fast-sentence-segment 0.1.8__tar.gz → 1.1.8__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (24) hide show
  1. fast_sentence_segment-1.1.8/LICENSE +21 -0
  2. fast_sentence_segment-1.1.8/PKG-INFO +146 -0
  3. fast_sentence_segment-1.1.8/README.md +118 -0
  4. {fast-sentence-segment-0.1.8 → fast_sentence_segment-1.1.8}/fast_sentence_segment/__init__.py +18 -18
  5. {fast-sentence-segment-0.1.8 → fast_sentence_segment-1.1.8}/fast_sentence_segment/bp/__init__.py +1 -1
  6. {fast-sentence-segment-0.1.8 → fast_sentence_segment-1.1.8}/fast_sentence_segment/bp/segmenter.py +65 -68
  7. fast_sentence_segment-1.1.8/fast_sentence_segment/core/__init__.py +4 -0
  8. fast_sentence_segment-1.1.8/fast_sentence_segment/core/base_object.py +18 -0
  9. fast_sentence_segment-1.1.8/fast_sentence_segment/core/stopwatch.py +38 -0
  10. {fast-sentence-segment-0.1.8 → fast_sentence_segment-1.1.8}/fast_sentence_segment/dmo/__init__.py +6 -6
  11. {fast-sentence-segment-0.1.8 → fast_sentence_segment-1.1.8}/fast_sentence_segment/dmo/bullet_point_cleaner.py +55 -55
  12. {fast-sentence-segment-0.1.8 → fast_sentence_segment-1.1.8}/fast_sentence_segment/dmo/delimiters_to_periods.py +37 -37
  13. {fast-sentence-segment-0.1.8 → fast_sentence_segment-1.1.8}/fast_sentence_segment/dmo/newlines_to_periods.py +57 -54
  14. {fast-sentence-segment-0.1.8 → fast_sentence_segment-1.1.8}/fast_sentence_segment/dmo/numbered_list_normalizer.py +53 -53
  15. {fast-sentence-segment-0.1.8 → fast_sentence_segment-1.1.8}/fast_sentence_segment/dmo/post_process_sentences.py +48 -48
  16. {fast-sentence-segment-0.1.8 → fast_sentence_segment-1.1.8}/fast_sentence_segment/dmo/spacy_doc_segmenter.py +101 -101
  17. {fast-sentence-segment-0.1.8 → fast_sentence_segment-1.1.8}/fast_sentence_segment/svc/__init__.py +2 -2
  18. {fast-sentence-segment-0.1.8 → fast_sentence_segment-1.1.8}/fast_sentence_segment/svc/perform_paragraph_segmentation.py +50 -50
  19. {fast-sentence-segment-0.1.8 → fast_sentence_segment-1.1.8}/fast_sentence_segment/svc/perform_sentence_segmentation.py +129 -129
  20. {fast-sentence-segment-0.1.8 → fast_sentence_segment-1.1.8}/pyproject.toml +49 -61
  21. fast_sentence_segment-1.1.8/setup.py +34 -0
  22. fast-sentence-segment-0.1.8/PKG-INFO +0 -54
  23. fast-sentence-segment-0.1.8/README.md +0 -29
  24. fast-sentence-segment-0.1.8/setup.py +0 -33
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2025 Craig Trim
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1,146 @@
1
+ Metadata-Version: 2.4
2
+ Name: fast-sentence-segment
3
+ Version: 1.1.8
4
+ Summary: Fast and Efficient Sentence Segmentation
5
+ License: MIT
6
+ License-File: LICENSE
7
+ Keywords: nlp,text,preprocess,segment
8
+ Author: Craig Trim
9
+ Author-email: craigtrim@gmail.com
10
+ Maintainer: Craig Trim
11
+ Maintainer-email: craigtrim@gmail.com
12
+ Requires-Python: >=3.9,<4.0
13
+ Classifier: Development Status :: 4 - Beta
14
+ Classifier: License :: OSI Approved :: MIT License
15
+ Classifier: Programming Language :: Python :: 3
16
+ Classifier: Programming Language :: Python :: 3.9
17
+ Classifier: Programming Language :: Python :: 3.10
18
+ Classifier: Programming Language :: Python :: 3.11
19
+ Classifier: Programming Language :: Python :: 3.12
20
+ Classifier: Programming Language :: Python :: 3.13
21
+ Classifier: Programming Language :: Python :: 3.14
22
+ Classifier: Topic :: Software Development :: Libraries :: Python Modules
23
+ Requires-Dist: spacy (>=3.8.0,<4.0.0)
24
+ Project-URL: Bug Tracker, https://github.com/craigtrim/fast-sentence-segment/issues
25
+ Project-URL: Repository, https://github.com/craigtrim/fast-sentence-segment
26
+ Description-Content-Type: text/markdown
27
+
28
+ # Fast Sentence Segmentation
29
+
30
+ [![PyPI version](https://img.shields.io/pypi/v/fast-sentence-segment.svg)](https://pypi.org/project/fast-sentence-segment/)
31
+ [![Python versions](https://img.shields.io/pypi/pyversions/fast-sentence-segment.svg)](https://pypi.org/project/fast-sentence-segment/)
32
+ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
33
+ [![spaCy](https://img.shields.io/badge/spaCy-3.5-blue.svg)](https://spacy.io/)
34
+
35
+ Fast and efficient sentence segmentation using spaCy. Handles complex edge cases like abbreviations (Dr., Mr., etc.), quoted text, and multi-paragraph documents.
