ezyml 0.1__tar.gz → 1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ezyml might be problematic. Click here for more details.

ezyml-1/PKG-INFO ADDED
@@ -0,0 +1,165 @@
1
+ Metadata-Version: 2.4
2
+ Name: ezyml
3
+ Version: 1
4
+ Summary: A lightweight tool to train, evaluate, and export ML models in one line.
5
+ Home-page: https://github.com/Rktim/ezyml
6
+ Author: Raktim Kalita
7
+ Author-email: raktimkalita.ai@gmail.com
8
+ Classifier: Programming Language :: Python :: 3
9
+ Classifier: License :: OSI Approved :: MIT License
10
+ Classifier: Operating System :: OS Independent
11
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
12
+ Classifier: Topic :: Software Development :: Libraries :: Python Modules
13
+ Requires-Python: >=3.7
14
+ Description-Content-Type: text/markdown
15
+ License-File: LICENSE
16
+ Requires-Dist: scikit-learn
17
+ Requires-Dist: pandas
18
+ Requires-Dist: numpy
19
+ Requires-Dist: xgboost
20
+ Dynamic: author
21
+ Dynamic: author-email
22
+ Dynamic: classifier
23
+ Dynamic: description
24
+ Dynamic: description-content-type
25
+ Dynamic: home-page
26
+ Dynamic: license-file
27
+ Dynamic: requires-dist
28
+ Dynamic: requires-python
29
+ Dynamic: summary
30
+
31
+ <div align="center">
32
+
33
+ # 📦 ezyml 🚀
34
+
35
+ From raw data to a trained model — in just one line of code.
36
+
37
+ <a href="https://pypi.org/project/ezyml/">
38
+ <img alt="PyPI" src="https://img.shields.io/pypi/v/ezyml?color=blue&label=PyPI&logo=pypi">
39
+ </a>
40
+ <a href="https://github.com/Rktim/ezyml/blob/main/LICENSE">
41
+ <img alt="License" src="https://img.shields.io/github/license/Rktim/ezyml?color=blue">
42
+ </a>
43
+ <img alt="Python Versions" src="https://img.shields.io/pypi/pyversions/ezyml?logo=python&logoColor=white">
44
+
45
+ </div>
46
+
47
+ ---
48
+
49
+ ## 🌟 Why ezyml?
50
+
51
+ **ezyml** is a lightweight, high-level Python library and CLI tool that automates the most tedious parts of your ML pipeline — so you can focus on what matters. Whether you're building a classifier, a regressor, or just exploring data, ezyml does the heavy lifting.
52
+
53
+ ### ✅ Key Features
54
+
55
+ * 🪄 **Auto-Pilot Mode** – Detects task type (classification, regression, etc.) automatically.
56
+ * 🧹 **Smart Preprocessing** – Handles missing values, encodes categories, and scales features out of the box.
57
+ * 🧰 **20+ Models** – Pre-integrated models from `scikit-learn` and `xgboost`.
58
+ * 💾 **One-Line Export** – Save your model as `.pkl` and performance report as `.json`.
59
+ * 📉 **Dimensionality Reduction** – Easily visualize data using PCA or t-SNE.
60
+ * 🧪 **Dual Interface** – Use as a Python package *or* from the command line.
61
+
62
+ ---
63
+
64
+ ## 📦 Installation
65
+
66
+ Install via pip:
67
+
68
+ ```bash
69
+ pip install ezyml
70
+ ```
71
+
72
+ ---
73
+
74
+ ## 🚀 CLI Quickstart
75
+
76
+ ### 🧠 Train a Classifier
77
+
78
+ ```bash
79
+ ezyml train \
80
+ --data titanic.csv \
81
+ --target Survived \
82
+ --model extra_trees \
83
+ --output titanic_model.pkl
84
+ ```
85
+
86
+ ### 📈 Train a Regressor
87
+
88
+ ```bash
89
+ ezyml train \
90
+ --data housing.csv \
91
+ --target price \
92
+ --model ridge \
93
+ --output house_price_model.pkl
94
+ ```
95
+
96
+ ### 📉 Run PCA
97
+
98
+ ```bash
99
+ ezyml reduce \
100
+ --data features.csv \
101
+ --model pca \
102
+ --components 2 \
103
+ --output pca_data.csv
104
+ ```
105
+
106
+ ---
107
+
108
+ ## 🧪 Python API Example
109
+
110
+ ### ▶️ Classification
111
+
112
+ ```python
113
+ from ezyml import EZTrainer
114
+
115
+ # 1. Initialize
116
+ trainer = EZTrainer(data='heart.csv', target='label', model='naive_bayes')
117
+
118
+ # 2. Train
119
+ trainer.train()
120
+
121
+ # 3. Save Results
122
+ trainer.save_model('heart_model.pkl')
123
+ trainer.save_report('heart_report.json')
124
+ ```
125
+
126
+ ### 🔍 Dimensionality Reduction (PCA)
127
+
128
+ ```python
129
+ from ezyml import EZTrainer
130
+
131
+ pca_trainer = EZTrainer(
132
+ data='high_dim.csv',
133
+ model='pca',
134
+ task='dim_reduction',
135
+ n_components=2
136
+ )
137
+
138
+ pca_trainer.train()
139
+ pca_trainer.save_transformed('pca_output.csv')
140
+ ```
141
+
142
+ ---
143
+
144
+ ## 🧰 Supported Models
145
+
146
+ | Task | Models |
147
+ | ---------------------------- | ------------------------------------------------------------------------------------------------------------------ |
148
+ | **Classification** | `logistic_regression`, `random_forest`, `xgboost`, `svm`, `naive_bayes`, `gradient_boosting`, `extra_trees`, `knn` |
149
+ | **Regression** | `linear_regression`, `ridge`, `lasso`, `elasticnet`, `random_forest`, `xgboost`, `svr`, `gradient_boosting` |
150
+ | **Clustering** | `kmeans`, `dbscan`, `agglo` (Agglomerative Clustering) |
151
+ | **Dimensionality Reduction** | `pca`, `tsne` |
152
+
153
+ ---
154
+
155
+ ## 📜 License
156
+
157
+ MIT License – [View License](https://github.com/Rktim/ezyml/blob/main/LICENSE)
158
+
159
+ ---
160
+
161
+ ## 👨‍💻 Author
162
+
163
+ Built with ❤️ by [Raktim Kalita](https://github.com/Rktim)
164
+
165
+ ---
ezyml-1/README.md ADDED
@@ -0,0 +1,135 @@
1
+ <div align="center">
2
+
3
+ # 📦 ezyml 🚀
4
+
5
+ From raw data to a trained model — in just one line of code.
6
+
7
+ <a href="https://pypi.org/project/ezyml/">
8
+ <img alt="PyPI" src="https://img.shields.io/pypi/v/ezyml?color=blue&label=PyPI&logo=pypi">
9
+ </a>
10
+ <a href="https://github.com/Rktim/ezyml/blob/main/LICENSE">
11
+ <img alt="License" src="https://img.shields.io/github/license/Rktim/ezyml?color=blue">
12
+ </a>
13
+ <img alt="Python Versions" src="https://img.shields.io/pypi/pyversions/ezyml?logo=python&logoColor=white">
14
+
15
+ </div>
16
+
17
+ ---
18
+
19
+ ## 🌟 Why ezyml?
20
+
21
+ **ezyml** is a lightweight, high-level Python library and CLI tool that automates the most tedious parts of your ML pipeline — so you can focus on what matters. Whether you're building a classifier, a regressor, or just exploring data, ezyml does the heavy lifting.
22
+
23
+ ### ✅ Key Features
24
+
25
+ * 🪄 **Auto-Pilot Mode** – Detects task type (classification, regression, etc.) automatically.
26
+ * 🧹 **Smart Preprocessing** – Handles missing values, encodes categories, and scales features out of the box.
27
+ * 🧰 **20+ Models** – Pre-integrated models from `scikit-learn` and `xgboost`.
28
+ * 💾 **One-Line Export** – Save your model as `.pkl` and performance report as `.json`.
29
+ * 📉 **Dimensionality Reduction** – Easily visualize data using PCA or t-SNE.
30
+ * 🧪 **Dual Interface** – Use as a Python package *or* from the command line.
31
+
32
+ ---
33
+
34
+ ## 📦 Installation
35
+
36
+ Install via pip:
37
+
38
+ ```bash
39
+ pip install ezyml
40
+ ```
41
+
42
+ ---
43
+
44
+ ## 🚀 CLI Quickstart
45
+
46
+ ### 🧠 Train a Classifier
47
+
48
+ ```bash
49
+ ezyml train \
50
+ --data titanic.csv \
51
+ --target Survived \
52
+ --model extra_trees \
53
+ --output titanic_model.pkl
54
+ ```
55
+
56
+ ### 📈 Train a Regressor
57
+
58
+ ```bash
59
+ ezyml train \
60
+ --data housing.csv \
61
+ --target price \
62
+ --model ridge \
63
+ --output house_price_model.pkl
64
+ ```
65
+
66
+ ### 📉 Run PCA
67
+
68
+ ```bash
69
+ ezyml reduce \
70
+ --data features.csv \
71
+ --model pca \
72
+ --components 2 \
73
+ --output pca_data.csv
74
+ ```
75
+
76
+ ---
77
+
78
+ ## 🧪 Python API Example
79
+
80
+ ### ▶️ Classification
81
+
82
+ ```python
83
+ from ezyml import EZTrainer
84
+
85
+ # 1. Initialize
86
+ trainer = EZTrainer(data='heart.csv', target='label', model='naive_bayes')
87
+
88
+ # 2. Train
89
+ trainer.train()
90
+
91
+ # 3. Save Results
92
+ trainer.save_model('heart_model.pkl')
93
+ trainer.save_report('heart_report.json')
94
+ ```
95
+
96
+ ### 🔍 Dimensionality Reduction (PCA)
97
+
98
+ ```python
99
+ from ezyml import EZTrainer
100
+
101
+ pca_trainer = EZTrainer(
102
+ data='high_dim.csv',
103
+ model='pca',
104
+ task='dim_reduction',
105
+ n_components=2
106
+ )
107
+
108
+ pca_trainer.train()
109
+ pca_trainer.save_transformed('pca_output.csv')
110
+ ```
111
+
112
+ ---
113
+
114
+ ## 🧰 Supported Models
115
+
116
+ | Task | Models |
117
+ | ---------------------------- | ------------------------------------------------------------------------------------------------------------------ |
118
+ | **Classification** | `logistic_regression`, `random_forest`, `xgboost`, `svm`, `naive_bayes`, `gradient_boosting`, `extra_trees`, `knn` |
119
+ | **Regression** | `linear_regression`, `ridge`, `lasso`, `elasticnet`, `random_forest`, `xgboost`, `svr`, `gradient_boosting` |
120
+ | **Clustering** | `kmeans`, `dbscan`, `agglo` (Agglomerative Clustering) |
121
+ | **Dimensionality Reduction** | `pca`, `tsne` |
122
+
123
+ ---
124
+
125
+ ## 📜 License
126
+
127
+ MIT License – [View License](https://github.com/Rktim/ezyml/blob/main/LICENSE)
128
+
129
+ ---
130
+
131
+ ## 👨‍💻 Author
132
+
133
+ Built with ❤️ by [Raktim Kalita](https://github.com/Rktim)
134
+
135
+ ---
@@ -0,0 +1,165 @@
1
+ Metadata-Version: 2.4
2
+ Name: ezyml
3
+ Version: 1
4
+ Summary: A lightweight tool to train, evaluate, and export ML models in one line.
5
+ Home-page: https://github.com/Rktim/ezyml
6
+ Author: Raktim Kalita
7
+ Author-email: raktimkalita.ai@gmail.com
8
+ Classifier: Programming Language :: Python :: 3
9
+ Classifier: License :: OSI Approved :: MIT License
10
+ Classifier: Operating System :: OS Independent
11
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
12
+ Classifier: Topic :: Software Development :: Libraries :: Python Modules
13
+ Requires-Python: >=3.7
14
+ Description-Content-Type: text/markdown
15
+ License-File: LICENSE
16
+ Requires-Dist: scikit-learn
17
+ Requires-Dist: pandas
18
+ Requires-Dist: numpy
19
+ Requires-Dist: xgboost
20
+ Dynamic: author
21
+ Dynamic: author-email
22
+ Dynamic: classifier
23
+ Dynamic: description
24
+ Dynamic: description-content-type
25
+ Dynamic: home-page
26
+ Dynamic: license-file
27
+ Dynamic: requires-dist
28
+ Dynamic: requires-python
29
+ Dynamic: summary
30
+
31
+ <div align="center">
32
+
33
+ # 📦 ezyml 🚀
34
+
35
+ From raw data to a trained model — in just one line of code.
36
+
37
+ <a href="https://pypi.org/project/ezyml/">
38
+ <img alt="PyPI" src="https://img.shields.io/pypi/v/ezyml?color=blue&label=PyPI&logo=pypi">
39
+ </a>
40
+ <a href="https://github.com/Rktim/ezyml/blob/main/LICENSE">
41
+ <img alt="License" src="https://img.shields.io/github/license/Rktim/ezyml?color=blue">
42
+ </a>
43
+ <img alt="Python Versions" src="https://img.shields.io/pypi/pyversions/ezyml?logo=python&logoColor=white">
44
+
45
+ </div>
46
+
47
+ ---
48
+
49
+ ## 🌟 Why ezyml?
50
+
51
+ **ezyml** is a lightweight, high-level Python library and CLI tool that automates the most tedious parts of your ML pipeline — so you can focus on what matters. Whether you're building a classifier, a regressor, or just exploring data, ezyml does the heavy lifting.
52
+
53
+ ### ✅ Key Features
54
+
55
+ * 🪄 **Auto-Pilot Mode** – Detects task type (classification, regression, etc.) automatically.
56
+ * 🧹 **Smart Preprocessing** – Handles missing values, encodes categories, and scales features out of the box.
57
+ * 🧰 **20+ Models** – Pre-integrated models from `scikit-learn` and `xgboost`.
58
+ * 💾 **One-Line Export** – Save your model as `.pkl` and performance report as `.json`.
59
+ * 📉 **Dimensionality Reduction** – Easily visualize data using PCA or t-SNE.
60
+ * 🧪 **Dual Interface** – Use as a Python package *or* from the command line.
