fast-sentence-segment 0.1.9__tar.gz → 1.4.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (41) hide show
  1. fast_sentence_segment-1.4.0/LICENSE +21 -0
  2. fast_sentence_segment-1.4.0/PKG-INFO +222 -0
  3. fast_sentence_segment-1.4.0/README.md +190 -0
  4. fast_sentence_segment-1.4.0/fast_sentence_segment/__init__.py +51 -0
  5. {fast-sentence-segment-0.1.9 → fast_sentence_segment-1.4.0}/fast_sentence_segment/bp/__init__.py +1 -1
  6. {fast-sentence-segment-0.1.9 → fast_sentence_segment-1.4.0}/fast_sentence_segment/bp/segmenter.py +65 -68
  7. fast_sentence_segment-1.4.0/fast_sentence_segment/cli.py +149 -0
  8. fast_sentence_segment-1.4.0/fast_sentence_segment/core/__init__.py +4 -0
  9. fast_sentence_segment-1.4.0/fast_sentence_segment/core/base_object.py +18 -0
  10. fast_sentence_segment-1.4.0/fast_sentence_segment/core/stopwatch.py +38 -0
  11. fast_sentence_segment-1.4.0/fast_sentence_segment/dmo/__init__.py +15 -0
  12. fast_sentence_segment-1.4.0/fast_sentence_segment/dmo/abbreviation_merger.py +146 -0
  13. fast_sentence_segment-1.4.0/fast_sentence_segment/dmo/abbreviation_splitter.py +95 -0
  14. fast_sentence_segment-1.4.0/fast_sentence_segment/dmo/abbreviations.py +149 -0
  15. {fast-sentence-segment-0.1.9 → fast_sentence_segment-1.4.0}/fast_sentence_segment/dmo/bullet_point_cleaner.py +55 -55
  16. fast_sentence_segment-1.4.0/fast_sentence_segment/dmo/dehyphenator.py +55 -0
  17. fast_sentence_segment-1.4.0/fast_sentence_segment/dmo/ellipsis_normalizer.py +45 -0
  18. fast_sentence_segment-1.4.0/fast_sentence_segment/dmo/group_quoted_sentences.py +141 -0
  19. {fast-sentence-segment-0.1.9 → fast_sentence_segment-1.4.0}/fast_sentence_segment/dmo/newlines_to_periods.py +57 -57
  20. fast_sentence_segment-1.4.0/fast_sentence_segment/dmo/normalize_quotes.py +80 -0
  21. fast_sentence_segment-1.4.0/fast_sentence_segment/dmo/numbered_list_normalizer.py +47 -0
  22. {fast-sentence-segment-0.1.9 → fast_sentence_segment-1.4.0}/fast_sentence_segment/dmo/post_process_sentences.py +48 -48
  23. fast_sentence_segment-1.4.0/fast_sentence_segment/dmo/question_exclamation_splitter.py +59 -0
  24. {fast-sentence-segment-0.1.9 → fast_sentence_segment-1.4.0}/fast_sentence_segment/dmo/spacy_doc_segmenter.py +114 -101
  25. fast_sentence_segment-1.4.0/fast_sentence_segment/dmo/strip_trailing_period_after_quote.py +70 -0
  26. fast_sentence_segment-1.4.0/fast_sentence_segment/dmo/title_name_merger.py +152 -0
  27. fast_sentence_segment-1.4.0/fast_sentence_segment/dmo/unwrap_hard_wrapped_text.py +75 -0
  28. {fast-sentence-segment-0.1.9 → fast_sentence_segment-1.4.0}/fast_sentence_segment/svc/__init__.py +2 -2
  29. {fast-sentence-segment-0.1.9 → fast_sentence_segment-1.4.0}/fast_sentence_segment/svc/perform_paragraph_segmentation.py +50 -50
  30. fast_sentence_segment-1.4.0/fast_sentence_segment/svc/perform_sentence_segmentation.py +176 -0
  31. fast_sentence_segment-1.4.0/pyproject.toml +65 -0
  32. fast_sentence_segment-1.4.0/setup.py +39 -0
  33. fast-sentence-segment-0.1.9/PKG-INFO +0 -54
  34. fast-sentence-segment-0.1.9/README.md +0 -29
  35. fast-sentence-segment-0.1.9/fast_sentence_segment/__init__.py +0 -18
  36. fast-sentence-segment-0.1.9/fast_sentence_segment/dmo/__init__.py +0 -6
  37. fast-sentence-segment-0.1.9/fast_sentence_segment/dmo/delimiters_to_periods.py +0 -37
  38. fast-sentence-segment-0.1.9/fast_sentence_segment/dmo/numbered_list_normalizer.py +0 -53
  39. fast-sentence-segment-0.1.9/fast_sentence_segment/svc/perform_sentence_segmentation.py +0 -129
  40. fast-sentence-segment-0.1.9/pyproject.toml +0 -61
  41. fast-sentence-segment-0.1.9/setup.py +0 -33
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2025 Craig Trim
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1,222 @@
1
+ Metadata-Version: 2.1
2
+ Name: fast-sentence-segment
3
+ Version: 1.4.0
4
+ Summary: Fast and Efficient Sentence Segmentation
5
+ Home-page: https://github.com/craigtrim/fast-sentence-segment
6
+ License: MIT
7
+ Keywords: nlp,text,preprocess,segment
8
+ Author: Craig Trim
9
+ Author-email: craigtrim@gmail.com
10
+ Maintainer: Craig Trim
11
+ Maintainer-email: craigtrim@gmail.com
12
+ Requires-Python: >=3.9,<4.0
13
+ Classifier: Development Status :: 5 - Production/Stable
14
+ Classifier: Intended Audience :: Developers
15
+ Classifier: Intended Audience :: Science/Research
16
+ Classifier: License :: OSI Approved :: MIT License
17
+ Classifier: Operating System :: OS Independent
18
+ Classifier: Programming Language :: Python :: 3
19
+ Classifier: Programming Language :: Python :: 3.9
20
+ Classifier: Programming Language :: Python :: 3.10
21
+ Classifier: Programming Language :: Python :: 3.11
22
+ Classifier: Programming Language :: Python :: 3.12
23
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
24
+ Classifier: Topic :: Software Development :: Libraries :: Python Modules
25
+ Classifier: Topic :: Text Processing :: Linguistic
26
+ Classifier: Typing :: Typed
27
+ Requires-Dist: spacy (>=3.8.0,<4.0.0)
28
+ Project-URL: Bug Tracker, https://github.com/craigtrim/fast-sentence-segment/issues
29
+ Project-URL: Repository, https://github.com/craigtrim/fast-sentence-segment
30
+ Description-Content-Type: text/markdown
31
+
32
+ # Fast Sentence Segmentation
33
+
34
+ [![PyPI version](https://img.shields.io/pypi/v/fast-sentence-segment.svg)](https://pypi.org/project/fast-sentence-segment/)
35
+ [![Python versions](https://img.shields.io/pypi/pyversions/fast-sentence-segment.svg)](https://pypi.org/project/fast-sentence-segment/)
36
+ [![CI](https://img.shields.io/github/actions/workflow/status/craigtrim/fast-sentence-segment/ci.yml?branch=master&label=CI)](https://github.com/craigtrim/fast-sentence-segment/actions/workflows/ci.yml)
37
+ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
38
+ [![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)
39
+ [![Downloads](https://static.pepy.tech/badge/fast-sentence-segment)](https://pepy.tech/project/fast-sentence-segment)
40
+ [![Downloads/Month](https://static.pepy.tech/badge/fast-sentence-segment/month)](https://pepy.tech/project/fast-sentence-segment)
41
+
42
+ Fast and efficient sentence segmentation using spaCy with surgical post-processing fixes. Handles complex edge cases like abbreviations (Dr., Mr., etc.), ellipses, quoted text, and multi-paragraph documents.
43
+
44
+ ## Why This Library?
45
+
46
+ 1. **Keep it local**: LLM API calls cost money and send your data to third parties. Run sentence segmentation entirely on your machine.
47
+ 2. **spaCy perfected**: spaCy is a great local model, but it makes mistakes. This library fixes most of spaCy's shortcomings.