36
+
37
+ ## Features
38
+
39
+ - **Paragraph-aware segmentation**: Returns sentences grouped by paragraph
40
+ - **Abbreviation handling**: Correctly handles "Dr.", "Mr.", "etc." without false splits
41
+ - **Cached processing**: LRU cache for repeated text processing
42
+ - **Flexible output**: Nested lists (by paragraph) or flattened list of sentences
43
+ - **Bullet point & numbered list normalization**: Cleans common list formats
44
+
45
+ ## Installation
46
+
47
+ ```bash
48
+ pip install fast-sentence-segment
49
+ ```
50
+
51
+ After installation, download the spaCy model:
52
+
53
+ ```bash
54
+ python -m spacy download en_core_web_sm
55
+ ```
56
+
57
+ ## Quick Start
58
+
59
+ ```python
60
+ from fast_sentence_segment import segment_text
61
+
62
+ text = "Here is a Dr. who says something. And then again, what else? I don't know. Do you?"
63
+
64
+ results = segment_text(text)
65
+ # Returns: [['Here is a Dr. who says something.', 'And then again, what else?', "I don't know.", 'Do you?']]
66
+ ```
67
+
68
+ ## Usage
69
+
70
+ ### Basic Segmentation
71
+
72
+ The `segment_text` function returns a list of lists, where each inner list represents a paragraph containing its sentences:
73
+
74
+ ```python
75
+ from fast_sentence_segment import segment_text
76
+
77
+ text = """First paragraph here. It has two sentences.
78
+
79
+ Second paragraph starts here. This one also has multiple sentences. And a third."""
80
+
81
+ results = segment_text(text)
82
+ # Returns:
83
+ # [
84
+ # ['First paragraph here.', 'It has two sentences.'],
85
+ # ['Second paragraph starts here.', 'This one also has multiple sentences.', 'And a third.']
86
+ # ]
87
+ ```
88
+
89
+ ### Flattened Output
90
+
91
+ If you don't need paragraph boundaries, use the `flatten` parameter:
92
+
93
+ ```python
94
+ results = segment_text(text, flatten=True)
95
+ # Returns: ['First paragraph here.', 'It has two sentences.', 'Second paragraph starts here.', ...]
96
+ ```
97
+
98
+ ### Direct Segmenter Access
99
+
100
+ For more control, use the `Segmenter` class directly:
101
+
102
+ ```python
103
+ from fast_sentence_segment import Segmenter
104
+
105
+ segmenter = Segmenter()
106
+ results = segmenter.input_text("Your text here.")
107
+ ```
108
+
109
+ ## API Reference
110
+
111
+ | Function | Parameters | Returns | Description |
112
+ |----------|------------|---------|-------------|
113
+ | `segment_text()` | `input_text: str`, `flatten: bool = False` | `list` | Main entry point for segmentation |
114
+ | `Segmenter.input_text()` | `input_text: str` | `list[list[str]]` | Cached paragraph-aware segmentation |
115
+
116
+ ## Why Nested Lists?
117
+
118
+ The segmentation process preserves document structure by segmenting into both paragraphs and sentences. Each outer list represents a paragraph, and each inner list contains that paragraph's sentences. This is useful for:
119
+
120
+ - Document structure analysis
121
+ - Paragraph-level processing
122
+ - Maintaining original text organization
123
+
124
+ Use `flatten=True` when you only need sentences without paragraph context.
