence_segment',
|
|
6
|
+
'fast_sentence_segment.bp',
|
|
7
|
+
'fast_sentence_segment.core',
|
|
8
|
+
'fast_sentence_segment.dmo',
|
|
9
|
+
'fast_sentence_segment.svc']
|
|
10
|
+
|
|
11
|
+
package_data = \
|
|
12
|
+
{'': ['*']}
|
|
13
|
+
|
|
14
|
+
install_requires = \
|
|
15
|
+
['spacy>=3.8.0,<4.0.0']
|
|
16
|
+
|
|
17
|
+
entry_points = \
|
|
18
|
+
{'console_scripts': ['segment = fast_sentence_segment.cli:main']}
|
|
19
|
+
|
|
20
|
+
setup_kwargs = {
|
|
21
|
+
'name': 'fast-sentence-segment',
|
|
22
|
+
'version': '1.2.1',
|
|
23
|
+
'description': 'Fast and Efficient Sentence Segmentation',
|
|
24
|
+
'long_description': '# Fast Sentence Segmentation\n\n[](https://pypi.org/project/fast-sentence-segment/)\n[](https://pypi.org/project/fast-sentence-segment/)\n[](https://opensource.org/licenses/MIT)\n[](https://spacy.io/)\n\nFast and efficient sentence segmentation using spaCy with surgical post-processing fixes. Handles complex edge cases like abbreviations (Dr., Mr., etc.), ellipses, quoted text, and multi-paragraph documents.\n\n## Why This Library?\n\n1. **Keep it local**: LLM API calls cost money and send your data to third parties. Run sentence segmentation entirely on your machine.\n2. **spaCy perfected**: spaCy is a great local model, but it makes mistakes. This library fixes most of spaCy\'s shortcomings.\n\n## Features\n\n- **Paragraph-aware segmentation**: Returns sentences grouped by paragraph\n- **Abbreviation handling**: Correctly handles "Dr.", "Mr.", "etc.", "p.m.", "a.m." without false splits\n- **Ellipsis preservation**: Keeps `...` intact while detecting sentence boundaries\n- **Question/exclamation splitting**: Properly splits on `?` and `!` followed by capital letters\n- **Cached processing**: LRU cache for repeated text processing\n- **Flexible output**: Nested lists (by paragraph) or flattened list of sentences\n- **Bullet point & numbered list normalization**: Cleans common list formats\n- **CLI tool**: Command-line interface for quick segmentation\n\n## Installation\n\n```bash\npip install fast-sentence-segment\n```\n\nAfter installation, download the spaCy model:\n\n```bash\npython -m spacy download en_core_web_sm\n```\n\n## Quick Start\n\n```python\nfrom fast_sentence_segment import segment_text\n\ntext = "Do you like Dr. Who? I prefer Dr. Strange! Mr. T is also cool."\n\nresults = segment_text(text, flatten=True)\n```\n\n```json\n[\n "Do you like Dr. Who?",\n "I prefer Dr. Strange!",\n "Mr. T is also cool."\n]\n```\n\nNotice how "Dr. Who?" stays together as a single sentence—the library correctly recognizes that a title followed by a single-word name ending in `?` or `!` is a name reference, not a sentence boundary.\n\n## Usage\n\n### Basic Segmentation\n\nThe `segment_text` function returns a list of lists, where each inner list represents a paragraph containing its sentences:\n\n```python\nfrom fast_sentence_segment import segment_text\n\ntext = """Gandalf spoke softly. "All we have to decide is what to do with the time given us."\n\nFrodo nodded. The weight of the Ring pressed against his chest."""\n\nresults = segment_text(text)\n```\n\n```json\n[\n [\n "Gandalf spoke softly.",\n "\\"All we have to decide is what to do with the time given us.\\"."\n ],\n [\n "Frodo nodded.",\n "The weight of the Ring pressed against his chest."\n ]\n]\n```\n\n### Flattened Output\n\nIf you don\'t need paragraph boundaries, use the `flatten` parameter:\n\n```python\ntext = "At 9 a.m. the hobbits set out. By 3 p.m. they reached Rivendell. Mr. Frodo was exhausted."\n\nresults = segment_text(text, flatten=True)\n```\n\n```json\n[\n "At 9 a.m. the hobbits set out.",\n "By 3 p.m. they reached Rivendell.",\n "Mr. Frodo was exhausted."\n]\n```\n\n### Direct Segmenter Access\n\nFor more control, use the `Segmenter` class directly:\n\n```python\nfrom fast_sentence_segment import Segmenter\n\nsegmenter = Segmenter()\nresults = segmenter.input_text("Your text here.")\n```\n\n### Command Line Interface\n\nSegment text directly from the terminal:\n\n```bash\n# Direct text input\necho "Have you seen Dr. Who? It\'s brilliant!" | segment\n```\n\n```\nHave you seen Dr. Who?\nIt\'s brilliant!\n```\n\n```bash\n# Numbered output\nsegment -n "Gandalf paused... You shall not pass! The Balrog roared."\n```\n\n```\n1. Gandalf paused...\n2. You shall not pass!\n3. The Balrog roared.\n```\n\n```bash\n# From file\nsegment -f silmarillion.txt\n```\n\n## API Reference\n\n| Function | Parameters | Returns | Description |\n|----------|------------|---------|-------------|\n| `segment_text()` | `input_text: str`, `flatten: bool = False` | `list` | Main entry point for segmentation |\n| `Segmenter.input_text()` | `input_text: str` | `list[list[str]]` | Cached paragraph-aware segmentation |\n\n### CLI Options\n\n| Option | Description |\n|--------|-------------|\n| `text` | Text to segment (positional argument) |\n| `-f, --file` | Read text from file |\n| `-n, --numbered` | Number output lines |\n\n## Why Nested Lists?\n\nThe segmentation process preserves document structure by segmenting into both paragraphs and sentences. Each outer list represents a paragraph, and each inner list contains that paragraph\'s sentences. This is useful for:\n\n- Document structure analysis\n- Paragraph-level processing\n- Maintaining original text organization\n\nUse `flatten=True` when you only need sentences without paragraph context.\n\n## Requirements\n\n- Python 3.9+\n- spaCy 3.8+\n- en_core_web_sm spaCy model\n\n## How It Works\n\nThis library uses spaCy for initial sentence segmentation, then applies surgical post-processing fixes for cases where spaCy\'s default behavior is incorrect:\n\n1. **Pre-processing**: Normalize numbered lists, preserve ellipses with placeholders\n2. **spaCy segmentation**: Use spaCy\'s sentence boundary detection\n3. **Post-processing**: Split on abbreviation boundaries, handle `?`/`!` + capital patterns\n4. **Denormalization**: Restore placeholders to original text\n\n## License\n\nMIT License - see [LICENSE](LICENSE) for details.\n\n## Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request.\n\n1. Fork the repository\n2. Create your feature branch (`git checkout -b feature/amazing-feature`)\n3. Run tests (`make test`)\n4. Commit your changes\n5. Push to the branch\n6. Open a Pull Request\n',
|
|
25
|
+
'author': 'Craig Trim',
|
|
26
|
+
'author_email': 'craigtrim@gmail.com',
|
|
27
|
+
'maintainer': 'Craig Trim',
|
|
28
|
+
'maintainer_email': 'craigtrim@gmail.com',
|
|
29
|
+
'url': 'https://github.com/craigtrim/fast-sentence-segment',
|
|
30
|
+
'packages': packages,
|
|
31
|
+
'package_data': package_data,
|
|
32
|
+
'install_requires': install_requires,
|
|
33
|
+
'entry_points': entry_points,
|
|
34
|
+
'python_requires': '>=3.9,<4.0',
|
|
35
|
+
}
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
setup(**setup_kwargs)
|
|
@@ -1,38 +0,0 @@
|
|
|
1
|
-
# -*- coding: utf-8 -*-
|
|
2
|
-
from setuptools import setup
|
|
3
|
-
|
|
4
|
-
packages = \
|
|
5
|
-
['fast_sentence_segment',
|
|
6
|
-
'fast_sentence_segment.bp',
|
|
7
|
-
'fast_sentence_segment.core',
|
|
8
|
-
'fast_sentence_segment.dmo',
|
|
9
|
-
'fast_sentence_segment.svc']
|
|
10
|
-
|
|
11
|
-
package_data = \
|
|
12
|
-
{'': ['*']}
|
|
13
|
-
|
|
14
|
-
install_requires = \
|
|
15
|
-
['spacy>=3.8.0,<4.0.0']
|
|
16
|
-
|
|
17
|
-
entry_points = \
|
|
18
|
-
{'console_scripts': ['segment = fast_sentence_segment.cli:main']}
|
|
19
|
-
|
|
20
|
-
setup_kwargs = {
|
|
21
|
-
'name': 'fast-sentence-segment',
|
|
22
|
-
'version': '1.2.0',
|
|
23
|
-
'description': 'Fast and Efficient Sentence Segmentation',
|
|
24
|
-
'long_description': '# Fast Sentence Segmentation\n\n[](https://pypi.org/project/fast-sentence-segment/)\n[](https://pypi.org/project/fast-sentence-segment/)\n[](https://opensource.org/licenses/MIT)\n[](https://spacy.io/)\n\nFast and efficient sentence segmentation using spaCy with surgical post-processing fixes. Handles complex edge cases like abbreviations (Dr., Mr., etc.), ellipses, quoted text, and multi-paragraph documents.\n\n## Why This Library?\n\n1. **Keep it local**: LLM API calls cost money and send your data to third parties. Run sentence segmentation entirely on your machine.\n2. **spaCy perfected**: spaCy is a great local model, but it makes mistakes. This library fixes most of spaCy\'s shortcomings.\n\n## Features\n\n- **Paragraph-aware segmentation**: Returns sentences grouped by paragraph\n- **Abbreviation handling**: Correctly handles "Dr.", "Mr.", "etc.", "p.m.", "a.m." without false splits\n- **Ellipsis preservation**: Keeps `...` intact while detecting sentence boundaries\n- **Question/exclamation splitting**: Properly splits on `?` and `!` followed by capital letters\n- **Cached processing**: LRU cache for repeated text processing\n- **Flexible output**: Nested lists (by paragraph) or flattened list of sentences\n- **Bullet point & numbered list normalization**: Cleans common list formats\n- **CLI tool**: Command-line interface for quick segmentation\n\n## Installation\n\n```bash\npip install fast-sentence-segment\n```\n\nAfter installation, download the spaCy model:\n\n```bash\npython -m spacy download en_core_web_sm\n```\n\n## Quick Start\n\n```python\nfrom fast_sentence_segment import segment_text\n\ntext = "Here is a Dr. who says something. And then again, what else? I don\'t know. Do you?"\n\nresults = segment_text(text)\n# Returns: [[\'Here is a Dr. who says something.\', \'And then again, what else?\', "I don\'t know.", \'Do you?\']]\n```\n\n## Usage\n\n### Basic Segmentation\n\nThe `segment_text` function returns a list of lists, where each inner list represents a paragraph containing its sentences:\n\n```python\nfrom fast_sentence_segment import segment_text\n\ntext = """First paragraph here. It has two sentences.\n\nSecond paragraph starts here. This one also has multiple sentences. And a third."""\n\nresults = segment_text(text)\n# Returns:\n# [\n# [\'First paragraph here.\', \'It has two sentences.\'],\n# [\'Second paragraph starts here.\', \'This one also has multiple sentences.\', \'And a third.\']\n# ]\n```\n\n### Flattened Output\n\nIf you don\'t need paragraph boundaries, use the `flatten` parameter:\n\n```python\nresults = segment_text(text, flatten=True)\n# Returns: [\'First paragraph here.\', \'It has two sentences.\', \'Second paragraph starts here.\', ...]\n```\n\n### Direct Segmenter Access\n\nFor more control, use the `Segmenter` class directly:\n\n```python\nfrom fast_sentence_segment import Segmenter\n\nsegmenter = Segmenter()\nresults = segmenter.input_text("Your text here.")\n```\n\n### Command Line Interface\n\nSegment text directly from the terminal:\n\n```bash\n# Direct text input\nsegment "Hello world. How are you? I am fine."\n\n# Numbered output\nsegment -n "First sentence. Second sentence."\n\n# From stdin\necho "Some text here. Another sentence." | segment\n\n# From file\nsegment -f document.txt\n```\n\n## API Reference\n\n| Function | Parameters | Returns | Description |\n|----------|------------|---------|-------------|\n| `segment_text()` | `input_text: str`, `flatten: bool = False` | `list` | Main entry point for segmentation |\n| `Segmenter.input_text()` | `input_text: str` | `list[list[str]]` | Cached paragraph-aware segmentation |\n\n### CLI Options\n\n| Option | Description |\n|--------|-------------|\n| `text` | Text to segment (positional argument) |\n| `-f, --file` | Read text from file |\n| `-n, --numbered` | Number output lines |\n\n## Why Nested Lists?\n\nThe segmentation process preserves document structure by segmenting into both paragraphs and sentences. Each outer list represents a paragraph, and each inner list contains that paragraph\'s sentences. This is useful for:\n\n- Document structure analysis\n- Paragraph-level processing\n- Maintaining original text organization\n\nUse `flatten=True` when you only need sentences without paragraph context.\n\n## Requirements\n\n- Python 3.9+\n- spaCy 3.8+\n- en_core_web_sm spaCy model\n\n## How It Works\n\nThis library uses spaCy for initial sentence segmentation, then applies surgical post-processing fixes for cases where spaCy\'s default behavior is incorrect:\n\n1. **Pre-processing**: Normalize numbered lists, preserve ellipses with placeholders\n2. **spaCy segmentation**: Use spaCy\'s sentence boundary detection\n3. **Post-processing**: Split on abbreviation boundaries, handle `?`/`!` + capital patterns\n4. **Denormalization**: Restore placeholders to original text\n\n## License\n\nMIT License - see [LICENSE](LICENSE) for details.\n\n## Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request.\n\n1. Fork the repository\n2. Create your feature branch (`git checkout -b feature/amazing-feature`)\n3. Run tests (`make test`)\n4. Commit your changes\n5. Push to the branch\n6. Open a Pull Request\n',
|
|
25
|
-
'author': 'Craig Trim',
|
|
26
|
-
'author_email': 'craigtrim@gmail.com',
|
|
27
|
-
'maintainer': 'Craig Trim',
|
|
28
|
-
'maintainer_email': 'craigtrim@gmail.com',
|
|
29
|
-
'url': 'https://github.com/craigtrim/fast-sentence-segment',
|
|
30
|
-
'packages': packages,
|
|
31
|
-
'package_data': package_data,
|
|
32
|
-
'install_requires': install_requires,
|
|
33
|
-
'entry_points': entry_points,
|
|
34
|
-
'python_requires': '>=3.9,<4.0',
|
|
35
|
-
}
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
setup(**setup_kwargs)
|
|
File without changes
|
{fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/__init__.py
RENAMED
|
File without changes
|
{fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/bp/__init__.py
RENAMED
|
File without changes
|
{fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/bp/segmenter.py
RENAMED
|
File without changes
|
|
File without changes
|
{fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/core/__init__.py
RENAMED
|
File without changes
|
|
File without changes
|
{fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/core/stopwatch.py
RENAMED
|
File without changes
|
{fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/dmo/__init__.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{fast_sentence_segment-1.2.0 → fast_sentence_segment-1.2.1}/fast_sentence_segment/svc/__init__.py
RENAMED
|
File without changes
|
|
File without changes
|