fast-causal-shap 0.1.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of fast-causal-shap might be problematic. Click here for more details.
- fast_causal_shap-0.1.0/LICENSE +21 -0
- fast_causal_shap-0.1.0/PKG-INFO +50 -0
- fast_causal_shap-0.1.0/README.md +33 -0
- fast_causal_shap-0.1.0/fast_causal_shap/__init__.py +9 -0
- fast_causal_shap-0.1.0/fast_causal_shap/core.py +301 -0
- fast_causal_shap-0.1.0/fast_causal_shap.egg-info/PKG-INFO +50 -0
- fast_causal_shap-0.1.0/fast_causal_shap.egg-info/SOURCES.txt +10 -0
- fast_causal_shap-0.1.0/fast_causal_shap.egg-info/dependency_links.txt +1 -0
- fast_causal_shap-0.1.0/fast_causal_shap.egg-info/requires.txt +4 -0
- fast_causal_shap-0.1.0/fast_causal_shap.egg-info/top_level.txt +1 -0
- fast_causal_shap-0.1.0/pyproject.toml +24 -0
- fast_causal_shap-0.1.0/setup.cfg +4 -0
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) [year] [fullname]
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1,50 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: fast-causal-shap
|
|
3
|
+
Version: 0.1.0
|
|
4
|
+
Summary: A Python package for efficient causal SHAP computations
|
|
5
|
+
Author-email: woonyee28 <ngnwy289@gmail.com>
|
|
6
|
+
License: MIT
|
|
7
|
+
Project-URL: Homepage, https://github.com/woonyee28/CausalSHAP
|
|
8
|
+
Project-URL: Issues, https://github.com/woonyee28/CausalSHAP/issues
|
|
9
|
+
Requires-Python: >=3.7
|
|
10
|
+
Description-Content-Type: text/markdown
|
|
11
|
+
License-File: LICENSE
|
|
12
|
+
Requires-Dist: pandas>=1.0.0
|
|
13
|
+
Requires-Dist: networkx>=2.0
|
|
14
|
+
Requires-Dist: numpy>=1.18.0
|
|
15
|
+
Requires-Dist: scikit-learn>=0.24.0
|
|
16
|
+
Dynamic: license-file
|
|
17
|
+
|
|
18
|
+
# Fast Causal SHAP
|
|
19
|
+
|
|
20
|
+
This folder contains the core modules and components for the **Fast Causal SHAP** Python package. Fast Causal SHAP provides efficient and interpretable SHAP value computation for causal inference tasks.
|
|
21
|
+
|
|
22
|
+
## Features
|
|
23
|
+
|
|
24
|
+
- Fast computation of SHAP values for causal models
|
|
25
|
+
- Support for multiple causal inference frameworks
|
|
26
|
+
|
|
27
|
+
## Installation
|
|
28
|
+
|
|
29
|
+
Install Fast Causal SHAP using pip:
|
|
30
|
+
|
|
31
|
+
```bash
|
|
32
|
+
pip install fast-causal-shap
|
|
33
|
+
```
|
|
34
|
+
|
|
35
|
+
Or, for the latest development version:
|
|
36
|
+
|
|
37
|
+
```bash
|
|
38
|
+
pip install git+https://github.com/woonyee28/CausalSHAP.git
|
|
39
|
+
```
|
|
40
|
+
|
|
41
|
+
## Usage
|
|
42
|
+
// To be added
|
|
43
|
+
|
|
44
|
+
## Citation
|
|
45
|
+
If you use this package in your research, please cite:
|
|
46
|
+
// To be added
|
|
47
|
+
|
|
48
|
+
## License
|
|
49
|
+
|
|
50
|
+
This project is licensed under the MIT License.
|
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
# Fast Causal SHAP
|
|
2
|
+
|
|
3
|
+
This folder contains the core modules and components for the **Fast Causal SHAP** Python package. Fast Causal SHAP provides efficient and interpretable SHAP value computation for causal inference tasks.