125
+
126
+ ## Requirements
127
+
128
+ - Python 3.8.5+
129
+ - spaCy 3.5.3
130
+ - en_core_web_sm spaCy model
131
+
132
+ ## License
133
+
134
+ MIT License - see [LICENSE](LICENSE) for details.
135
+
136
+ ## Contributing
137
+
138
+ Contributions are welcome! Please feel free to submit a Pull Request.
139
+
140
+ 1. Fork the repository
141
+ 2. Create your feature branch (`git checkout -b feature/amazing-feature`)
142
+ 3. Run tests (`make test`)
143
+ 4. Commit your changes
144
+ 5. Push to the branch
145
+ 6. Open a Pull Request
146
+
@@ -0,0 +1,118 @@
1
+ # Fast Sentence Segmentation
2
+
3
+ [![PyPI version](https://img.shields.io/pypi/v/fast-sentence-segment.svg)](https://pypi.org/project/fast-sentence-segment/)
4
+ [![Python versions](https://img.shields.io/pypi/pyversions/fast-sentence-segment.svg)](https://pypi.org/project/fast-sentence-segment/)
5
+ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
6
+ [![spaCy](https://img.shields.io/badge/spaCy-3.5-blue.svg)](https://spacy.io/)
7
+
8
+ Fast and efficient sentence segmentation using spaCy. Handles complex edge cases like abbreviations (Dr., Mr., etc.), quoted text, and multi-paragraph documents.
9
+
10
+ ## Features
11
+
12
+ - **Paragraph-aware segmentation**: Returns sentences grouped by paragraph
13
+ - **Abbreviation handling**: Correctly handles "Dr.", "Mr.", "etc." without false splits
14
+ - **Cached processing**: LRU cache for repeated text processing
15
+ - **Flexible output**: Nested lists (by paragraph) or flattened list of sentences
16
+ - **Bullet point & numbered list normalization**: Cleans common list formats
17
+
18
+ ## Installation
19
+
20
+ ```bash
21
+ pip install fast-sentence-segment
22
+ ```
23
+
24
+ After installation, download the spaCy model:
25
+
26
+ ```bash
27
+ python -m spacy download en_core_web_sm
28
+ ```
29
+
30
+ ## Quick Start
31
+
32
+ ```python
33
+ from fast_sentence_segment import segment_text
34
+
35
+ text = "Here is a Dr. who says something. And then again, what else? I don't know. Do you?"
36
+
37
+ results = segment_text(text)
38
+ # Returns: [['Here is a Dr. who says something.', 'And then again, what else?', "I don't know.", 'Do you?']]
39
+ ```
40
+
41
+ ## Usage
42
+
43
+ ### Basic Segmentation
44
+
45
+ The `segment_text` function returns a list of lists, where each inner list represents a paragraph containing its sentences:
46
+
47
+ ```python
48
+ from fast_sentence_segment import segment_text
49
+
50
+ text = """First paragraph here. It has two sentences.
51
+
52
+ Second paragraph starts here. This one also has multiple sentences. And a third."""
53
+
54
+ results = segment_text(text)
55
+ # Returns:
56
+ # [
57
+ # ['First paragraph here.', 'It has two sentences.'],
58
+ # ['Second paragraph starts here.', 'This one also has multiple sentences.', 'And a third.']
59
+ # ]
60
+ ```
61
+
62
+ ### Flattened Output
63
+
64
+ If you don't need paragraph boundaries, use the `flatten` parameter:
65
+
66
+ ```python
67
+ results = segment_text(text, flatten=True)
68
+ # Returns: ['First paragraph here.', 'It has two sentences.', 'Second paragraph starts here.', ...]
69
+ ```
70
+
71
+ ### Direct Segmenter Access
72
+
73
+ For more control, use the `Segmenter` class directly:
74
+
75
+ ```python
76
+ from fast_sentence_segment import Segmenter
77
+
78
+ segmenter = Segmenter()
79
+ results = segmenter.input_text("Your text here.")
80
+ ```
81
+
82
+ ## API Reference
83
+
84
+ | Function | Parameters | Returns | Description |
85
+ |----------|------------|---------|-------------|
86
+ | `segment_text()` | `input_text: str`, `flatten: bool = False` | `list` | Main entry point for segmentation |
87
+ | `Segmenter.input_text()` | `input_text: str` | `list[list[str]]` | Cached paragraph-aware segmentation |
88
+
89
+ ## Why Nested Lists?
90
+
91
+ The segmentation process preserves document structure by segmenting into both paragraphs and sentences. Each outer list represents a paragraph, and each inner list contains that paragraph's sentences. This is useful for:
92
+
93
+ - Document structure analysis
94
+ - Paragraph-level processing
95
+ - Maintaining original text organization
96
+
97
+ Use `flatten=True` when you only need sentences without paragraph context.
98
+
99
+ ## Requirements
100
+
101
+ - Python 3.8.5+
102
+ - spaCy 3.5.3
103
+ - en_core_web_sm spaCy model
104
+
105
+ ## License
106
+
107
+ MIT License - see [LICENSE](LICENSE) for details.
108
+
109
+ ## Contributing
110
+
111
+ Contributions are welcome! Please feel free to submit a Pull Request.
112
+
113
+ 1. Fork the repository
114
+ 2. Create your feature branch (`git checkout -b feature/amazing-feature`)
115
+ 3. Run tests (`make test`)
116
+ 4. Commit your changes
117
+ 5. Push to the branch
118
+ 6. Open a Pull Request
@@ -1,18 +1,18 @@
1
- from .bp import *
2
- from .svc import *
3
- from .dmo import *
4
-
5
- from .bp.segmenter import Segmenter
6
-
7
- segment = Segmenter().input_text
8
-
9
-
10
- def segment_text(input_text: str, flatten: bool = False) -> list:
11
- results = segment(input_text)
12
-
13
- if flatten:
14
- flat = []
15
- [[flat.append(y) for y in x] for x in results]
16
- return flat
17
-
18
- return results
1
+ from .bp import *
2
+ from .svc import *
3
+ from .dmo import *
4
+
5
+ from .bp.segmenter import Segmenter
6
+
7
+ segment = Segmenter().input_text
8
+
9
+
10
+ def segment_text(input_text: str, flatten: bool = False) -> list:
11
+ results = segment(input_text)
12
+
13
+ if flatten:
14
+ flat = []
15
+ [[flat.append(y) for y in x] for x in results]
16
+ return flat
17
+
18
+ return results
@@ -1 +1 @@
1
- from .segmenter import Segmenter
1
+ from .segmenter import Segmenter
@@ -1,68 +1,65 @@
1
- #!/usr/bin/env python
2
- # -*- coding: UTF-8 -*-
3
- """ Orchestrate Sentence Segmentation """
4
-
5
-
6
- from functools import lru_cache
7
-
8
- from baseblock import Enforcer
9
- from baseblock import Stopwatch
10
- from baseblock import BaseObject
11
-
12
- from fast_sentence_segment.svc import PerformParagraphSegmentation
13
- from fast_sentence_segment.svc import PerformSentenceSegmentation
14
-
15
-
16
- class Segmenter(BaseObject):
17
- """ Orchestrate Sentence Segmentation """
18
-
19
- def __init__(self):
20
- """ Change Log
21
-
22
- Created:
23
- 30-Sept-2021
24
- """
25
- BaseObject.__init__(self, __name__)
26
- self._segment_paragraphs = PerformParagraphSegmentation().process
27
- self._segment_sentences = PerformSentenceSegmentation().process
28
-
29
- def _input_text(self,
30
- input_text: str) -> list:
31
- paragraphs = []
32
-
33
- for paragraph in self._segment_paragraphs(input_text):
34
- paragraphs.append(self._segment_sentences(paragraph))
35
-
36
- return paragraphs
37
-
38
- @lru_cache(maxsize=1024, typed=True)
39
- def input_text(self,
40
- input_text: str) -> list:
41
- """Segment Input Text into Paragraphs and Sentences
42
-
43
- Args:
44
- input_text (str): An input string of any length or type
45
-
46
- Raises:
47
- ValueError: input must be a string
48
-
49
- Returns:
50
- list: returns a list of lists.
51
- Each outer list is a paragraph.
52
- Each inner list contains 1..* sentences
53
- """
54
-
55
- if self.isEnabledForDebug:
56
- Enforcer.is_str(input_text)
57
-
58
- sw = Stopwatch()
59
-
60
- paragraphs = self._input_text(input_text)
61
-
62
- if self.isEnabledForInfo:
63
- self.logger.info('\n'.join([
64
- "Segmentation of Input Text Complete",
65
- f"\tTotal Paragraphs: {len(paragraphs)}",
66
- f"\tTotal Time: {str(sw)}"]))
67
-
68
- return paragraphs
1
+ #!/usr/bin/env python
2
+ # -*- coding: UTF-8 -*-
3
+ """ Orchestrate Sentence Segmentation """
4
+
5
+
6
+ from functools import lru_cache
7
+
8
+ from fast_sentence_segment.core import BaseObject, Stopwatch
9
+ from fast_sentence_segment.svc import PerformParagraphSegmentation
10
+ from fast_sentence_segment.svc import PerformSentenceSegmentation
11
+
12
+
13
+ class Segmenter(BaseObject):
14
+ """ Orchestrate Sentence Segmentation """
15
+
16
+ def __init__(self):
17
+ """ Change Log
18
+
19
+ Created:
20
+ 30-Sept-2021
21
+ """
22
+ BaseObject.__init__(self, __name__)
23
+ self._segment_paragraphs = PerformParagraphSegmentation().process
24
+ self._segment_sentences = PerformSentenceSegmentation().process
25
+
26
+ def _input_text(self,
27
+ input_text: str) -> list:
28
+ paragraphs = []
29
+
30
+ for paragraph in self._segment_paragraphs(input_text):
31
+ paragraphs.append(self._segment_sentences(paragraph))
32
+
33
+ return paragraphs
34
+
35
+ @lru_cache(maxsize=1024, typed=True)
36
+ def input_text(self,
37
+ input_text: str) -> list:
38
+ """Segment Input Text into Paragraphs and Sentences
39
+
40
+ Args:
41
+ input_text (str): An input string of any length or type
42
+
43
+ Raises:
44
+ ValueError: input must be a string
45
+
46
+ Returns:
47
+ list: returns a list of lists.
48
+ Each outer list is a paragraph.
49
+ Each inner list contains 1..* sentences
50
+ """
51
+
52
+ if self.isEnabledForDebug and not isinstance(input_text, str):
53
+ raise ValueError(f"Expected str, got {type(input_text)}")
54
+
55
+ sw = Stopwatch()
56
+
57
+ paragraphs = self._input_text(input_text)
58
+
59
+ if self.isEnabledForInfo:
60
+ self.logger.info('\n'.join([
61
+ "Segmentation of Input Text Complete",
62
+ f"\tTotal Paragraphs: {len(paragraphs)}",
63
+ f"\tTotal Time: {str(sw)}"]))
64
+
65
+ return paragraphs
@@ -0,0 +1,4 @@
1
+ from .base_object import BaseObject
2
+ from .stopwatch import Stopwatch
3
+
4
+ __all__ = ["BaseObject", "Stopwatch"]
@@ -0,0 +1,18 @@
1
+ # -*- coding: utf-8 -*-
2
+ """Base object providing logging functionality."""
3
+
4
+ import logging
5
+
6
+ logging.basicConfig(
7
+ format='%(asctime)s : %(levelname)s : %(filename)s : %(funcName)s() : %(lineno)d : %(message)s',
8
+ level=logging.DEBUG)
9
+
10
+
11
+ class BaseObject:
12
+ """Base class providing logging capabilities."""
13
+
14
+ def __init__(self, component_name: str):
15
+ self.logger = logging.getLogger(component_name)
16
+ self.isEnabledForDebug = self.logger.isEnabledFor(logging.DEBUG)
17
+ self.isEnabledForInfo = self.logger.isEnabledFor(logging.INFO)
18
+ self.isEnabledForWarning = self.logger.isEnabledFor(logging.WARNING)
@@ -0,0 +1,38 @@
1
+ # -*- coding: utf-8 -*-
2
+ """Simple stopwatch for timing operations."""
3
+
4
+ import time
5
+
6
+
7
+ class Stopwatch:
8
+ """A simple stopwatch for measuring elapsed time."""