61
+
62
+ ---
63
+
64
+ ## 📦 Installation
65
+
66
+ Install via pip:
67
+
68
+ ```bash
69
+ pip install ezyml
70
+ ```
71
+
72
+ ---
73
+
74
+ ## 🚀 CLI Quickstart
75
+
76
+ ### 🧠 Train a Classifier
77
+
78
+ ```bash
79
+ ezyml train \
80
+ --data titanic.csv \
81
+ --target Survived \
82
+ --model extra_trees \
83
+ --output titanic_model.pkl
84
+ ```
85
+
86
+ ### 📈 Train a Regressor
87
+
88
+ ```bash
89
+ ezyml train \
90
+ --data housing.csv \
91
+ --target price \
92
+ --model ridge \
93
+ --output house_price_model.pkl
94
+ ```
95
+
96
+ ### 📉 Run PCA
97
+
98
+ ```bash
99
+ ezyml reduce \
100
+ --data features.csv \
101
+ --model pca \
102
+ --components 2 \
103
+ --output pca_data.csv
104
+ ```
105
+
106
+ ---
107
+
108
+ ## 🧪 Python API Example
109
+
110
+ ### ▶️ Classification
111
+
112
+ ```python
113
+ from ezyml import EZTrainer
114
+
115
+ # 1. Initialize
116
+ trainer = EZTrainer(data='heart.csv', target='label', model='naive_bayes')
117
+
118
+ # 2. Train
119
+ trainer.train()
120
+
121
+ # 3. Save Results
122
+ trainer.save_model('heart_model.pkl')
123
+ trainer.save_report('heart_report.json')
124
+ ```
125
+
126
+ ### 🔍 Dimensionality Reduction (PCA)
127
+
128
+ ```python
129
+ from ezyml import EZTrainer
130
+
131
+ pca_trainer = EZTrainer(
132
+ data='high_dim.csv',
133
+ model='pca',
134
+ task='dim_reduction',
135
+ n_components=2
136
+ )
137
+
138
+ pca_trainer.train()
139
+ pca_trainer.save_transformed('pca_output.csv')
140
+ ```
141
+
142
+ ---
143
+
144
+ ## 🧰 Supported Models
145
+
146
+ | Task | Models |
147
+ | ---------------------------- | ------------------------------------------------------------------------------------------------------------------ |
148
+ | **Classification** | `logistic_regression`, `random_forest`, `xgboost`, `svm`, `naive_bayes`, `gradient_boosting`, `extra_trees`, `knn` |
149
+ | **Regression** | `linear_regression`, `ridge`, `lasso`, `elasticnet`, `random_forest`, `xgboost`, `svr`, `gradient_boosting` |
150
+ | **Clustering** | `kmeans`, `dbscan`, `agglo` (Agglomerative Clustering) |
151
+ | **Dimensionality Reduction** | `pca`, `tsne` |
152
+
153
+ ---
154
+
155
+ ## 📜 License
156
+
157
+ MIT License – [View License](https://github.com/Rktim/ezyml/blob/main/LICENSE)
158
+
159
+ ---
160
+
161
+ ## 👨‍💻 Author
162
+
163
+ Built with ❤️ by [Raktim Kalita](https://github.com/Rktim)
164
+
165
+ ---
@@ -6,7 +6,7 @@ with open("README.md", "r", encoding="utf-8") as fh:
6
6
 
7
7
  setup(
8
8
  name="ezyml",
9
- version="0.1",
9
+ version="1",
10
10
  author="Raktim Kalita",
11
11
  author_email="raktimkalita.ai@gmail.com",
12
12
  description="A lightweight tool to train, evaluate, and export ML models in one line.",
ezyml-0.1/PKG-INFO DELETED
@@ -1,290 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: ezyml
3
- Version: 0.1
4
- Summary: A lightweight tool to train, evaluate, and export ML models in one line.
5
- Home-page: https://github.com/Rktim/ezyml
6
- Author: Raktim Kalita
7
- Author-email: raktimkalita.ai@gmail.com
8
- Classifier: Programming Language :: Python :: 3
9
- Classifier: License :: OSI Approved :: MIT License
10
- Classifier: Operating System :: OS Independent
11
- Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
12
- Classifier: Topic :: Software Development :: Libraries :: Python Modules
13
- Requires-Python: >=3.7
14
- Description-Content-Type: text/markdown
15
- License-File: LICENSE
16
- Requires-Dist: scikit-learn
17
- Requires-Dist: pandas
18
- Requires-Dist: numpy
19
- Requires-Dist: xgboost
20
- Dynamic: author
21
- Dynamic: author-email
22
- Dynamic: classifier
23
- Dynamic: description
24
- Dynamic: description-content-type
25
- Dynamic: home-page
26
- Dynamic: license-file
27
- Dynamic: requires-dist
28
- Dynamic: requires-python
29
- Dynamic: summary
30
-
31
- 📦 ezyml — Train and Export ML Models in 1 Line
32
- ezyml is a lightweight Python and CLI tool to train, evaluate, and export ML models for classification, regression, clustering, and dimensionality reduction — all in a single command or function call.
33
-
34
- 🌟 Features
35
- ✅ Auto-detects task (classification / regression / clustering / PCA)
36
- ✅ Trains supported models with proper preprocessing
37
- ✅ Saves .pkl model and .json metrics
38
- ✅ Works as both a Python API and CLI tool
39
- ✅ Built-in support for 20+ ML models
40
- ✅ Optional dimensionality reduction with PCA/t-SNE
41
- ✅ Exportable model + report with 1 line
42
-
43
- 📦 Installation
44
- pip install ezyml
45
-
46
- 💻 CLI Usage
47
- 🧠 Train a Classification Model
48
- ezyml train
49
-
50
- --data data.csv
51
-
52
- --target label
53
-
54
- --model xgboost
55
-
56
- --output model.pkl
57
-
58
- --report report.json
59
-
60
- 📈 Train a Regression Model
61
- ezyml train --data house.csv --target price --model lasso --output house_model.pkl
62
-
63
- 🔍 Clustering
64
- ezyml train --data user_vectors.csv --model dbscan --task clustering
65
-
66
- 📉 Dimensionality Reduction (PCA)
67
- ezyml reduce --data image_data.csv --model pca --components 2 --output pca_result.csv
68
-
69
- 🧪 Python API Usage
70
- from ezyml import EZTrainer
71
-
72
- Classification example
73
- trainer = EZTrainer(data='heart.csv', target='label', model='naive_bayes')
74
- trainer.train()
75
- trainer.save_model('heart_model.pkl')
76
- trainer.save_report('heart_report.json')
77
-
78
- PCA example
79
- trainer = EZTrainer(data='high_dim.csv', model='pca', task='dim_reduction', n_components=2)
80
- trainer.train()
81
- trainer.save_transformed('pca_output.csv')
82
-
83
- 🧰 Supported Tasks and Models
84
- 🧠 Classification Models
85
- Model Name
86
-
87
- Code ID
88
-
89
- Logistic Regression
90
-
91
- logistic_regression
92
-
93
- Random Forest
94
-
95
- random_forest
96
-
97
- XGBoost Classifier
98
-
99
- xgboost
100
-
101
- SVM (Linear)
102
-
103
- svm
104
-
105
- Naive Bayes
106
-
107
- naive_bayes
108
-
109
- Gradient Boosting
110
-
111
- gradient_boosting
112
-
113
- Extra Trees
114
-
115
- extra_trees
116
-
117
- K-Nearest Neighbors
118
-
119
- knn
120
-
121
- 📈 Regression Models
122
- Model Name
123
-
124
- Code ID
125
-
126
- Linear Regression
127
-
128
- linear_regression
129
-
130
- Ridge Regression
131
-
132
- ridge
133
-
134
- Lasso Regression
135
-
136
- lasso
137
-
138
- ElasticNet
139
-
140
- elasticnet
141
-
142
- Random Forest Regr.
143
-
144
- random_forest
145
-
146
- XGBoost Regr.
147
-
148
- xgboost
149
-
150
- SVR
151
-
152
- svr
153
-
154
- Gradient Boosting
155
-
156
- gradient_boosting
157
-
158
- 🔍 Clustering Models
159
- Model Name
160
-
161
- Code ID
162
-
163
- KMeans
164
-
165
- kmeans
166
-
167
- DBSCAN
168
-
169
- dbscan
170
-
171
- Agglomerative Clustering
172
-
173
- agglo
174
-
175
- 📉 Dimensionality Reduction
176
- Method
177
-
178
- Code ID
179
-
180
- PCA
181
-
182
- pca
183
-
184
- t-SNE
185
-
186
- tsne
187
-
188
- 📊 Metrics
189
- Task
190
-
191
- Metrics
192
-
193
- Classification
194
-
195
- Accuracy, F1, ROC AUC, Confusion Matrix
196
-
197
- Regression
198
-
199
- MAE, MSE, RMSE, R²
200
-
201
- Clustering
202
-
203
- Silhouette Score, n_clusters
204
-
205
- PCA/t-SNE
206
-
207
- None (returns transformed data)
208
-
209
- 🧠 API Reference: EZTrainer
210
- EZTrainer(
211
- data: str | pd.DataFrame,
212
- target: str | None = None,
213
- model: str = "random_forest",
214
- task: str = "auto", # or: classification, regression, clustering, dim_reduction
215
- test_size: float = 0.2,
216
- scale: bool = True,
217
- n_components: int = None, # For PCA or t-SNE
218
- )
219
-
220
- Methods
221
- Method
222
-
223
- Description
224
-
225
- .train()
226
-
227
- Trains the selected model
228
-
229
- .save_model(path)
230
-
231
- Saves the model to .pkl
232
-
233
- .save_report(path)
234
-
235
- Saves metrics/report as .json
236
-
237
- .save_transformed(path)
238
-
239
- Saves transformed data for PCA/t-SNE
240
-
241
- .predict(X)
242
-
243
- Returns predictions
244
-
245
- 🧰 CLI Reference
246
-
247
- General training
248
- ezyml train
249
-
250
- --data FILE.csv
251
-
252
- --target TARGET
253
-
254
- --model MODEL_NAME
255
-
256
- --output model.pkl
257
-
258
- --report metrics.json
259
-
260
- --task classification|regression|clustering
261
-
262
- Dimensionality Reduction
263
- ezyml reduce --data FILE.csv --model pca --components 2 --output reduced.csv
264
-
265
- 🧪 Examples
266
- Classify Titanic Dataset with Extra Trees:
267
-
268
- ezyml train --data titanic.csv --target Survived --model extra_trees --output model.pkl
269
-
270
- Regress Housing Prices using Ridge:
271
-
272
- ezyml train --data housing.csv --target price --model ridge --output model.pkl
273
-
274
- Cluster Data:
275
-
276
- ezyml train --data vectors.csv --model kmeans --task clustering
277
-
278
- PCA:
279
-
280
- ezyml reduce --data features.csv --model pca --components 2 --output pca_data.csv
281
-
282
-
283
-
284
- 📜 License
285
- MIT License
286
-
287
- 👨‍💻 Author
288
- Raktim Kalita
289
- Machine Learning Engineer, Automator of Ideas 💡
290
- GitHub: @raktimkalita
ezyml-0.1/README.md DELETED
@@ -1,260 +0,0 @@
1
- 📦 ezyml — Train and Export ML Models in 1 Line
2
- ezyml is a lightweight Python and CLI tool to train, evaluate, and export ML models for classification, regression, clustering, and dimensionality reduction — all in a single command or function call.
3
-
4
- 🌟 Features
5
- ✅ Auto-detects task (classification / regression / clustering / PCA)
6
- ✅ Trains supported models with proper preprocessing
7
- ✅ Saves .pkl model and .json metrics
8
- ✅ Works as both a Python API and CLI tool
9
- ✅ Built-in support for 20+ ML models
10
- ✅ Optional dimensionality reduction with PCA/t-SNE
11
- ✅ Exportable model + report with 1 line
12
-
13
- 📦 Installation
14
- pip install ezyml
15
-
16
- 💻 CLI Usage
17
- 🧠 Train a Classification Model
18
- ezyml train
19
-
20
- --data data.csv
21
-
22
- --target label
23
-
24
- --model xgboost
25
-
26
- --output model.pkl
27
-
28
- --report report.json
29
-
30
- 📈 Train a Regression Model
31
- ezyml train --data house.csv --target price --model lasso --output house_model.pkl
32
-
33
- 🔍 Clustering
34
- ezyml train --data user_vectors.csv --model dbscan --task clustering
35
-
36
- 📉 Dimensionality Reduction (PCA)
37
- ezyml reduce --data image_data.csv --model pca --components 2 --output pca_result.csv
38
-
39
- 🧪 Python API Usage
40
- from ezyml import EZTrainer
41
-
42
- Classification example
43
- trainer = EZTrainer(data='heart.csv', target='label', model='naive_bayes')
44
- trainer.train()
45
- trainer.save_model('heart_model.pkl')
46
- trainer.save_report('heart_report.json')
47
-
48
- PCA example
49
- trainer = EZTrainer(data='high_dim.csv', model='pca', task='dim_reduction', n_components=2)
50
- trainer.train()
51
- trainer.save_transformed('pca_output.csv')
52
-
53
- 🧰 Supported Tasks and Models
54
- 🧠 Classification Models
55
- Model Name
56
-
57
- Code ID
58
-
59
- Logistic Regression
60
-
61
- logistic_regression
62
-
63
- Random Forest
64
-
65
- random_forest
66
-
67
- XGBoost Classifier
68
-
69
- xgboost
70
-
71
- SVM (Linear)
72
-
73
- svm
74
-
75
- Naive Bayes
76
-
77
- naive_bayes
78
-
79
- Gradient Boosting
80
-
81
- gradient_boosting
82
-
83
- Extra Trees
84
-
85
- extra_trees
86
-
87
- K-Nearest Neighbors
88
-
89
- knn
90
-
91
- 📈 Regression Models
92
- Model Name
93
-
94
- Code ID
95
-
96
- Linear Regression
97
-
98
- linear_regression
99
-
100
- Ridge Regression
101
-
102
- ridge
103
-
104
- Lasso Regression
105
-
106
- lasso
107
-
108
- ElasticNet
109
-
110
- elasticnet
111
-
112
- Random Forest Regr.
113
-
114
- random_forest
115
-
116
- XGBoost Regr.
117
-
118
- xgboost
119
-
120
- SVR
121
-
122
- svr
123
-
124
- Gradient Boosting
125
-
126
- gradient_boosting
127
-
128
- 🔍 Clustering Models
129
- Model Name
130
-
131
- Code ID
132
-
133
- KMeans
134
-
135
- kmeans
136
-
137
- DBSCAN
138
-
139
- dbscan
140
-
141
- Agglomerative Clustering
142
-
143
- agglo
144
-
145
- 📉 Dimensionality Reduction
146
- Method
147
-
148
- Code ID
149
-
150
- PCA
151
-
152
- pca
153
-
154
- t-SNE
155
-
156
- tsne
157
-
158
- 📊 Metrics
159
- Task
160
-
161
- Metrics
162
-
163
- Classification
164
-
165
- Accuracy, F1, ROC AUC, Confusion Matrix
166
-
167
- Regression
168
-
169
- MAE, MSE, RMSE, R²
170
-
171
- Clustering
172
-
173
- Silhouette Score, n_clusters
174
-
175
- PCA/t-SNE
176
-
177
- None (returns transformed data)
178
-
179
- 🧠 API Reference: EZTrainer
180
- EZTrainer(
181
- data: str | pd.DataFrame,
182
- target: str | None = None,
183
- model: str = "random_forest",
184
- task: str = "auto", # or: classification, regression, clustering, dim_reduction
185
- test_size: float = 0.2,
186
- scale: bool = True,
187
- n_components: int = None, # For PCA or t-SNE
188
- )
189
-
190
- Methods
191
- Method
192
-
193
- Description
194
-
195
- .train()
196
-
197
- Trains the selected model
198
-
199
- .save_model(path)
200
-
201
- Saves the model to .pkl
202
-
203
- .save_report(path)
204
-
205
- Saves metrics/report as .json
206
-
207
- .save_transformed(path)
208
-
209
- Saves transformed data for PCA/t-SNE
210
-
211
- .predict(X)
212
-
213
- Returns predictions
214
-
215
- 🧰 CLI Reference
216
-
217
- General training
218
- ezyml train
219
-
220
- --data FILE.csv
221
-
222
- --target TARGET
223
-
224
- --model MODEL_NAME
225
-
226
- --output model.pkl
227
-
228
- --report metrics.json
229
-
230
- --task classification|regression|clustering
231
-
232
- Dimensionality Reduction
233
- ezyml reduce --data FILE.csv --model pca --components 2 --output reduced.csv
234
-
235
- 🧪 Examples
236
- Classify Titanic Dataset with Extra Trees:
237
-
238
- ezyml train --data titanic.csv --target Survived --model extra_trees --output model.pkl
239
-
240
- Regress Housing Prices using Ridge:
241
-
242
- ezyml train --data housing.csv --target price --model ridge --output model.pkl
243
-
244
- Cluster Data:
245
-
246
- ezyml train --data vectors.csv --model kmeans --task clustering
247
-
248
- PCA:
249
-
250
- ezyml reduce --data features.csv --model pca --components 2 --output pca_data.csv
251
-
252
-
253
-
254
- 📜 License
255
- MIT License
256
-
257
- 👨‍💻 Author
258
- Raktim Kalita
259
- Machine Learning Engineer, Automator of Ideas 💡
260
- GitHub: @raktimkalita
@@ -1,290 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: ezyml
3
- Version: 0.1
4
- Summary: A lightweight tool to train, evaluate, and export ML models in one line.
5
- Home-page: https://github.com/Rktim/ezyml
6
- Author: Raktim Kalita
7
- Author-email: raktimkalita.ai@gmail.com
8
- Classifier: Programming Language :: Python :: 3
9
- Classifier: License :: OSI Approved :: MIT License
10
- Classifier: Operating System :: OS Independent
11
- Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
12
- Classifier: Topic :: Software Development :: Libraries :: Python Modules
13
- Requires-Python: >=3.7
14
- Description-Content-Type: text/markdown
15
- License-File: LICENSE
16
- Requires-Dist: scikit-learn
17
- Requires-Dist: pandas
18
- Requires-Dist: numpy
19
- Requires-Dist: xgboost
20
- Dynamic: author
21
- Dynamic: author-email
22
- Dynamic: classifier
23
- Dynamic: description
24
- Dynamic: description-content-type
25
- Dynamic: home-page
26
- Dynamic: license-file
27
- Dynamic: requires-dist
28
- Dynamic: requires-python
29
- Dynamic: summary
30
-
31
- 📦 ezyml — Train and Export ML Models in 1 Line
32
- ezyml is a lightweight Python and CLI tool to train, evaluate, and export ML models for classification, regression, clustering, and dimensionality reduction — all in a single command or function call.
33
-
34
- 🌟 Features
35
- ✅ Auto-detects task (classification / regression / clustering / PCA)
36
- ✅ Trains supported models with proper preprocessing
37
- ✅ Saves .pkl model and .json metrics
38
- ✅ Works as both a Python API and CLI tool
39
- ✅ Built-in support for 20+ ML models
40
- ✅ Optional dimensionality reduction with PCA/t-SNE
41
- ✅ Exportable model + report with 1 line
42
-
43
- 📦 Installation
44
- pip install ezyml
45
-
46
- 💻 CLI Usage
47
- 🧠 Train a Classification Model
48
- ezyml train
49
-
50
- --data data.csv
51
-
52
- --target label
53
-
54
- --model xgboost
55
-
56
- --output model.pkl
57
-
58
- --report report.json
59
-
60
- 📈 Train a Regression Model
61
- ezyml train --data house.csv --target price --model lasso --output house_model.pkl
62
-
63
- 🔍 Clustering
64
- ezyml train --data user_vectors.csv --model dbscan --task clustering
65
-
66
- 📉 Dimensionality Reduction (PCA)
67
- ezyml reduce --data image_data.csv --model pca --components 2 --output pca_result.csv
68
-
69
- 🧪 Python API Usage
70
- from ezyml import EZTrainer
71
-
72
- Classification example
73
- trainer = EZTrainer(data='heart.csv', target='label', model='naive_bayes')
74
- trainer.train()
75
- trainer.save_model('heart_model.pkl')
76
- trainer.save_report('heart_report.json')
77
-
78
- PCA example
79
- trainer = EZTrainer(data='high_dim.csv', model='pca', task='dim_reduction', n_components=2)
80
- trainer.train()
81
- trainer.save_transformed('pca_output.csv')
82
-
83
- 🧰 Supported Tasks and Models
84
- 🧠 Classification Models
85
- Model Name
86
-
87
- Code ID
88
-
89
- Logistic Regression
90
-
91
- logistic_regression
92
-
93
- Random Forest
94
-
95
- random_forest
96
-
97
- XGBoost Classifier
98
-
99
- xgboost
100
-
101
- SVM (Linear)
102
-
103
- svm
104
-
105
- Naive Bayes
106
-
107
- naive_bayes
108
-
109
- Gradient Boosting
110
-
111
- gradient_boosting
112
-
113
- Extra Trees
114
-
115
- extra_trees
116
-
117
- K-Nearest Neighbors
118
-
119
- knn
120
-
121
- 📈 Regression Models
122
- Model Name
123
-
124
- Code ID
125
-
126
- Linear Regression
127
-
128
- linear_regression
129
-
130
- Ridge Regression
131
-
132
- ridge
133
-
134
- Lasso Regression
135
-
136
- lasso
137
-
138
- ElasticNet
139
-
140
- elasticnet
141
-
142
- Random Forest Regr.
143
-
144
- random_forest
145
-
146
- XGBoost Regr.
147
-
148
- xgboost
149
-
150
- SVR
151
-
152
- svr
153
-
154
- Gradient Boosting
155
-
156
- gradient_boosting
157
-
158
- 🔍 Clustering Models
159
- Model Name
160
-
161
- Code ID
162
-
163
- KMeans
164
-
165
- kmeans
166
-
167
- DBSCAN
168
-
169
- dbscan
170
-
171
- Agglomerative Clustering
172
-
173
- agglo
174
-
175
- 📉 Dimensionality Reduction
176
- Method
177
-
178
- Code ID
179
-
180
- PCA
181
-
182
- pca
183
-
184
- t-SNE
185
-
186
- tsne
187
-
188
- 📊 Metrics
189
- Task
190
-
191
- Metrics
192
-
193
- Classification
194
-
195
- Accuracy, F1, ROC AUC, Confusion Matrix
196
-
197
- Regression
198
-
199
- MAE, MSE, RMSE, R²
200
-
201
- Clustering
202
-
203
- Silhouette Score, n_clusters
204
-
205
- PCA/t-SNE
206
-
207
- None (returns transformed data)
208
-
209
- 🧠 API Reference: EZTrainer
210
- EZTrainer(
211
- data: str | pd.DataFrame,
212
- target: str | None = None,
213
- model: str = "random_forest",
214
- task: str = "auto", # or: classification, regression, clustering, dim_reduction
215
- test_size: float = 0.2,
216
- scale: bool = True,
217
- n_components: int = None, # For PCA or t-SNE
218
- )
219
-
220
- Methods
221
- Method
222
-
223
- Description
224
-
225
- .train()
226
-
227
- Trains the selected model
228
-
229
- .save_model(path)
230
-
231
- Saves the model to .pkl
232
-
233
- .save_report(path)
234
-
235
- Saves metrics/report as .json
236
-
237
- .save_transformed(path)
238
-
239
- Saves transformed data for PCA/t-SNE
240
-
241
- .predict(X)
242
-
243
- Returns predictions
244
-
245
- 🧰 CLI Reference
246
-
247
- General training
248
- ezyml train
249
-
250
- --data FILE.csv
251
-
252
- --target TARGET
253
-
254
- --model MODEL_NAME
255
-
256
- --output model.pkl
257
-
258
- --report metrics.json
259
-
260
- --task classification|regression|clustering
261
-
262
- Dimensionality Reduction
263
- ezyml reduce --data FILE.csv --model pca --components 2 --output reduced.csv
264
-
265
- 🧪 Examples
266
- Classify Titanic Dataset with Extra Trees:
267
-
268
- ezyml train --data titanic.csv --target Survived --model extra_trees --output model.pkl
269
-
270
- Regress Housing Prices using Ridge:
271
-
272
- ezyml train --data housing.csv --target price --model ridge --output model.pkl
273
-
274
- Cluster Data:
275
-
276
- ezyml train --data vectors.csv --model kmeans --task clustering
277
-
278
- PCA:
279
-
280
- ezyml reduce --data features.csv --model pca --components 2 --output pca_data.csv
281
-
282
-
283
-
284
- 📜 License
285
- MIT License
286
-
287
- 👨‍💻 Author
288
- Raktim Kalita
289
- Machine Learning Engineer, Automator of Ideas 💡
290
- GitHub: @raktimkalita
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes