faceberg 0.1.0__tar.gz → 0.1.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (31) hide show
  1. faceberg-0.1.1/PKG-INFO +147 -0
  2. faceberg-0.1.1/README.md +104 -0
  3. {faceberg-0.1.0 → faceberg-0.1.1}/pyproject.toml +1 -1
  4. faceberg-0.1.0/PKG-INFO +0 -175
  5. faceberg-0.1.0/README.md +0 -132
  6. {faceberg-0.1.0 → faceberg-0.1.1}/.gitignore +0 -0
  7. {faceberg-0.1.0 → faceberg-0.1.1}/LICENSE +0 -0
  8. {faceberg-0.1.0 → faceberg-0.1.1}/faceberg/__init__.py +0 -0
  9. {faceberg-0.1.0 → faceberg-0.1.1}/faceberg/bridge.py +0 -0
  10. {faceberg-0.1.0 → faceberg-0.1.1}/faceberg/catalog.py +0 -0
  11. {faceberg-0.1.0 → faceberg-0.1.1}/faceberg/cli.py +0 -0
  12. {faceberg-0.1.0 → faceberg-0.1.1}/faceberg/config.py +0 -0
  13. {faceberg-0.1.0 → faceberg-0.1.1}/faceberg/convert.py +0 -0
  14. {faceberg-0.1.0 → faceberg-0.1.1}/faceberg/pretty.py +0 -0
  15. {faceberg-0.1.0 → faceberg-0.1.1}/faceberg/server.py +0 -0
  16. {faceberg-0.1.0 → faceberg-0.1.1}/faceberg/shell.py +0 -0
  17. {faceberg-0.1.0 → faceberg-0.1.1}/faceberg/spaces/Dockerfile +0 -0
  18. {faceberg-0.1.0 → faceberg-0.1.1}/faceberg/spaces/README.md +0 -0
  19. {faceberg-0.1.0 → faceberg-0.1.1}/faceberg/spaces/landing.html +0 -0
  20. {faceberg-0.1.0 → faceberg-0.1.1}/faceberg/tests/__init__.py +0 -0
  21. {faceberg-0.1.0 → faceberg-0.1.1}/faceberg/tests/conftest.py +0 -0
  22. {faceberg-0.1.0 → faceberg-0.1.1}/faceberg/tests/test_bridge.py +0 -0
  23. {faceberg-0.1.0 → faceberg-0.1.1}/faceberg/tests/test_catalog.py +0 -0
  24. {faceberg-0.1.0 → faceberg-0.1.1}/faceberg/tests/test_catalog_duckdb.py +0 -0
  25. {faceberg-0.1.0 → faceberg-0.1.1}/faceberg/tests/test_catalog_pandas.py +0 -0
  26. {faceberg-0.1.0 → faceberg-0.1.1}/faceberg/tests/test_cli.py +0 -0
  27. {faceberg-0.1.0 → faceberg-0.1.1}/faceberg/tests/test_config.py +0 -0
  28. {faceberg-0.1.0 → faceberg-0.1.1}/faceberg/tests/test_convert.py +0 -0
  29. {faceberg-0.1.0 → faceberg-0.1.1}/faceberg/tests/test_pretty.py +0 -0
  30. {faceberg-0.1.0 → faceberg-0.1.1}/faceberg/tests/test_server.py +0 -0
  31. {faceberg-0.1.0 → faceberg-0.1.1}/faceberg/tests/test_server_playwright.py +0 -0
@@ -0,0 +1,147 @@
1
+ Metadata-Version: 2.4
2
+ Name: faceberg
3
+ Version: 0.1.1
4
+ Summary: Bridge HuggingFace datasets with Apache Iceberg
5
+ Project-URL: Homepage, https://github.com/kszucs/faceberg
6
+ Project-URL: Documentation, https://github.com/kszucs/faceberg
7
+ Project-URL: Repository, https://github.com/kszucs/faceberg
8
+ Author-email: Krisztian Szucs <kszucs@users.noreply.github.com>
9
+ License: Apache-2.0
10
+ License-File: LICENSE
11
+ Keywords: data-lake,datasets,huggingface,iceberg
12
+ Classifier: Development Status :: 3 - Alpha
13
+ Classifier: Intended Audience :: Developers
14
+ Classifier: License :: OSI Approved :: Apache Software License
15
+ Classifier: Programming Language :: Python :: 3
16
+ Classifier: Programming Language :: Python :: 3.9
17
+ Classifier: Programming Language :: Python :: 3.10