9
+
10
+ def __init__(self):
11
+ self._start = time.perf_counter()
12
+ self._end = None
13
+
14
+ @property
15
+ def duration(self):
16
+ return self._end - self._start if self._end else time.perf_counter() - self._start
17
+
18
+ @property
19
+ def running(self):
20
+ return not self._end
21
+
22
+ def restart(self):
23
+ self._start = time.perf_counter()
24
+ self._end = None
25
+ return self
26
+
27
+ def stop(self):
28
+ if self.running:
29
+ self._end = time.perf_counter()
30
+ return self
31
+
32
+ def __str__(self):
33
+ ms = self.duration * 1000
34
+ if ms >= 1000:
35
+ return f'{ms / 1000:.2f}s'
36
+ if ms >= 1:
37
+ return f'{ms:.2f}ms'
38
+ return f'{ms * 1000:.2f}μs'
@@ -1,6 +1,6 @@
1
- from .bullet_point_cleaner import BulletPointCleaner
2
- from .delimiters_to_periods import DelimitersToPeriods
3
- from .newlines_to_periods import NewlinesToPeriods
4
- from .post_process_sentences import PostProcessStructure
5
- from .spacy_doc_segmenter import SpacyDocSegmenter
6
- from .numbered_list_normalizer import NumberedListNormalizer
1
+ from .bullet_point_cleaner import BulletPointCleaner
2
+ from .delimiters_to_periods import DelimitersToPeriods
3
+ from .newlines_to_periods import NewlinesToPeriods
4
+ from .post_process_sentences import PostProcessStructure
5
+ from .spacy_doc_segmenter import SpacyDocSegmenter
6
+ from .numbered_list_normalizer import NumberedListNormalizer
@@ -1,55 +1,55 @@
1
- #!/usr/bin/env python
2
- # -*- coding: UTF-8 -*-
3
- """ Prevent Bullet Points from Triggering False Positive Segmentation """
4
-
5
-
6
- from baseblock import BaseObject
7
-
8
-
9
- class BulletPointCleaner(BaseObject):
10
- """ Prevent Bullet Points from Triggering False Positive Segmentation """
11
-
12
- def __init__(self):
13
- """ Change Log
14
-
15
- Created:
16
- 30-Sept-2021
17
- craigtrim@gmail.com
18
- Updated:
19
- 19-Oct-2022
20
- craigtrim@gmail.com
21
- * clean up for segment_text_3_test.py
22
- """
23
- BaseObject.__init__(self, __name__)
24
-
25
- @staticmethod
26
- def process(input_text: str) -> str:
27
- """
28
- Purpose:
29
- prevent numbered bullet points from triggering sentence detection
30
- :param input_text:
31
- any input text
32
- :return:
33
- preprocessed input text
34
- """
35
- if input_text.startswith("-"):
36
- input_text = input_text[1:] # segment_text_3_test.py
37
-
38
- if " " in input_text:
39
- input_text = input_text.replace(" ", " ")
40
-
41
- # the replacement routine above leaves double '..' in the text
42
- # this replacement will solve that
43
- while ".." in input_text:
44
- input_text = input_text.replace("..", ".")
45
-
46
- while ". -" in input_text: # segment_text_3_test.py
47
- input_text = input_text.replace(". -", ". ")
48
-
49
- while ". . " in input_text:
50
- input_text = input_text.replace(". . ", ".")
51
-
52
- while ' ' in input_text:
53
- input_text = input_text.replace(' ', ' ')
54
-
55
- return input_text
1
+ #!/usr/bin/env python
2
+ # -*- coding: UTF-8 -*-
3
+ """ Prevent Bullet Points from Triggering False Positive Segmentation """
4
+
5
+
6
+ from fast_sentence_segment.core import BaseObject
7
+
8
+
9
+ class BulletPointCleaner(BaseObject):
10
+ """ Prevent Bullet Points from Triggering False Positive Segmentation """
11
+
12
+ def __init__(self):
13
+ """ Change Log
14
+
15
+ Created:
16
+ 30-Sept-2021
17
+ craigtrim@gmail.com
18
+ Updated:
19
+ 19-Oct-2022
20
+ craigtrim@gmail.com
21
+ * clean up for segment_text_3_test.py
22
+ """
23
+ BaseObject.__init__(self, __name__)
24
+
25
+ @staticmethod
26
+ def process(input_text: str) -> str:
27
+ """
28
+ Purpose:
29
+ prevent numbered bullet points from triggering sentence detection
30
+ :param input_text:
31
+ any input text
32
+ :return:
33
+ preprocessed input text
34
+ """
35
+ if input_text.startswith("-"):
36
+ input_text = input_text[1:] # segment_text_3_test.py
37
+
38
+ if " " in input_text:
39
+ input_text = input_text.replace(" ", " ")
40
+
41
+ # the replacement routine above leaves double '..' in the text
42
+ # this replacement will solve that
43
+ while ".." in input_text:
44
+ input_text = input_text.replace("..", ".")
45
+
46
+ while ". -" in input_text: # segment_text_3_test.py
47
+ input_text = input_text.replace(". -", ". ")
48
+
49
+ while ". . " in input_text:
50
+ input_text = input_text.replace(". . ", ".")
51
+
52
+ while ' ' in input_text:
53
+ input_text = input_text.replace(' ', ' ')
54
+
55
+ return input_text