48
+
49
+ ## Features
50
+
51
+ - **Paragraph-aware segmentation**: Returns sentences grouped by paragraph
52
+ - **Abbreviation handling**: Correctly handles "Dr.", "Mr.", "etc.", "p.m.", "a.m." without false splits
53
+ - **Ellipsis preservation**: Keeps `...` intact while detecting sentence boundaries
54
+ - **Question/exclamation splitting**: Properly splits on `?` and `!` followed by capital letters
55
+ - **Cached processing**: LRU cache for repeated text processing
56
+ - **Flexible output**: Nested lists (by paragraph) or flattened list of sentences
57
+ - **Bullet point & numbered list normalization**: Cleans common list formats
58
+ - **CLI tool**: Command-line interface for quick segmentation
59
+
60
+ ## Installation
61
+
62
+ ```bash
63
+ pip install fast-sentence-segment
64
+ ```
65
+
66
+ After installation, download the spaCy model:
67
+
68
+ ```bash
69
+ python -m spacy download en_core_web_sm
70
+ ```
71
+
72
+ ## Quick Start
73
+
74
+ ```python
75
+ from fast_sentence_segment import segment_text
76
+
77
+ text = "Do you like Dr. Who? I prefer Dr. Strange! Mr. T is also cool."
78
+
79
+ results = segment_text(text, flatten=True)
80
+ ```
81
+
82
+ ```json
83
+ [
84
+ "Do you like Dr. Who?",
85
+ "I prefer Dr. Strange!",
86
+ "Mr. T is also cool."
87
+ ]
88
+ ```
89
+
90
+ Notice how "Dr. Who?" stays together as a single sentence—the library correctly recognizes that a title followed by a single-word name ending in `?` or `!` is a name reference, not a sentence boundary.
91
+
92
+ ## Usage
93
+
94
+ ### Basic Segmentation
95
+
96
+ The `segment_text` function returns a list of lists, where each inner list represents a paragraph containing its sentences:
97
+
98
+ ```python
99
+ from fast_sentence_segment import segment_text
100
+
101
+ text = """Gandalf spoke softly. "All we have to decide is what to do with the time given us."
102
+
103
+ Frodo nodded. The weight of the Ring pressed against his chest."""
104
+
105
+ results = segment_text(text)
106
+ ```
107
+
108
+ ```json
109
+ [
110
+ [
111
+ "Gandalf spoke softly.",
112
+ "\"All we have to decide is what to do with the time given us.\"."
113
+ ],
114
+ [
115
+ "Frodo nodded.",
116
+ "The weight of the Ring pressed against his chest."
117
+ ]
118
+ ]
119
+ ```
120
+
121
+ ### Flattened Output
122
+
123
+ If you don't need paragraph boundaries, use the `flatten` parameter:
124
+
125
+ ```python
126
+ text = "At 9 a.m. the hobbits set out. By 3 p.m. they reached Rivendell. Mr. Frodo was exhausted."
127
+
128
+ results = segment_text(text, flatten=True)
129
+ ```
130
+
131
+ ```json
132
+ [
133
+ "At 9 a.m. the hobbits set out.",
134
+ "By 3 p.m. they reached Rivendell.",
135
+ "Mr. Frodo was exhausted."
136
+ ]
137
+ ```
138
+
139
+ ### Direct Segmenter Access
140
+
141
+ For more control, use the `Segmenter` class directly:
142
+
143
+ ```python
144
+ from fast_sentence_segment import Segmenter
145
+
146
+ segmenter = Segmenter()
147
+ results = segmenter.input_text("Your text here.")
148
+ ```
149
+
150
+ ### Command Line Interface
151
+
152
+ ```bash
153
+ # Inline text
154
+ segment "Gandalf paused... You shall not pass! The Balrog roared."
155
+
156
+ # Pipe from stdin
157
+ echo "Have you seen Dr. Who? It's brilliant!" | segment
158
+
159
+ # Numbered output
160
+ segment -n -f silmarillion.txt
161
+
162
+ # File-to-file (one sentence per line)
163
+ segment-file --input-file book.txt --output-file sentences.txt
164
+
165
+ # Unwrap hard-wrapped e-texts (Project Gutenberg, etc.)