18
+ Classifier: Programming Language :: Python :: 3.11
19
+ Classifier: Programming Language :: Python :: 3.12
20
+ Requires-Python: >=3.9
21
+ Requires-Dist: click>=8.0.0
22
+ Requires-Dist: datasets>=2.0.0
23
+ Requires-Dist: fsspec>=2023.1.0
24
+ Requires-Dist: huggingface-hub>=0.20.0
25
+ Requires-Dist: jinja2>=3.1.6
26
+ Requires-Dist: litestar>=2.0.0
27
+ Requires-Dist: pyarrow>=21.0.0
28
+ Requires-Dist: pyiceberg>=0.6.0
29
+ Requires-Dist: pyyaml>=6.0
30
+ Requires-Dist: rich>=13.0.0
31
+ Requires-Dist: uuid-utils>=0.9.0
32
+ Requires-Dist: uvicorn[standard]>=0.27.0
33
+ Provides-Extra: dev
34
+ Requires-Dist: black>=23.0.0; extra == 'dev'
35
+ Requires-Dist: duckdb>=0.10.0; extra == 'dev'
36
+ Requires-Dist: mypy>=1.0.0; extra == 'dev'
37
+ Requires-Dist: pytest-cov>=4.0.0; extra == 'dev'
38
+ Requires-Dist: pytest-playwright>=0.7.0; extra == 'dev'
39
+ Requires-Dist: pytest>=7.0.0; extra == 'dev'
40
+ Requires-Dist: requests>=2.31.0; extra == 'dev'
41
+ Requires-Dist: ruff>=0.1.0; extra == 'dev'
42
+ Description-Content-Type: text/markdown
43
+
44
+ ![Faceberg](https://github.com/kszucs/faceberg/blob/main/faceberg.png?raw=true)
45
+
46
+ # Faceberg
47
+
48
+ **Bridge HuggingFace datasets with Apache Iceberg tables — no data copying, just metadata.**
49
+
50
+ Faceberg maps HuggingFace datasets to Apache Iceberg tables. Your catalog metadata lives on HuggingFace Spaces with an auto-deployed REST API, and any Iceberg-compatible query engine can access the data.
51
+
52
+ ## Installation
53
+
54
+ ```bash
55
+ pip install faceberg
56
+ ```
57
+
58
+ ## Quick Start
59
+
60
+ ```bash
61
+ export HF_TOKEN=your_huggingface_token
62
+
63
+ # Create a catalog on HuggingFace Hub
64
+ faceberg user/mycatalog init
65
+
66
+ # Add datasets
67
+ faceberg user/mycatalog add stanfordnlp/imdb --config plain_text
68
+ faceberg user/mycatalog add openai/gsm8k --config main
69
+
70
+ # Query with interactive DuckDB shell
71
+ faceberg user/mycatalog quack
72
+ ```
73
+
74
+ ```sql
75
+ SELECT label, substr(text, 1, 100) as preview
76
+ FROM iceberg_catalog.stanfordnlp.imdb
77
+ LIMIT 10;
78
+ ```
79
+
80
+ ## How It Works
81
+
82
+ ```
83
+ HuggingFace Hub
84
+ ┌─────────────────────────────────────────────────────────┐
85
+ │ │
86
+ │ ┌─────────────────────┐ ┌─────────────────────────┐ │
87
+ │ │ HF Datasets │ │ HF Spaces (Catalog) │ │
88
+ │ │ (Original Parquet) │◄───│ • Iceberg metadata │ │
89
+ │ │ │ │ • REST API endpoint │ │
90
+ │ │ stanfordnlp/imdb/ │ │ • faceberg.yml │ │
91
+ │ │ └── *.parquet │ │ │ │
92
+ │ └─────────────────────┘ └───────────┬─────────────┘ │
93
+ │ │ │
94
+ └─────────────────────────────────────────┼───────────────┘
95
+ │ Iceberg REST API
96
+
97
+ ┌─────────────────────────┐
98
+ │ Query Engines │
99
+ │ DuckDB, Pandas, Spark │
100
+ └─────────────────────────┘
101
+ ```
102
+
103
+ **No data is copied** — only metadata is created. Query with DuckDB, PyIceberg, Spark, or any Iceberg-compatible tool.