|
|
4
|
+
|
|
5
|
+
## Features
|
|
6
|
+
|
|
7
|
+
- Fast computation of SHAP values for causal models
|
|
8
|
+
- Support for multiple causal inference frameworks
|
|
9
|
+
|
|
10
|
+
## Installation
|
|
11
|
+
|
|
12
|
+
Install Fast Causal SHAP using pip:
|
|
13
|
+
|
|
14
|
+
```bash
|
|
15
|
+
pip install fast-causal-shap
|
|
16
|
+
```
|
|
17
|
+
|
|
18
|
+
Or, for the latest development version:
|
|
19
|
+
|
|
20
|
+
```bash
|
|
21
|
+
pip install git+https://github.com/woonyee28/CausalSHAP.git
|
|
22
|
+
```
|
|
23
|
+
|
|
24
|
+
## Usage
|
|
25
|
+
// To be added
|
|
26
|
+
|
|
27
|
+
## Citation
|
|
28
|
+
If you use this package in your research, please cite:
|
|
29
|
+
// To be added
|
|
30
|
+
|
|
31
|
+
## License
|
|
32
|
+
|
|
33
|
+
This project is licensed under the MIT License.
|
|
@@ -0,0 +1,301 @@
|
|
|
1
|
+
import pandas as pd
|
|
2
|
+
import networkx as nx
|
|
3
|
+
import numpy as np
|
|
4
|
+
import json
|
|
5
|
+
from math import factorial
|
|
6
|
+
from sklearn.linear_model import LinearRegression
|
|
7
|
+
from collections import defaultdict
|
|
8
|
+
|
|
9
|
+
class FastCausalSHAP:
|
|
10
|
+
def __init__(self, data, model, target_variable):
|
|
11
|
+
self.data = data
|
|
12
|
+
self.model = model
|
|
13
|
+
self.gamma = None
|
|
14
|
+
self.target_variable = target_variable
|
|
15
|
+
self.ida_graph = None
|
|
16
|
+
self.regression_models = {}
|
|
17
|
+
self.feature_depths = {}
|
|
18
|
+
self.path_cache = {}
|
|
19
|
+
self.causal_paths = {}
|
|
20
|
+
|
|
21
|
+
def remove_cycles(self):
|
|
22
|
+
"""
|
|
23
|
+
Detects cycles in the graph and removes edges causing cycles.
|
|
24
|
+
Returns a list of removed edges.
|
|
25
|
+
"""
|
|
26
|
+
G = self.ida_graph.copy()
|
|
27
|
+
removed_edges = []
|
|
28
|
+
|
|
29
|
+
# Find all cycles in the graph
|
|
30
|
+
try:
|
|
31
|
+
cycles = list(nx.simple_cycles(G))
|
|
32
|
+
except nx.NetworkXNoCycle:
|
|
33
|
+
return [] # No cycles found
|
|
34
|
+
|
|
35
|
+
while cycles:
|
|
36
|
+
# Get the current cycle
|
|
37
|
+
cycle = cycles[0]
|
|
38
|
+
|
|
39
|
+
# Find the edge with the smallest weight in the cycle
|
|
40
|
+
min_weight = float('inf')
|
|
41
|
+
edge_to_remove = None
|
|
42
|
+
|
|
43
|
+
for i in range(len(cycle)):
|
|
44
|
+
source = cycle[i]
|
|
45
|
+
target = cycle[(i + 1) % len(cycle)]
|
|
46
|
+
|
|
47
|
+
if G.has_edge(source, target):
|
|
48
|
+
weight = abs(G[source][target]['weight'])
|
|
49
|
+
if weight < min_weight:
|
|
50
|
+
min_weight = weight
|
|
51
|
+
edge_to_remove = (source, target)
|
|
52
|
+
|
|
53
|
+
if edge_to_remove:
|
|
54
|
+
# Remove the edge with the smallest weight
|
|
55
|
+
G.remove_edge(*edge_to_remove)
|
|
56
|
+
removed_edges.append((edge_to_remove[0], edge_to_remove[1], self.ida_graph[edge_to_remove[0]][edge_to_remove[1]]['weight']))
|
|
57
|
+
|
|
58
|
+
# Recalculate cycles after removing an edge
|
|
59
|
+
try:
|
|
60
|
+
cycles = list(nx.simple_cycles(G))
|
|
61
|
+
except nx.NetworkXNoCycle:
|
|
62
|
+
cycles = [] # No more cycles
|
|
63
|
+
else:
|
|
64
|
+
break
|
|
65
|
+
|
|
66
|
+
# Update the graph
|
|
67
|
+
self.ida_graph = G
|
|
68
|
+
return removed_edges
|
|
69
|
+
|
|
70
|
+
def _compute_causal_paths(self):
|
|
71
|
+
"""Compute and store all causal paths to target for each feature."""
|
|
72
|
+
features = [col for col in self.data.columns if col != self.target_variable]
|
|
73
|
+
for feature in features:
|
|
74
|
+
try:
|
|
75
|
+
# Store the actual paths instead of just the features
|
|
76
|
+
paths = list(nx.all_simple_paths(self.ida_graph, feature, self.target_variable))
|
|
77
|
+
self.causal_paths[feature] = paths
|
|
78
|
+
except nx.NetworkXNoPath:
|
|
79
|
+
self.causal_paths[feature] = []
|
|
80
|
+
|
|
81
|
+
def load_causal_strengths(self, json_file_path):
|
|
82
|
+
with open(json_file_path, 'r') as f:
|
|
83
|
+
causal_effects_list = json.load(f)
|
|
84
|
+
|
|
85
|
+
G = nx.DiGraph()
|
|
86
|
+
nodes = list(self.data.columns)
|
|
87
|
+
G.add_nodes_from(nodes)
|
|
88
|
+
|
|
89
|
+
for item in causal_effects_list:
|
|
90
|
+
pair = item['Pair']
|
|
91
|
+
mean_causal_effect = item['Mean_Causal_Effect']
|
|
92
|
+
if mean_causal_effect is None:
|
|
93
|
+
continue
|
|
94
|
+
source, target = pair.split('->')
|
|
95
|
+
source = source.strip()
|
|
96
|
+
target = target.strip()
|
|
97
|
+
G.add_edge(source, target, weight=mean_causal_effect)
|
|
98
|
+
self.ida_graph = G.copy()
|
|
99
|
+
|
|
100
|
+
removed_edges = self.remove_cycles()
|
|
101
|
+
if removed_edges:
|
|
102
|
+
print(f"Removed {len(removed_edges)} edges to make the graph acyclic:")
|
|
103
|
+
for source, target, weight in removed_edges:
|
|
104
|
+
print(f" {source} -> {target} (weight: {weight})")
|
|
105
|
+
|
|
106
|
+
self._compute_feature_depths()
|
|
107
|
+
self._compute_causal_paths()
|
|
108
|
+
features = self.data.columns.tolist()
|
|
109
|
+
beta_dict = {}
|
|
110
|
+
|
|
111
|
+
for feature in features:
|
|
112
|
+
if feature == self.target_variable:
|
|
113
|
+
continue
|
|
114
|
+
try:
|
|
115
|
+
paths = list(nx.all_simple_paths(G, source=feature, target=self.target_variable))
|
|
116
|
+
except nx.NetworkXNoPath:
|
|
117
|
+
continue
|
|
118
|
+
total_effect = 0
|
|
119
|
+
for path in paths:
|
|
120
|
+
effect = 1
|
|
121
|
+
for i in range(len(path)-1):
|
|
122
|
+
edge_weight = G[path[i]][path[i+1]]['weight']
|
|
123
|
+
effect *= edge_weight
|
|
124
|
+
total_effect += effect
|
|
125
|
+
if total_effect != 0:
|
|
126
|
+
beta_dict[feature] = total_effect
|
|
127
|
+
|
|
128
|
+
total_causal_effect = sum(abs(beta) for beta in beta_dict.values())
|
|
129
|
+
if total_causal_effect == 0:
|
|
130
|
+
self.gamma = {k: 0.0 for k in features}
|
|
131
|
+
else:
|
|
132
|
+
self.gamma = {k: abs(beta_dict.get(k, 0.0)) / total_causal_effect for k in features}
|
|
133
|
+
return self.gamma
|
|
134
|
+
|
|
135
|
+
def _compute_feature_depths(self):
|
|
136
|
+
"""Compute minimum depth of each feature to target in causal graph."""
|
|
137
|
+
features = [col for col in self.data.columns if col != self.target_variable]
|
|
138
|
+
for feature in features:
|
|
139
|
+
try:
|
|
140
|
+
all_paths = list(nx.all_simple_paths(self.ida_graph, feature, self.target_variable))
|
|
141
|
+
min_depth = float('inf')
|
|
142
|
+
for path in all_paths:
|
|
143
|
+
depth = len(path) - 1
|
|
144
|
+
min_depth = min(min_depth, depth)
|
|
145
|
+
if min_depth != float('inf'):
|
|
146
|
+
self.feature_depths[feature] = min_depth
|
|
147
|
+
except nx.NetworkXNoPath:
|
|
148
|
+
continue
|
|
149
|
+
|
|
150
|
+
def get_topological_order(self, S):
|
|
151
|
+
"""Returns the topological order of variables after intervening on subset S."""
|
|
152
|
+
G_intervened = self.ida_graph.copy()
|
|
153
|
+
for feature in S:
|
|
154
|
+
G_intervened.remove_edges_from(list(G_intervened.in_edges(feature)))
|
|
155
|
+
missing_nodes = set(self.data.columns) - set(G_intervened.nodes)
|
|
156
|
+
G_intervened.add_nodes_from(missing_nodes)
|
|
157
|
+
|
|
158
|
+
try:
|
|
159
|
+
order = list(nx.topological_sort(G_intervened))
|
|
160
|
+
except nx.NetworkXUnfeasible:
|
|
161
|
+
raise ValueError("The causal graph contains cycles.")
|
|
162
|
+
|
|
163
|
+
return order
|
|
164
|
+
|
|
165
|
+
def get_parents(self, feature):
|
|
166
|
+
"""Returns the list of parent features for a given feature in the causal graph."""
|
|
167
|
+
return list(self.ida_graph.predecessors(feature))
|
|
168
|
+
|
|
169
|
+
def sample_marginal(self, feature):
|
|
170
|
+
"""Sample a value from the marginal distribution of the specified feature."""
|
|
171
|
+
return self.data[feature].sample(1).iloc[0]
|
|
172
|
+
|
|
173
|
+
def sample_conditional(self, feature, parent_values):
|
|
174
|
+
"""Sample a value for a feature conditioned on its parent features."""
|
|
175
|
+
effective_parents = [p for p in self.get_parents(feature) if p != self.target_variable]
|
|
176
|
+
if not effective_parents:
|
|
177
|
+
return self.sample_marginal(feature)
|
|
178
|
+
model_key = (feature, tuple(sorted(effective_parents)))
|
|
179
|
+
if model_key not in self.regression_models:
|
|
180
|
+
X = self.data[effective_parents].values
|
|
181
|
+
y = self.data[feature].values
|
|
182
|
+
reg = LinearRegression()
|
|
183
|
+
reg.fit(X, y)
|
|
184
|
+
residuals = y - reg.predict(X)
|
|
185
|
+
std = residuals.std()
|
|
186
|
+
self.regression_models[model_key] = (reg, std)
|
|
187
|
+
reg, std = self.regression_models[model_key]
|
|
188
|
+
parent_values_array = np.array([parent_values[parent] for parent in effective_parents]).reshape(1, -1)
|
|
189
|
+
mean = reg.predict(parent_values_array)[0]
|
|
190
|
+
sampled_value = np.random.normal(mean, std)
|
|
191
|
+
return sampled_value
|
|
192
|
+
|
|
193
|
+
def compute_v_do(self, S, x_S, is_classifier=False):
|
|
194
|
+
"""Compute interventional expectations with caching."""
|
|
195
|
+
cache_key = (frozenset(S), tuple(sorted(x_S.items())) if len(x_S) > 0 else tuple())
|
|
196
|
+
|
|
197
|
+
if cache_key in self.path_cache:
|
|
198
|
+
return self.path_cache[cache_key]
|
|
199
|
+
|
|
200
|
+
variables_order = self.get_topological_order(S)
|
|
201
|
+
|
|
202
|
+
sample = {}
|
|
203
|
+
for feature in S:
|
|
204
|
+
sample[feature] = x_S[feature]
|
|
205
|
+
for feature in variables_order:
|
|
206
|
+
if feature in S or feature == self.target_variable:
|
|
207
|
+
continue
|
|
208
|
+
parents = self.get_parents(feature)
|
|
209
|
+
parent_values = {p: x_S[p] if p in S else sample[p] for p in parents if p != self.target_variable}
|
|
210
|
+
if not parent_values:
|
|
211
|
+
sample[feature] = self.sample_marginal(feature)
|
|
212
|
+
else:
|
|
213
|
+
sample[feature] = self.sample_conditional(feature, parent_values)
|
|
214
|
+
|
|
215
|
+
intervened_data = pd.DataFrame([sample])
|
|
216
|
+
intervened_data = intervened_data[self.model.feature_names_in_]
|
|
217
|
+
if is_classifier:
|
|
218
|
+
probas = self.model.predict_proba(intervened_data)[:, 1]
|
|
219
|
+
else:
|
|
220
|
+
probas = self.model.predict(intervened_data)
|
|
221
|
+
|
|
222
|
+
result = np.mean(probas)
|
|
223
|
+
self.path_cache[cache_key] = result
|
|
224
|
+
return result
|
|
225
|
+
|
|
226
|
+
def is_on_causal_path(self, feature, S, target_feature):
|
|
227
|
+
"""Check if feature is on any causal path from S to target_feature."""
|
|
228
|
+
if target_feature not in self.causal_paths:
|
|
229
|
+
return False
|
|
230
|
+
path_features = self.causal_paths[target_feature]
|
|
231
|
+
return feature in path_features
|
|
232
|
+
|
|
233
|
+
def compute_modified_shap_proba(self, x, is_classifier=False):
|
|
234
|
+
"""TreeSHAP-inspired computation using causal paths and dynamic programming."""
|
|
235
|
+
features = [col for col in self.data.columns if col != self.target_variable]
|
|
236
|
+
phi_causal = {feature: 0.0 for feature in features}
|
|
237
|
+
|
|
238
|
+
data_without_target = self.data.drop(columns=[self.target_variable])
|
|
239
|
+
if is_classifier:
|
|
240
|
+
E_fX = self.model.predict_proba(data_without_target)[:, 1].mean()
|
|
241
|
+
else:
|
|
242
|
+
E_fX = self.model.predict(data_without_target).mean()
|
|
243
|
+
|
|
244
|
+
x_ordered = x[self.model.feature_names_in_]
|
|
245
|
+
if is_classifier:
|
|
246
|
+
f_x = self.model.predict_proba(x_ordered.to_frame().T)[0][1]
|
|
247
|
+
else:
|
|
248
|
+
f_x = self.model.predict(x_ordered.to_frame().T)[0]
|
|
249
|
+
|
|
250
|
+
sorted_features = sorted(features, key=lambda f: self.feature_depths.get(f, 0))
|
|
251
|
+
max_path_length = max(self.feature_depths.values(), default=0)
|
|
252
|
+
shapley_weights = {}
|
|
253
|
+
for m in range(max_path_length + 1):
|
|
254
|
+
for d in range(m + 1, max_path_length + 1):
|
|
255
|
+
shapley_weights[(m, d)] = (factorial(m) * factorial(d - m - 1)) / factorial(d)
|
|
256
|
+
|
|
257
|
+
# Track contributions using dynamic programming (EXTEND-like logic in TreeSHAP)
|
|
258
|
+
# m_values will accumulate contributions from subsets (use combinatorial logic)
|
|
259
|
+
# Essentially, values in m_values[k] represent how many ways there are to select k nodes from the path seen so far.
|
|
260
|
+
for feature in sorted_features:
|
|
261
|
+
if feature not in self.causal_paths:
|
|
262
|
+
continue
|
|
263
|
+
for path in self.causal_paths[feature]:
|
|
264
|
+
path_features = [n for n in path if n != self.target_variable]
|
|
265
|
+
d = len(path_features)
|
|
266
|
+
m_values = defaultdict(float)
|
|
267
|
+
m_values[0] = 1.0
|
|
268
|
+
|
|
269
|
+
for node in path_features:
|
|
270
|
+
if node == feature:
|
|
271
|
+
continue
|
|
272
|
+
|
|
273
|
+
new_m_values = defaultdict(float)
|
|
274
|
+
for m, val in m_values.items():
|
|
275
|
+
new_m_values[m + 1] += val
|
|
276
|
+
new_m_values[m] += val
|
|
277
|
+
m_values = new_m_values
|
|
278
|
+
|
|
279
|
+
for m in m_values:
|
|
280
|
+
weight = shapley_weights.get((m, d), 0) * self.gamma.get(feature, 0)
|
|
281
|
+
delta_v = self._compute_path_delta_v(feature, path, m, x, is_classifier)
|
|
282
|
+
phi_causal[feature] += weight * delta_v
|
|
283
|
+
|
|
284
|
+
sum_phi = sum(phi_causal.values())
|
|
285
|
+
if sum_phi != 0:
|
|
286
|
+
scaling_factor = (f_x - E_fX) / sum_phi
|
|
287
|
+
phi_causal = {k: v * scaling_factor for k, v in phi_causal.items()}
|
|
288
|
+
|
|
289
|
+
return phi_causal
|
|
290
|
+
|
|
291
|
+
def _compute_path_delta_v(self, feature, path, m, x, is_classifier):
|
|
292
|
+
"""Compute Δv for a causal path using precomputed expectations."""
|
|
293
|
+
S = [n for n in path[:m] if n != feature]
|
|
294
|
+
x_S = {n: x[n] for n in S if n in x}
|
|
295
|
+
v_S = self.compute_v_do(S, x_S, is_classifier)
|
|
296
|
+
|
|
297
|
+
S_with_i = S + [feature]
|
|
298
|
+
x_Si = {**x_S, feature: x[feature]}
|
|
299
|
+
v_Si = self.compute_v_do(S_with_i, x_Si, is_classifier)
|
|
300
|
+
|
|
301
|
+
return v_Si - v_S
|
|
@@ -0,0 +1,50 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: fast-causal-shap
|
|
3
|
+
Version: 0.1.0
|
|
4
|
+
Summary: A Python package for efficient causal SHAP computations
|
|
5
|
+
Author-email: woonyee28 <ngnwy289@gmail.com>
|
|
6
|
+
License: MIT
|
|
7
|
+
Project-URL: Homepage, https://github.com/woonyee28/CausalSHAP
|
|
8
|
+
Project-URL: Issues, https://github.com/woonyee28/CausalSHAP/issues
|
|
9
|
+
Requires-Python: >=3.7
|
|
10
|
+
Description-Content-Type: text/markdown
|
|
11
|
+
License-File: LICENSE
|
|
12
|
+
Requires-Dist: pandas>=1.0.0
|
|
13
|
+
Requires-Dist: networkx>=2.0
|
|
14
|
+
Requires-Dist: numpy>=1.18.0
|
|
15
|
+
Requires-Dist: scikit-learn>=0.24.0
|
|
16
|
+
Dynamic: license-file
|
|
17
|
+
|
|
18
|
+
# Fast Causal SHAP
|
|
19
|
+
|
|
20
|
+
This folder contains the core modules and components for the **Fast Causal SHAP** Python package. Fast Causal SHAP provides efficient and interpretable SHAP value computation for causal inference tasks.
|
|
21
|
+
|
|
22
|
+
## Features
|
|
23
|
+
|
|
24
|
+
- Fast computation of SHAP values for causal models
|
|
25
|
+
- Support for multiple causal inference frameworks
|
|
26
|
+
|
|
27
|
+
## Installation
|
|
28
|
+
|
|
29
|
+
Install Fast Causal SHAP using pip:
|
|
30
|
+
|
|
31
|
+
```bash
|
|
32
|
+
pip install fast-causal-shap
|
|
33
|
+
```
|
|
34
|
+
|
|
35
|
+
Or, for the latest development version:
|
|
36
|
+
|
|
37
|
+
```bash
|
|
38
|
+
pip install git+https://github.com/woonyee28/CausalSHAP.git
|
|
39
|
+
```
|
|
40
|
+
|
|
41
|
+
## Usage
|
|
42
|
+
// To be added
|
|
43
|
+
|
|
44
|
+
## Citation
|
|
45
|
+
If you use this package in your research, please cite:
|
|
46
|
+
// To be added
|
|
47
|
+
|
|
48
|
+
## License
|
|
49
|
+
|
|
50
|
+
This project is licensed under the MIT License.
|
|
@@ -0,0 +1,10 @@
|
|
|
1
|
+
LICENSE
|
|
2
|
+
README.md
|
|
3
|
+
pyproject.toml
|
|
4
|
+
fast_causal_shap/__init__.py
|
|
5
|
+
fast_causal_shap/core.py
|
|
6
|
+
fast_causal_shap.egg-info/PKG-INFO
|
|
7
|
+
fast_causal_shap.egg-info/SOURCES.txt
|
|
8
|
+
fast_causal_shap.egg-info/dependency_links.txt
|
|
9
|
+
fast_causal_shap.egg-info/requires.txt
|
|
10
|
+
fast_causal_shap.egg-info/top_level.txt
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
fast_causal_shap
|
|
@@ -0,0 +1,24 @@
|
|
|
1
|
+
[build-system]
|
|
2
|
+
requires = ["setuptools>=61.0", "wheel"]
|
|
3
|
+
build-backend = "setuptools.build_meta"
|
|
4
|
+
|
|
5
|
+
[project]
|
|
6
|
+
name = "fast-causal-shap"
|
|
7
|
+
version = "0.1.0"
|
|
8
|
+
description = "A Python package for efficient causal SHAP computations"
|
|
9
|
+
readme = "README.md"
|
|
10
|
+
requires-python = ">=3.7"
|
|
11
|
+
license = {text = "MIT"}
|
|
12
|
+
authors = [
|
|
13
|
+
{name = "woonyee28", email = "ngnwy289@gmail.com"},
|
|
14
|
+
]
|
|
15
|
+
dependencies = [
|
|
16
|
+
"pandas>=1.0.0",
|
|
17
|
+
"networkx>=2.0",
|
|
18
|
+
"numpy>=1.18.0",
|
|
19
|
+
"scikit-learn>=0.24.0",
|
|
20
|
+
]
|
|
21
|
+
|
|
22
|
+
[project.urls]
|
|
23
|
+
Homepage = "https://github.com/woonyee28/CausalSHAP"
|
|
24
|
+
Issues = "https://github.com/woonyee28/CausalSHAP/issues"
|