166
+ segment-file --input-file book.txt --output-file sentences.txt --unwrap
167
+ ```
168
+
169
+ ## API Reference
170
+
171
+ | Function | Parameters | Returns | Description |
172
+ |----------|------------|---------|-------------|
173
+ | `segment_text()` | `input_text: str`, `flatten: bool = False`, `unwrap: bool = False` | `list` | Main entry point for segmentation |
174
+ | `Segmenter.input_text()` | `input_text: str` | `list[list[str]]` | Cached paragraph-aware segmentation |
175
+
176
+ ### CLI Commands
177
+
178
+ | Command | Description |
179
+ |---------|-------------|
180
+ | `segment [text]` | Segment text from argument, `-f FILE`, or stdin. Use `-n` for numbered output. |
181
+ | `segment-file --input-file IN --output-file OUT [--unwrap]` | Segment a file and write one sentence per line. Use `--unwrap` for hard-wrapped e-texts. |
182
+
183
+ ## Why Nested Lists?
184
+
185
+ The segmentation process preserves document structure by segmenting into both paragraphs and sentences. Each outer list represents a paragraph, and each inner list contains that paragraph's sentences. This is useful for:
186
+
187
+ - Document structure analysis
188
+ - Paragraph-level processing
189
+ - Maintaining original text organization
190
+
191
+ Use `flatten=True` when you only need sentences without paragraph context.
192
+
193
+ ## Requirements
194
+
195
+ - Python 3.9+
196
+ - spaCy 3.8+
197
+ - en_core_web_sm spaCy model
198
+
199
+ ## How It Works
200
+
201
+ This library uses spaCy for initial sentence segmentation, then applies surgical post-processing fixes for cases where spaCy's default behavior is incorrect:
202
+
203
+ 1. **Pre-processing**: Normalize numbered lists, preserve ellipses with placeholders
204
+ 2. **spaCy segmentation**: Use spaCy's sentence boundary detection
205
+ 3. **Post-processing**: Split on abbreviation boundaries, handle `?`/`!` + capital patterns
206
+ 4. **Denormalization**: Restore placeholders to original text
207
+
208
+ ## License
209
+
210
+ MIT License - see [LICENSE](LICENSE) for details.
211
+
212
+ ## Contributing
213
+
214
+ Contributions are welcome! Please feel free to submit a Pull Request.
215
+
216
+ 1. Fork the repository
217
+ 2. Create your feature branch (`git checkout -b feature/amazing-feature`)
218
+ 3. Run tests (`make test`)
219
+ 4. Commit your changes
220
+ 5. Push to the branch
221
+ 6. Open a Pull Request
222
+
@@ -0,0 +1,190 @@
1
+ # Fast Sentence Segmentation
2
+
3
+ [![PyPI version](https://img.shields.io/pypi/v/fast-sentence-segment.svg)](https://pypi.org/project/fast-sentence-segment/)
4
+ [![Python versions](https://img.shields.io/pypi/pyversions/fast-sentence-segment.svg)](https://pypi.org/project/fast-sentence-segment/)
5
+ [![CI](https://img.shields.io/github/actions/workflow/status/craigtrim/fast-sentence-segment/ci.yml?branch=master&label=CI)](https://github.com/craigtrim/fast-sentence-segment/actions/workflows/ci.yml)
6
+ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
7
+ [![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)
8
+ [![Downloads](https://static.pepy.tech/badge/fast-sentence-segment)](https://pepy.tech/project/fast-sentence-segment)
9
+ [![Downloads/Month](https://static.pepy.tech/badge/fast-sentence-segment/month)](https://pepy.tech/project/fast-sentence-segment)
10
+
11
+ Fast and efficient sentence segmentation using spaCy with surgical post-processing fixes. Handles complex edge cases like abbreviations (Dr., Mr., etc.), ellipses, quoted text, and multi-paragraph documents.
12
+
13
+ ## Why This Library?
14
+
15
+ 1. **Keep it local**: LLM API calls cost money and send your data to third parties. Run sentence segmentation entirely on your machine.
16
+ 2. **spaCy perfected**: spaCy is a great local model, but it makes mistakes. This library fixes most of spaCy's shortcomings.
17
+
18
+ ## Features
19
+
20
+ - **Paragraph-aware segmentation**: Returns sentences grouped by paragraph
21
+ - **Abbreviation handling**: Correctly handles "Dr.", "Mr.", "etc.", "p.m.", "a.m." without false splits
22
+ - **Ellipsis preservation**: Keeps `...` intact while detecting sentence boundaries
23
+ - **Question/exclamation splitting**: Properly splits on `?` and `!` followed by capital letters
24
+ - **Cached processing**: LRU cache for repeated text processing
25
+ - **Flexible output**: Nested lists (by paragraph) or flattened list of sentences
26
+ - **Bullet point & numbered list normalization**: Cleans common list formats
27
+ - **CLI tool**: Command-line interface for quick segmentation
28
+
29
+ ## Installation
30
+
31
+ ```bash
32
+ pip install fast-sentence-segment
33
+ ```
34
+
35
+ After installation, download the spaCy model:
36
+
37
+ ```bash
38
+ python -m spacy download en_core_web_sm
39
+ ```
40
+
41
+ ## Quick Start
42
+
43
+ ```python
44
+ from fast_sentence_segment import segment_text
45
+
46
+ text = "Do you like Dr. Who? I prefer Dr. Strange! Mr. T is also cool."
47
+
48
+ results = segment_text(text, flatten=True)
49
+ ```
50
+
51
+ ```json
52
+ [
53
+ "Do you like Dr. Who?",
54
+ "I prefer Dr. Strange!",
55
+ "Mr. T is also cool."
56
+ ]
57
+ ```
58
+
59
+ Notice how "Dr. Who?" stays together as a single sentence—the library correctly recognizes that a title followed by a single-word name ending in `?` or `!` is a name reference, not a sentence boundary.
60
+
61
+ ## Usage
62
+
63
+ ### Basic Segmentation
64
+
65
+ The `segment_text` function returns a list of lists, where each inner list represents a paragraph containing its sentences:
66
+
67
+ ```python
68
+ from fast_sentence_segment import segment_text
69
+
70
+ text = """Gandalf spoke softly. "All we have to decide is what to do with the time given us."
71
+
72
+ Frodo nodded. The weight of the Ring pressed against his chest."""
73
+
74
+ results = segment_text(text)
75
+ ```
76
+
77
+ ```json
78
+ [
79
+ [
80
+ "Gandalf spoke softly.",
81
+ "\"All we have to decide is what to do with the time given us.\"."
82
+ ],
83
+ [
84
+ "Frodo nodded.",
85
+ "The weight of the Ring pressed against his chest."
86
+ ]
87
+ ]
88
+ ```
89
+
90
+ ### Flattened Output
91
+
92
+ If you don't need paragraph boundaries, use the `flatten` parameter:
93
+
94
+ ```python
95
+ text = "At 9 a.m. the hobbits set out. By 3 p.m. they reached Rivendell. Mr. Frodo was exhausted."
96
+
97
+ results = segment_text(text, flatten=True)
98
+ ```
99
+
100
+ ```json
101
+ [
102
+ "At 9 a.m. the hobbits set out.",
103
+ "By 3 p.m. they reached Rivendell.",
104
+ "Mr. Frodo was exhausted."
105
+ ]
106
+ ```
107
+
108
+ ### Direct Segmenter Access
109
+
110
+ For more control, use the `Segmenter` class directly:
111
+
112
+ ```python
113
+ from fast_sentence_segment import Segmenter
114
+
115
+ segmenter = Segmenter()
116
+ results = segmenter.input_text("Your text here.")
117
+ ```
118
+
119
+ ### Command Line Interface
120
+
121
+ ```bash
122
+ # Inline text
123
+ segment "Gandalf paused... You shall not pass! The Balrog roared."
124
+
125
+ # Pipe from stdin
126
+ echo "Have you seen Dr. Who? It's brilliant!" | segment
127
+
128
+ # Numbered output
129
+ segment -n -f silmarillion.txt
130
+
131
+ # File-to-file (one sentence per line)
132
+ segment-file --input-file book.txt --output-file sentences.txt
133
+
134
+ # Unwrap hard-wrapped e-texts (Project Gutenberg, etc.)
135
+ segment-file --input-file book.txt --output-file sentences.txt --unwrap
136
+ ```
137
+
138
+ ## API Reference
139
+
140
+ | Function | Parameters | Returns | Description |
141
+ |----------|------------|---------|-------------|
142
+ | `segment_text()` | `input_text: str`, `flatten: bool = False`, `unwrap: bool = False` | `list` | Main entry point for segmentation |
143
+ | `Segmenter.input_text()` | `input_text: str` | `list[list[str]]` | Cached paragraph-aware segmentation |
144
+
145
+ ### CLI Commands
146
+
147
+ | Command | Description |
148
+ |---------|-------------|
149
+ | `segment [text]` | Segment text from argument, `-f FILE`, or stdin. Use `-n` for numbered output. |
150
+ | `segment-file --input-file IN --output-file OUT [--unwrap]` | Segment a file and write one sentence per line. Use `--unwrap` for hard-wrapped e-texts. |
151
+
152
+ ## Why Nested Lists?
153
+
154
+ The segmentation process preserves document structure by segmenting into both paragraphs and sentences. Each outer list represents a paragraph, and each inner list contains that paragraph's sentences. This is useful for:
155
+
156
+ - Document structure analysis
157
+ - Paragraph-level processing
158
+ - Maintaining original text organization
159
+
160
+ Use `flatten=True` when you only need sentences without paragraph context.
161
+
162
+ ## Requirements
163
+
164
+ - Python 3.9+
165
+ - spaCy 3.8+
166
+ - en_core_web_sm spaCy model
167
+
168
+ ## How It Works
169
+
170
+ This library uses spaCy for initial sentence segmentation, then applies surgical post-processing fixes for cases where spaCy's default behavior is incorrect:
171
+
172
+ 1. **Pre-processing**: Normalize numbered lists, preserve ellipses with placeholders
173
+ 2. **spaCy segmentation**: Use spaCy's sentence boundary detection
174
+ 3. **Post-processing**: Split on abbreviation boundaries, handle `?`/`!` + capital patterns
175
+ 4. **Denormalization**: Restore placeholders to original text
176
+
177
+ ## License
178
+
179
+ MIT License - see [LICENSE](LICENSE) for details.
180
+
181
+ ## Contributing
182
+
183
+ Contributions are welcome! Please feel free to submit a Pull Request.
184
+
185
+ 1. Fork the repository
186
+ 2. Create your feature branch (`git checkout -b feature/amazing-feature`)
187
+ 3. Run tests (`make test`)
188
+ 4. Commit your changes
189
+ 5. Push to the branch
190
+ 6. Open a Pull Request
@@ -0,0 +1,51 @@
1
+ from .bp import *
2
+ from .svc import *
3
+ from .dmo import *
4
+
5
+ from .bp.segmenter import Segmenter
6
+ from .dmo.unwrap_hard_wrapped_text import unwrap_hard_wrapped_text
7
+ from .dmo.normalize_quotes import normalize_quotes
8
+
9
+ segment = Segmenter().input_text
10
+
11
+
12
+ def segment_text(
13
+ input_text: str,
14
+ flatten: bool = False,
15
+ unwrap: bool = False,
16
+ normalize: bool = True,
17
+ ) -> list:
18
+ """Segment text into sentences.
19
+
20
+ Args:
21
+ input_text: The text to segment.
22
+ flatten: If True, return a flat list of sentences instead of
23
+ nested paragraphs.
24
+ unwrap: If True, unwrap hard-wrapped lines (e.g., Project
25
+ Gutenberg e-texts) before segmenting.
26
+ normalize: If True (default), normalize unicode quote variants
27
+ to ASCII equivalents before segmenting. Ensures consistent
28
+ quote characters for downstream processing.
29
+
30
+ Returns:
31
+ List of sentences (if flatten=True) or list of paragraph
32
+ groups, each containing a list of sentences.
33
+
34
+ Related GitHub Issue:
35
+ #6 - Review findings from Issue #5
36
+ https://github.com/craigtrim/fast-sentence-segment/issues/6
37
+ """
38
+ if unwrap:
39
+ input_text = unwrap_hard_wrapped_text(input_text)
40
+
41
+ if normalize:
42
+ input_text = normalize_quotes(input_text)
43
+
44
+ results = segment(input_text)
45
+
46
+ if flatten:
47
+ flat = []
48
+ [[flat.append(y) for y in x] for x in results]
49
+ return flat
50
+
51
+ return results
@@ -1 +1 @@
1
- from .segmenter import Segmenter
1
+ from .segmenter import Segmenter
@@ -1,68 +1,65 @@
1
- #!/usr/bin/env python
2
- # -*- coding: UTF-8 -*-
3
- """ Orchestrate Sentence Segmentation """
4
-
5
-
6
- from functools import lru_cache
7
-
8
- from baseblock import Enforcer
9
- from baseblock import Stopwatch
10
- from baseblock import BaseObject
11
-
12
- from fast_sentence_segment.svc import PerformParagraphSegmentation
13
- from fast_sentence_segment.svc import PerformSentenceSegmentation
14
-
15
-
16
- class Segmenter(BaseObject):
17
- """ Orchestrate Sentence Segmentation """
18
-
19
- def __init__(self):
20
- """ Change Log
21
-
22
- Created:
23
- 30-Sept-2021
24
- """
25
- BaseObject.__init__(self, __name__)
26
- self._segment_paragraphs = PerformParagraphSegmentation().process
27
- self._segment_sentences = PerformSentenceSegmentation().process
28
-
29
- def _input_text(self,
30
- input_text: str) -> list:
31
- paragraphs = []
32
-
33
- for paragraph in self._segment_paragraphs(input_text):
34
- paragraphs.append(self._segment_sentences(paragraph))
35
-
36
- return paragraphs
37
-
38
- @lru_cache(maxsize=1024, typed=True)
39
- def input_text(self,
40
- input_text: str) -> list:
41
- """Segment Input Text into Paragraphs and Sentences
42
-
43
- Args:
44
- input_text (str): An input string of any length or type
45
-
46
- Raises:
47
- ValueError: input must be a string
48
-
49
- Returns:
50
- list: returns a list of lists.
51
- Each outer list is a paragraph.
52
- Each inner list contains 1..* sentences
53
- """
54
-
55
- if self.isEnabledForDebug:
56
- Enforcer.is_str(input_text)
57
-
58
- sw = Stopwatch()
59
-
60
- paragraphs = self._input_text(input_text)
61
-
62
- if self.isEnabledForInfo:
63
- self.logger.info('\n'.join([
64
- "Segmentation of Input Text Complete",
65
- f"\tTotal Paragraphs: {len(paragraphs)}",
66
- f"\tTotal Time: {str(sw)}"]))
67
-
68
- return paragraphs
1
+ #!/usr/bin/env python
2
+ # -*- coding: UTF-8 -*-
3
+ """ Orchestrate Sentence Segmentation """
4
+
5
+
6
+ from functools import lru_cache
7
+
8
+ from fast_sentence_segment.core import BaseObject, Stopwatch
9
+ from fast_sentence_segment.svc import PerformParagraphSegmentation
10
+ from fast_sentence_segment.svc import PerformSentenceSegmentation
11
+
12
+
13
+ class Segmenter(BaseObject):
14
+ """ Orchestrate Sentence Segmentation """
15
+
16
+ def __init__(self):
17
+ """ Change Log
18
+
19
+ Created:
20
+ 30-Sept-2021
21
+ """
22
+ BaseObject.__init__(self, __name__)
23
+ self._segment_paragraphs = PerformParagraphSegmentation().process
24
+ self._segment_sentences = PerformSentenceSegmentation().process
25
+
26
+ def _input_text(self,
27
+ input_text: str) -> list:
28
+ paragraphs = []
29
+
30
+ for paragraph in self._segment_paragraphs(input_text):
31
+ paragraphs.append(self._segment_sentences(paragraph))
32
+
33
+ return paragraphs
34
+
35
+ @lru_cache(maxsize=1024, typed=True)
36
+ def input_text(self,
37
+ input_text: str) -> list:
38
+ """Segment Input Text into Paragraphs and Sentences
39
+
40
+ Args:
41
+ input_text (str): An input string of any length or type
42
+
43
+ Raises:
44
+ ValueError: input must be a string
45
+
46
+ Returns:
47
+ list: returns a list of lists.
48
+ Each outer list is a paragraph.
49
+ Each inner list contains 1..* sentences
50
+ """
51
+
52
+ if self.isEnabledForDebug and not isinstance(input_text, str):
53
+ raise ValueError(f"Expected str, got {type(input_text)}")
54
+
55
+ sw = Stopwatch()
56
+
57
+ paragraphs = self._input_text(input_text)
58
+
59
+ if self.isEnabledForInfo:
60
+ self.logger.info('\n'.join([
61
+ "Segmentation of Input Text Complete",
62
+ f"\tTotal Paragraphs: {len(paragraphs)}",
63
+ f"\tTotal Time: {str(sw)}"]))
64
+
65
+ return paragraphs