104
+
105
+ ## Python API
106
+
107
+ ```python
108
+ import os
109
+ from faceberg import catalog
110
+
111
+ cat = catalog("user/mycatalog", hf_token=os.environ.get("HF_TOKEN"))
112
+ table = cat.load_table("stanfordnlp.imdb")
113
+ df = table.scan(limit=100).to_pandas()
114
+ ```
115
+
116
+ ## Share Your Catalog
117
+
118
+ Your catalog is accessible to anyone via the REST API:
119
+
120
+ ```python
121
+ import duckdb
122
+
123
+ conn = duckdb.connect()
124
+ conn.execute("INSTALL iceberg; LOAD iceberg")
125
+ conn.execute("ATTACH 'https://user-mycatalog.hf.space' AS cat (TYPE ICEBERG)")
126
+
127
+ result = conn.execute("SELECT * FROM cat.stanfordnlp.imdb LIMIT 5").fetchdf()
128
+ ```
129
+
130
+ ## Documentation
131
+
132
+ - [Getting Started](docs/index.qmd) — Full quickstart guide
133
+ - [Local Catalogs](docs/local.qmd) — Use local catalogs for development
134
+ - [DuckDB Integration](docs/integrations/duckdb.qmd) — Advanced SQL queries
135
+ - [Pandas Integration](docs/integrations/pandas.qmd) — Load into DataFrames
136
+
137
+ ## Development
138
+
139
+ ```bash
140
+ git clone https://github.com/kszucs/faceberg
141
+ cd faceberg
142
+ pip install -e .
143
+ ```
144
+
145
+ ## License
146
+
147
+ Apache 2.0
@@ -0,0 +1,104 @@
1
+ ![Faceberg](https://github.com/kszucs/faceberg/blob/main/faceberg.png?raw=true)
2
+
3
+ # Faceberg
4
+
5
+ **Bridge HuggingFace datasets with Apache Iceberg tables — no data copying, just metadata.**
6
+
7
+ Faceberg maps HuggingFace datasets to Apache Iceberg tables. Your catalog metadata lives on HuggingFace Spaces with an auto-deployed REST API, and any Iceberg-compatible query engine can access the data.
8
+
9
+ ## Installation
10
+
11
+ ```bash
12
+ pip install faceberg
13
+ ```
14
+
15
+ ## Quick Start
16
+
17
+ ```bash
18
+ export HF_TOKEN=your_huggingface_token
19
+
20
+ # Create a catalog on HuggingFace Hub
21
+ faceberg user/mycatalog init
22
+
23
+ # Add datasets
24
+ faceberg user/mycatalog add stanfordnlp/imdb --config plain_text
25
+ faceberg user/mycatalog add openai/gsm8k --config main
26
+
27
+ # Query with interactive DuckDB shell
28
+ faceberg user/mycatalog quack
29
+ ```
30
+
31
+ ```sql
32
+ SELECT label, substr(text, 1, 100) as preview
33
+ FROM iceberg_catalog.stanfordnlp.imdb
34
+ LIMIT 10;
35
+ ```
36
+
37
+ ## How It Works
38
+
39
+ ```
40
+ HuggingFace Hub
41
+ ┌─────────────────────────────────────────────────────────┐
42
+ │ │
43
+ │ ┌─────────────────────┐ ┌─────────────────────────┐ │
44
+ │ │ HF Datasets │ │ HF Spaces (Catalog) │ │
45
+ │ │ (Original Parquet) │◄───│ • Iceberg metadata │ │
46
+ │ │ │ │ • REST API endpoint │ │
47
+ │ │ stanfordnlp/imdb/ │ │ • faceberg.yml │ │
48
+ │ │ └── *.parquet │ │ │ │
49
+ │ └─────────────────────┘ └───────────┬─────────────┘ │
50
+ │ │ │
51
+ └─────────────────────────────────────────┼───────────────┘
52
+ │ Iceberg REST API
53
+
54
+ ┌─────────────────────────┐
55
+ │ Query Engines │
56
+ │ DuckDB, Pandas, Spark │
57
+ └─────────────────────────┘
58
+ ```
59
+
60
+ **No data is copied** — only metadata is created. Query with DuckDB, PyIceberg, Spark, or any Iceberg-compatible tool.
61
+
62
+ ## Python API
63
+
64
+ ```python
65
+ import os
66
+ from faceberg import catalog
67
+
68
+ cat = catalog("user/mycatalog", hf_token=os.environ.get("HF_TOKEN"))
69
+ table = cat.load_table("stanfordnlp.imdb")
70
+ df = table.scan(limit=100).to_pandas()
71
+ ```
72
+
73
+ ## Share Your Catalog
74
+
75
+ Your catalog is accessible to anyone via the REST API:
76
+
77
+ ```python
78
+ import duckdb
79
+
80
+ conn = duckdb.connect()
81
+ conn.execute("INSTALL iceberg; LOAD iceberg")
82
+ conn.execute("ATTACH 'https://user-mycatalog.hf.space' AS cat (TYPE ICEBERG)")
83
+
84
+ result = conn.execute("SELECT * FROM cat.stanfordnlp.imdb LIMIT 5").fetchdf()
85
+ ```
86
+
87
+ ## Documentation
88
+
89
+ - [Getting Started](docs/index.qmd) — Full quickstart guide
90
+ - [Local Catalogs](docs/local.qmd) — Use local catalogs for development
91
+ - [DuckDB Integration](docs/integrations/duckdb.qmd) — Advanced SQL queries
92
+ - [Pandas Integration](docs/integrations/pandas.qmd) — Load into DataFrames
93
+
94
+ ## Development
95
+
96
+ ```bash
97
+ git clone https://github.com/kszucs/faceberg
98
+ cd faceberg
99
+ pip install -e .
100
+ ```
101
+
102
+ ## License
103
+
104
+ Apache 2.0
@@ -4,7 +4,7 @@ build-backend = "hatchling.build"
4
4
 
5
5
  [project]
6
6
  name = "faceberg"
7
- version = "0.1.0"
7
+ version = "0.1.1"
8
8
  description = "Bridge HuggingFace datasets with Apache Iceberg"
9
9
  readme = "README.md"
10
10
  requires-python = ">=3.9"
faceberg-0.1.0/PKG-INFO DELETED
@@ -1,175 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: faceberg
3
- Version: 0.1.0
4
- Summary: Bridge HuggingFace datasets with Apache Iceberg
5
- Project-URL: Homepage, https://github.com/kszucs/faceberg
6
- Project-URL: Documentation, https://github.com/kszucs/faceberg
7
- Project-URL: Repository, https://github.com/kszucs/faceberg
8
- Author-email: Krisztian Szucs <kszucs@users.noreply.github.com>
9
- License: Apache-2.0
10
- License-File: LICENSE
11
- Keywords: data-lake,datasets,huggingface,iceberg
12
- Classifier: Development Status :: 3 - Alpha
13
- Classifier: Intended Audience :: Developers
14
- Classifier: License :: OSI Approved :: Apache Software License
15
- Classifier: Programming Language :: Python :: 3
16
- Classifier: Programming Language :: Python :: 3.9
17
- Classifier: Programming Language :: Python :: 3.10
18
- Classifier: Programming Language :: Python :: 3.11
19
- Classifier: Programming Language :: Python :: 3.12
20
- Requires-Python: >=3.9
21
- Requires-Dist: click>=8.0.0
22
- Requires-Dist: datasets>=2.0.0
23
- Requires-Dist: fsspec>=2023.1.0
24
- Requires-Dist: huggingface-hub>=0.20.0
25
- Requires-Dist: jinja2>=3.1.6
26
- Requires-Dist: litestar>=2.0.0
27
- Requires-Dist: pyarrow>=21.0.0
28
- Requires-Dist: pyiceberg>=0.6.0
29
- Requires-Dist: pyyaml>=6.0
30
- Requires-Dist: rich>=13.0.0
31
- Requires-Dist: uuid-utils>=0.9.0
32
- Requires-Dist: uvicorn[standard]>=0.27.0
33
- Provides-Extra: dev
34
- Requires-Dist: black>=23.0.0; extra == 'dev'
35
- Requires-Dist: duckdb>=0.10.0; extra == 'dev'
36
- Requires-Dist: mypy>=1.0.0; extra == 'dev'
37
- Requires-Dist: pytest-cov>=4.0.0; extra == 'dev'
38
- Requires-Dist: pytest-playwright>=0.7.0; extra == 'dev'
39
- Requires-Dist: pytest>=7.0.0; extra == 'dev'
40
- Requires-Dist: requests>=2.31.0; extra == 'dev'
41
- Requires-Dist: ruff>=0.1.0; extra == 'dev'
42
- Description-Content-Type: text/markdown
43
-
44
- ![Faceberg](faceberg.png)
45
-
46
- # Faceberg
47
-
48
- Bridge HuggingFace datasets with Apache Iceberg tables.
49
-
50
- ## Installation
51
-
52
- ```bash
53
- pip install faceberg
54
- ```
55
-
56
- ## Quick Start
57
-
58
- ```bash
59
- # Create a catalog and add a dataset
60
- faceberg mycatalog init
61
- faceberg mycatalog add stanfordnlp/imdb --config plain_text
62
- faceberg mycatalog sync
63
-
64
- # Query the data
65
- faceberg mycatalog scan default.imdb --limit 5
66
- ```
67
-
68
- **Python API:**
69
-
70
- ```python
71
- from faceberg import catalog
72
-
73
- cat = catalog("mycatalog")
74
- table = cat.load_table("default.imdb")
75
- df = table.scan().to_pandas()
76
- print(df.head())
77
- ```
78
-
79
- **Documentation:**
80
- - [Getting Started](docs/index.qmd) - Quickstart guide
81
- - [Local Catalogs](docs/local.qmd) - Use local catalogs for testing
82
- - [DuckDB Integration](docs/integrations/duckdb.qmd) - Query with SQL
83
- - [Pandas Integration](docs/integrations/pandas.qmd) - Load into DataFrames
84
-
85
- ## How It Works
86
-
87
- Faceberg creates lightweight Iceberg metadata that points to original HuggingFace dataset files:
88
-
89
- ```
90
- HuggingFace Dataset Your Catalog
91
- ┌─────────────────┐ ┌──────────────────┐
92
- │ org/dataset │ │ mycatalog/ │
93
- │ ├── train.pq ◄──┼─────────┼─ default/ │
94
- │ └── test.pq ◄──┼─────────┼─ └── imdb/ │
95
- └─────────────────┘ │ └── metadata/
96
- └──────────────────┘
97
- ```
98
-
99
- No data is copied—only metadata is created. Query with DuckDB, PyIceberg, Spark, or any Iceberg-compatible tool.
100
-
101
- ## Usage
102
-
103
- ### CLI Commands
104
-
105
- ```bash
106
- # Initialize catalog
107
- faceberg mycatalog init
108
-
109
- # Add datasets
110
- faceberg mycatalog add openai/gsm8k --config main
111
-
112
- # Sync datasets (creates Iceberg metadata)
113
- faceberg mycatalog sync
114
-
115
- # List tables
116
- faceberg mycatalog list
117
-
118
- # Show table info
119
- faceberg mycatalog info default.gsm8k
120
-
121
- # Scan data
122
- faceberg mycatalog scan default.gsm8k --limit 10
123
-
124
- # Start REST server
125
- faceberg mycatalog serve --port 8181
126
- ```
127
-
128
- ### Remote Catalogs on HuggingFace Hub
129
-
130
- ```bash
131
- # Initialize remote catalog
132
- export HF_TOKEN=your_token
133
- faceberg org/catalog-repo init
134
-
135
- # Add and sync datasets
136
- faceberg org/catalog-repo add deepmind/code_contests --config default
137
- faceberg org/catalog-repo sync
138
-
139
- # Serve remote catalog
140
- faceberg org/catalog-repo serve
141
- ```
142
-
143
- ### Query with DuckDB
144
-
145
- ```python
146
- import duckdb
147
-
148
- conn = duckdb.connect()
149
- conn.execute("INSTALL httpfs; LOAD httpfs")
150
- conn.execute("INSTALL iceberg; LOAD iceberg")
151
-
152
- # Query local catalog
153
- result = conn.execute("""
154
- SELECT * FROM iceberg_scan('mycatalog/default/imdb/metadata/v1.metadata.json')
155
- LIMIT 10
156
- """).fetchall()
157
-
158
- # Query remote catalog
159
- result = conn.execute("""
160
- SELECT * FROM iceberg_scan('hf://datasets/org/catalog/default/table/metadata/v1.metadata.json')
161
- LIMIT 10
162
- """).fetchall()
163
- ```
164
-
165
- ## Development
166
-
167
- ```bash
168
- git clone https://github.com/kszucs/faceberg
169
- cd faceberg
170
- pip install -e .
171
- ```
172
-
173
- ## License
174
-
175
- Apache 2.0
faceberg-0.1.0/README.md DELETED
@@ -1,132 +0,0 @@
1
- ![Faceberg](faceberg.png)
2
-
3
- # Faceberg
4
-
5
- Bridge HuggingFace datasets with Apache Iceberg tables.
6
-
7
- ## Installation
8
-
9
- ```bash
10
- pip install faceberg
11
- ```
12
-
13
- ## Quick Start
14
-
15
- ```bash
16
- # Create a catalog and add a dataset
17
- faceberg mycatalog init
18
- faceberg mycatalog add stanfordnlp/imdb --config plain_text
19
- faceberg mycatalog sync
20
-
21
- # Query the data
22
- faceberg mycatalog scan default.imdb --limit 5
23
- ```
24
-
25
- **Python API:**
26
-
27
- ```python
28
- from faceberg import catalog
29
-
30
- cat = catalog("mycatalog")
31
- table = cat.load_table("default.imdb")
32
- df = table.scan().to_pandas()
33
- print(df.head())
34
- ```
35
-
36
- **Documentation:**
37
- - [Getting Started](docs/index.qmd) - Quickstart guide
38
- - [Local Catalogs](docs/local.qmd) - Use local catalogs for testing
39
- - [DuckDB Integration](docs/integrations/duckdb.qmd) - Query with SQL
40
- - [Pandas Integration](docs/integrations/pandas.qmd) - Load into DataFrames
41
-
42
- ## How It Works
43
-
44
- Faceberg creates lightweight Iceberg metadata that points to original HuggingFace dataset files:
45
-
46
- ```
47
- HuggingFace Dataset Your Catalog
48
- ┌─────────────────┐ ┌──────────────────┐
49
- │ org/dataset │ │ mycatalog/ │
50
- │ ├── train.pq ◄──┼─────────┼─ default/ │
51
- │ └── test.pq ◄──┼─────────┼─ └── imdb/ │
52
- └─────────────────┘ │ └── metadata/
53
- └──────────────────┘
54
- ```
55
-
56
- No data is copied—only metadata is created. Query with DuckDB, PyIceberg, Spark, or any Iceberg-compatible tool.
57
-
58
- ## Usage
59
-
60
- ### CLI Commands
61
-
62
- ```bash
63
- # Initialize catalog
64
- faceberg mycatalog init
65
-
66
- # Add datasets
67
- faceberg mycatalog add openai/gsm8k --config main
68
-
69
- # Sync datasets (creates Iceberg metadata)
70
- faceberg mycatalog sync
71
-
72
- # List tables
73
- faceberg mycatalog list
74
-
75
- # Show table info
76
- faceberg mycatalog info default.gsm8k
77
-
78
- # Scan data
79
- faceberg mycatalog scan default.gsm8k --limit 10
80
-
81
- # Start REST server
82
- faceberg mycatalog serve --port 8181
83
- ```
84
-
85
- ### Remote Catalogs on HuggingFace Hub
86
-
87
- ```bash
88
- # Initialize remote catalog
89
- export HF_TOKEN=your_token
90
- faceberg org/catalog-repo init
91
-
92
- # Add and sync datasets
93
- faceberg org/catalog-repo add deepmind/code_contests --config default
94
- faceberg org/catalog-repo sync
95
-
96
- # Serve remote catalog
97
- faceberg org/catalog-repo serve
98
- ```
99
-
100
- ### Query with DuckDB
101
-
102
- ```python
103
- import duckdb
104
-
105
- conn = duckdb.connect()
106
- conn.execute("INSTALL httpfs; LOAD httpfs")
107
- conn.execute("INSTALL iceberg; LOAD iceberg")
108
-
109
- # Query local catalog
110
- result = conn.execute("""
111
- SELECT * FROM iceberg_scan('mycatalog/default/imdb/metadata/v1.metadata.json')
112
- LIMIT 10
113
- """).fetchall()
114
-
115
- # Query remote catalog
116
- result = conn.execute("""
117
- SELECT * FROM iceberg_scan('hf://datasets/org/catalog/default/table/metadata/v1.metadata.json')
118
- LIMIT 10
119
- """).fetchall()
120
- ```
121
-
122
- ## Development
123
-
124
- ```bash
125
- git clone https://github.com/kszucs/faceberg
126
- cd faceberg
127
- pip install -e .
128
- ```
129
-
130
- ## License
131
-
132
- Apache 2.0
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes