ezyml 0.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ezyml might be problematic. Click here for more details.
- ezyml-0.1/LICENSE +21 -0
- ezyml-0.1/PKG-INFO +290 -0
- ezyml-0.1/README.md +260 -0
- ezyml-0.1/ezyml.egg-info/PKG-INFO +290 -0
- ezyml-0.1/ezyml.egg-info/SOURCES.txt +9 -0
- ezyml-0.1/ezyml.egg-info/dependency_links.txt +1 -0
- ezyml-0.1/ezyml.egg-info/entry_points.txt +2 -0
- ezyml-0.1/ezyml.egg-info/requires.txt +4 -0
- ezyml-0.1/ezyml.egg-info/top_level.txt +1 -0
- ezyml-0.1/setup.cfg +4 -0
- ezyml-0.1/setup.py +36 -0
ezyml-0.1/LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2024 Raktim Kalita
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
ezyml-0.1/PKG-INFO
ADDED
|
@@ -0,0 +1,290 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: ezyml
|
|
3
|
+
Version: 0.1
|
|
4
|
+
Summary: A lightweight tool to train, evaluate, and export ML models in one line.
|
|
5
|
+
Home-page: https://github.com/Rktim/ezyml
|
|
6
|
+
Author: Raktim Kalita
|
|
7
|
+
Author-email: raktimkalita.ai@gmail.com
|
|
8
|
+
Classifier: Programming Language :: Python :: 3
|
|
9
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
10
|
+
Classifier: Operating System :: OS Independent
|
|
11
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
12
|
+
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
|
13
|
+
Requires-Python: >=3.7
|
|
14
|
+
Description-Content-Type: text/markdown
|
|
15
|
+
License-File: LICENSE
|
|
16
|
+
Requires-Dist: scikit-learn
|
|
17
|
+
Requires-Dist: pandas
|
|
18
|
+
Requires-Dist: numpy
|
|
19
|
+
Requires-Dist: xgboost
|
|
20
|
+
Dynamic: author
|
|
21
|
+
Dynamic: author-email
|
|
22
|
+
Dynamic: classifier
|
|
23
|
+
Dynamic: description
|
|
24
|
+
Dynamic: description-content-type
|
|
25
|
+
Dynamic: home-page
|
|
26
|
+
Dynamic: license-file
|
|
27
|
+
Dynamic: requires-dist
|
|
28
|
+
Dynamic: requires-python
|
|
29
|
+
Dynamic: summary
|
|
30
|
+
|
|
31
|
+
๐ฆ ezyml โ Train and Export ML Models in 1 Line
|
|
32
|
+
ezyml is a lightweight Python and CLI tool to train, evaluate, and export ML models for classification, regression, clustering, and dimensionality reduction โ all in a single command or function call.
|
|
33
|
+
|
|
34
|
+
๐ Features
|
|
35
|
+
โ
Auto-detects task (classification / regression / clustering / PCA)
|
|
36
|
+
โ
Trains supported models with proper preprocessing
|
|
37
|
+
โ
Saves .pkl model and .json metrics
|
|
38
|
+
โ
Works as both a Python API and CLI tool
|
|
39
|
+
โ
Built-in support for 20+ ML models
|
|
40
|
+
โ
Optional dimensionality reduction with PCA/t-SNE
|
|
41
|
+
โ
Exportable model + report with 1 line
|
|
42
|
+
|
|
43
|
+
๐ฆ Installation
|
|
44
|
+
pip install ezyml
|
|
45
|
+
|
|
46
|
+
๐ป CLI Usage
|
|
47
|
+
๐ง Train a Classification Model
|
|
48
|
+
ezyml train
|
|
49
|
+
|
|
50
|
+
--data data.csv
|
|
51
|
+
|
|
52
|
+
--target label
|
|
53
|
+
|
|
54
|
+
--model xgboost
|
|
55
|
+
|
|
56
|
+
--output model.pkl
|
|
57
|
+
|
|
58
|
+
--report report.json
|
|
59
|
+
|
|
60
|
+
๐ Train a Regression Model
|
|
61
|
+
ezyml train --data house.csv --target price --model lasso --output house_model.pkl
|
|
62
|
+
|
|
63
|
+
๐ Clustering
|
|
64
|
+
ezyml train --data user_vectors.csv --model dbscan --task clustering
|
|
65
|
+
|
|
66
|
+
๐ Dimensionality Reduction (PCA)
|
|
67
|
+
ezyml reduce --data image_data.csv --model pca --components 2 --output pca_result.csv
|
|
68
|
+
|
|
69
|
+
๐งช Python API Usage
|
|
70
|
+
from ezyml import EZTrainer
|
|
71
|
+
|
|
72
|
+
Classification example
|
|
73
|
+
trainer = EZTrainer(data='heart.csv', target='label', model='naive_bayes')
|
|
74
|
+
trainer.train()
|
|
75
|
+
trainer.save_model('heart_model.pkl')
|
|
76
|
+
trainer.save_report('heart_report.json')
|
|
77
|
+
|
|
78
|
+
PCA example
|
|
79
|
+
trainer = EZTrainer(data='high_dim.csv', model='pca', task='dim_reduction', n_components=2)
|
|
80
|
+
trainer.train()
|
|
81
|
+
trainer.save_transformed('pca_output.csv')
|
|
82
|
+
|
|
83
|
+
๐งฐ Supported Tasks and Models
|
|
84
|
+
๐ง Classification Models
|
|
85
|
+
Model Name
|
|
86
|
+
|
|
87
|
+
Code ID
|
|
88
|
+
|
|
89
|
+
Logistic Regression
|
|
90
|
+
|
|
91
|
+
logistic_regression
|
|
92
|
+
|
|
93
|
+
Random Forest
|
|
94
|
+
|
|
95
|
+
random_forest
|
|
96
|
+
|
|
97
|
+
XGBoost Classifier
|
|
98
|
+
|
|
99
|
+
xgboost
|
|
100
|
+
|
|
101
|
+
SVM (Linear)
|
|
102
|
+
|
|
103
|
+
svm
|
|
104
|
+
|
|
105
|
+
Naive Bayes
|
|
106
|
+
|
|
107
|
+
naive_bayes
|
|
108
|
+
|
|
109
|
+
Gradient Boosting
|
|
110
|
+
|
|
111
|
+
gradient_boosting
|
|
112
|
+
|
|
113
|
+
Extra Trees
|
|
114
|
+
|
|
115
|
+
extra_trees
|
|
116
|
+
|
|
117
|
+
K-Nearest Neighbors
|
|
118
|
+
|
|
119
|
+
knn
|
|
120
|
+
|
|
121
|
+
๐ Regression Models
|
|
122
|
+
Model Name
|
|
123
|
+
|
|
124
|
+
Code ID
|
|
125
|
+
|
|
126
|
+
Linear Regression
|
|
127
|
+
|
|
128
|
+
linear_regression
|
|
129
|
+
|
|
130
|
+
Ridge Regression
|
|
131
|
+
|
|
132
|
+
ridge
|
|
133
|
+
|
|
134
|
+
Lasso Regression
|
|
135
|
+
|
|
136
|
+
lasso
|
|
137
|
+
|
|
138
|
+
ElasticNet
|
|
139
|
+
|
|
140
|
+
elasticnet
|
|
141
|
+
|
|
142
|
+
Random Forest Regr.
|
|
143
|
+
|
|
144
|
+
random_forest
|
|
145
|
+
|
|
146
|
+
XGBoost Regr.
|
|
147
|
+
|
|
148
|
+
xgboost
|
|
149
|
+
|
|
150
|
+
SVR
|
|
151
|
+
|
|
152
|
+
svr
|
|
153
|
+
|
|
154
|
+
Gradient Boosting
|
|
155
|
+
|
|
156
|
+
gradient_boosting
|
|
157
|
+
|
|
158
|
+
๐ Clustering Models
|
|
159
|
+
Model Name
|
|
160
|
+
|
|
161
|
+
Code ID
|
|
162
|
+
|
|
163
|
+
KMeans
|
|
164
|
+
|
|
165
|
+
kmeans
|
|
166
|
+
|
|
167
|
+
DBSCAN
|
|
168
|
+
|
|
169
|
+
dbscan
|
|
170
|
+
|
|
171
|
+
Agglomerative Clustering
|
|
172
|
+
|
|
173
|
+
agglo
|
|
174
|
+
|
|
175
|
+
๐ Dimensionality Reduction
|
|
176
|
+
Method
|
|
177
|
+
|
|
178
|
+
Code ID
|
|
179
|
+
|
|
180
|
+
PCA
|
|
181
|
+
|
|
182
|
+
pca
|
|
183
|
+
|
|
184
|
+
t-SNE
|
|
185
|
+
|
|
186
|
+
tsne
|
|
187
|
+
|
|
188
|
+
๐ Metrics
|
|
189
|
+
Task
|
|
190
|
+
|
|
191
|
+
Metrics
|
|
192
|
+
|
|
193
|
+
Classification
|
|
194
|
+
|
|
195
|
+
Accuracy, F1, ROC AUC, Confusion Matrix
|
|
196
|
+
|
|
197
|
+
Regression
|
|
198
|
+
|
|
199
|
+
MAE, MSE, RMSE, Rยฒ
|
|
200
|
+
|
|
201
|
+
Clustering
|
|
202
|
+
|
|
203
|
+
Silhouette Score, n_clusters
|
|
204
|
+
|
|
205
|
+
PCA/t-SNE
|
|
206
|
+
|
|
207
|
+
None (returns transformed data)
|
|
208
|
+
|
|
209
|
+
๐ง API Reference: EZTrainer
|
|
210
|
+
EZTrainer(
|
|
211
|
+
data: str | pd.DataFrame,
|
|
212
|
+
target: str | None = None,
|
|
213
|
+
model: str = "random_forest",
|
|
214
|
+
task: str = "auto", # or: classification, regression, clustering, dim_reduction
|
|
215
|
+
test_size: float = 0.2,
|
|
216
|
+
scale: bool = True,
|
|
217
|
+
n_components: int = None, # For PCA or t-SNE
|
|
218
|
+
)
|
|
219
|
+
|
|
220
|
+
Methods
|
|
221
|
+
Method
|
|
222
|
+
|
|
223
|
+
Description
|
|
224
|
+
|
|
225
|
+
.train()
|
|
226
|
+
|
|
227
|
+
Trains the selected model
|
|
228
|
+
|
|
229
|
+
.save_model(path)
|
|
230
|
+
|
|
231
|
+
Saves the model to .pkl
|
|
232
|
+
|
|
233
|
+
.save_report(path)
|
|
234
|
+
|
|
235
|
+
Saves metrics/report as .json
|
|
236
|
+
|
|
237
|
+
.save_transformed(path)
|
|
238
|
+
|
|
239
|
+
Saves transformed data for PCA/t-SNE
|
|
240
|
+
|
|
241
|
+
.predict(X)
|
|
242
|
+
|
|
243
|
+
Returns predictions
|
|
244
|
+
|
|
245
|
+
๐งฐ CLI Reference
|
|
246
|
+
|
|
247
|
+
General training
|
|
248
|
+
ezyml train
|
|
249
|
+
|
|
250
|
+
--data FILE.csv
|
|
251
|
+
|
|
252
|
+
--target TARGET
|
|
253
|
+
|
|
254
|
+
--model MODEL_NAME
|
|
255
|
+
|
|
256
|
+
--output model.pkl
|
|
257
|
+
|
|
258
|
+
--report metrics.json
|
|
259
|
+
|
|
260
|
+
--task classification|regression|clustering
|
|
261
|
+
|
|
262
|
+
Dimensionality Reduction
|
|
263
|
+
ezyml reduce --data FILE.csv --model pca --components 2 --output reduced.csv
|
|
264
|
+
|
|
265
|
+
๐งช Examples
|
|
266
|
+
Classify Titanic Dataset with Extra Trees:
|
|
267
|
+
|
|
268
|
+
ezyml train --data titanic.csv --target Survived --model extra_trees --output model.pkl
|
|
269
|
+
|
|
270
|
+
Regress Housing Prices using Ridge:
|
|
271
|
+
|
|
272
|
+
ezyml train --data housing.csv --target price --model ridge --output model.pkl
|
|
273
|
+
|
|
274
|
+
Cluster Data:
|
|
275
|
+
|
|
276
|
+
ezyml train --data vectors.csv --model kmeans --task clustering
|
|
277
|
+
|
|
278
|
+
PCA:
|
|
279
|
+
|
|
280
|
+
ezyml reduce --data features.csv --model pca --components 2 --output pca_data.csv
|
|
281
|
+
|
|
282
|
+
|
|
283
|
+
|
|
284
|
+
๐ License
|
|
285
|
+
MIT License
|
|
286
|
+
|
|
287
|
+
๐จโ๐ป Author
|
|
288
|
+
Raktim Kalita
|
|
289
|
+
Machine Learning Engineer, Automator of Ideas ๐ก
|
|
290
|
+
GitHub: @raktimkalita
|
ezyml-0.1/README.md
ADDED
|
@@ -0,0 +1,260 @@
|
|
|
1
|
+
๐ฆ ezyml โ Train and Export ML Models in 1 Line
|
|
2
|
+
ezyml is a lightweight Python and CLI tool to train, evaluate, and export ML models for classification, regression, clustering, and dimensionality reduction โ all in a single command or function call.
|
|
3
|
+
|
|
4
|
+
๐ Features
|
|
5
|
+
โ
Auto-detects task (classification / regression / clustering / PCA)
|
|
6
|
+
โ
Trains supported models with proper preprocessing
|
|
7
|
+
โ
Saves .pkl model and .json metrics
|
|
8
|
+
โ
Works as both a Python API and CLI tool
|
|
9
|
+
โ
Built-in support for 20+ ML models
|
|
10
|
+
โ
Optional dimensionality reduction with PCA/t-SNE
|
|
11
|
+
โ
Exportable model + report with 1 line
|
|
12
|
+
|
|
13
|
+
๐ฆ Installation
|
|
14
|
+
pip install ezyml
|
|
15
|
+
|
|
16
|
+
๐ป CLI Usage
|
|
17
|
+
๐ง Train a Classification Model
|
|
18
|
+
ezyml train
|
|
19
|
+
|
|
20
|
+
--data data.csv
|
|
21
|
+
|
|
22
|
+
--target label
|
|
23
|
+
|
|
24
|
+
--model xgboost
|
|
25
|
+
|
|
26
|
+
--output model.pkl
|
|
27
|
+
|
|
28
|
+
--report report.json
|
|
29
|
+
|
|
30
|
+
๐ Train a Regression Model
|
|
31
|
+
ezyml train --data house.csv --target price --model lasso --output house_model.pkl
|
|
32
|
+
|
|
33
|
+
๐ Clustering
|
|
34
|
+
ezyml train --data user_vectors.csv --model dbscan --task clustering
|
|
35
|
+
|
|
36
|
+
๐ Dimensionality Reduction (PCA)
|
|
37
|
+
ezyml reduce --data image_data.csv --model pca --components 2 --output pca_result.csv
|
|
38
|
+
|
|
39
|
+
๐งช Python API Usage
|
|
40
|
+
from ezyml import EZTrainer
|
|
41
|
+
|
|
42
|
+
Classification example
|
|
43
|
+
trainer = EZTrainer(data='heart.csv', target='label', model='naive_bayes')
|
|
44
|
+
trainer.train()
|
|
45
|
+
trainer.save_model('heart_model.pkl')
|
|
46
|
+
trainer.save_report('heart_report.json')
|
|
47
|
+
|
|
48
|
+
PCA example
|
|
49
|
+
trainer = EZTrainer(data='high_dim.csv', model='pca', task='dim_reduction', n_components=2)
|
|
50
|
+
trainer.train()
|
|
51
|
+
trainer.save_transformed('pca_output.csv')
|
|
52
|
+
|
|
53
|
+
๐งฐ Supported Tasks and Models
|
|
54
|
+
๐ง Classification Models
|
|
55
|
+
Model Name
|
|
56
|
+
|
|
57
|
+
Code ID
|
|
58
|
+
|
|
59
|
+
Logistic Regression
|
|
60
|
+
|
|
61
|
+
logistic_regression
|
|
62
|
+
|
|
63
|
+
Random Forest
|
|
64
|
+
|
|
65
|
+
random_forest
|
|
66
|
+
|
|
67
|
+
XGBoost Classifier
|
|
68
|
+
|
|
69
|
+
xgboost
|
|
70
|
+
|
|
71
|
+
SVM (Linear)
|
|
72
|
+
|
|
73
|
+
svm
|
|
74
|
+
|
|
75
|
+
Naive Bayes
|
|
76
|
+
|
|
77
|
+
naive_bayes
|
|
78
|
+
|
|
79
|
+
Gradient Boosting
|
|
80
|
+
|
|
81
|
+
gradient_boosting
|
|
82
|
+
|
|
83
|
+
Extra Trees
|
|
84
|
+
|
|
85
|
+
extra_trees
|
|
86
|
+
|
|
87
|
+
K-Nearest Neighbors
|
|
88
|
+
|
|
89
|
+
knn
|
|
90
|
+
|
|
91
|
+
๐ Regression Models
|
|
92
|
+
Model Name
|
|
93
|
+
|
|
94
|
+
Code ID
|
|
95
|
+
|
|
96
|
+
Linear Regression
|
|
97
|
+
|
|
98
|
+
linear_regression
|
|
99
|
+
|
|
100
|
+
Ridge Regression
|
|
101
|
+
|
|
102
|
+
ridge
|
|
103
|
+
|
|
104
|
+
Lasso Regression
|
|
105
|
+
|
|
106
|
+
lasso
|
|
107
|
+
|
|
108
|
+
ElasticNet
|
|
109
|
+
|
|
110
|
+
elasticnet
|
|
111
|
+
|
|
112
|
+
Random Forest Regr.
|
|
113
|
+
|
|
114
|
+
random_forest
|
|
115
|
+
|
|
116
|
+
XGBoost Regr.
|
|
117
|
+
|
|
118
|
+
xgboost
|
|
119
|
+
|
|
120
|
+
SVR
|
|
121
|
+
|
|
122
|
+
svr
|
|
123
|
+
|
|
124
|
+
Gradient Boosting
|
|
125
|
+
|
|
126
|
+
gradient_boosting
|
|
127
|
+
|
|
128
|
+
๐ Clustering Models
|
|
129
|
+
Model Name
|
|
130
|
+
|
|
131
|
+
Code ID
|
|
132
|
+
|
|
133
|
+
KMeans
|
|
134
|
+
|
|
135
|
+
kmeans
|
|
136
|
+
|
|
137
|
+
DBSCAN
|
|
138
|
+
|
|
139
|
+
dbscan
|
|
140
|
+
|
|
141
|
+
Agglomerative Clustering
|
|
142
|
+
|
|
143
|
+
agglo
|
|
144
|
+
|
|
145
|
+
๐ Dimensionality Reduction
|
|
146
|
+
Method
|
|
147
|
+
|
|
148
|
+
Code ID
|
|
149
|
+
|
|
150
|
+
PCA
|
|
151
|
+
|
|
152
|
+
pca
|
|
153
|
+
|
|
154
|
+
t-SNE
|
|
155
|
+
|
|
156
|
+
tsne
|
|
157
|
+
|
|
158
|
+
๐ Metrics
|
|
159
|
+
Task
|
|
160
|
+
|
|
161
|
+
Metrics
|
|
162
|
+
|
|
163
|
+
Classification
|
|
164
|
+
|
|
165
|
+
Accuracy, F1, ROC AUC, Confusion Matrix
|
|
166
|
+
|
|
167
|
+
Regression
|
|
168
|
+
|
|
169
|
+
MAE, MSE, RMSE, Rยฒ
|
|
170
|
+
|
|
171
|
+
Clustering
|
|
172
|
+
|
|
173
|
+
Silhouette Score, n_clusters
|
|
174
|
+
|
|
175
|
+
PCA/t-SNE
|
|
176
|
+
|
|
177
|
+
None (returns transformed data)
|
|
178
|
+
|
|
179
|
+
๐ง API Reference: EZTrainer
|
|
180
|
+
EZTrainer(
|
|
181
|
+
data: str | pd.DataFrame,
|
|
182
|
+
target: str | None = None,
|
|
183
|
+
model: str = "random_forest",
|
|
184
|
+
task: str = "auto", # or: classification, regression, clustering, dim_reduction
|
|
185
|
+
test_size: float = 0.2,
|
|
186
|
+
scale: bool = True,
|
|
187
|
+
n_components: int = None, # For PCA or t-SNE
|
|
188
|
+
)
|
|
189
|
+
|
|
190
|
+
Methods
|
|
191
|
+
Method
|
|
192
|
+
|
|
193
|
+
Description
|
|
194
|
+
|
|
195
|
+
.train()
|
|
196
|
+
|
|
197
|
+
Trains the selected model
|
|
198
|
+
|
|
199
|
+
.save_model(path)
|
|
200
|
+
|
|
201
|
+
Saves the model to .pkl
|
|
202
|
+
|
|
203
|
+
.save_report(path)
|
|
204
|
+
|
|
205
|
+
Saves metrics/report as .json
|
|
206
|
+
|
|
207
|
+
.save_transformed(path)
|
|
208
|
+
|
|
209
|
+
Saves transformed data for PCA/t-SNE
|
|
210
|
+
|
|
211
|
+
.predict(X)
|
|
212
|
+
|
|
213
|
+
Returns predictions
|
|
214
|
+
|
|
215
|
+
๐งฐ CLI Reference
|
|
216
|
+
|
|
217
|
+
General training
|
|
218
|
+
ezyml train
|
|
219
|
+
|
|
220
|
+
--data FILE.csv
|
|
221
|
+
|
|
222
|
+
--target TARGET
|
|
223
|
+
|
|
224
|
+
--model MODEL_NAME
|
|
225
|
+
|
|
226
|
+
--output model.pkl
|
|
227
|
+
|
|
228
|
+
--report metrics.json
|
|
229
|
+
|
|
230
|
+
--task classification|regression|clustering
|
|
231
|
+
|
|
232
|
+
Dimensionality Reduction
|
|
233
|
+
ezyml reduce --data FILE.csv --model pca --components 2 --output reduced.csv
|
|
234
|
+
|
|
235
|
+
๐งช Examples
|
|
236
|
+
Classify Titanic Dataset with Extra Trees:
|
|
237
|
+
|
|
238
|
+
ezyml train --data titanic.csv --target Survived --model extra_trees --output model.pkl
|
|
239
|
+
|
|
240
|
+
Regress Housing Prices using Ridge:
|
|
241
|
+
|
|
242
|
+
ezyml train --data housing.csv --target price --model ridge --output model.pkl
|
|
243
|
+
|
|
244
|
+
Cluster Data:
|
|
245
|
+
|
|
246
|
+
ezyml train --data vectors.csv --model kmeans --task clustering
|
|
247
|
+
|
|
248
|
+
PCA:
|
|
249
|
+
|
|
250
|
+
ezyml reduce --data features.csv --model pca --components 2 --output pca_data.csv
|
|
251
|
+
|
|
252
|
+
|
|
253
|
+
|
|
254
|
+
๐ License
|
|
255
|
+
MIT License
|
|
256
|
+
|
|
257
|
+
๐จโ๐ป Author
|
|
258
|
+
Raktim Kalita
|
|
259
|
+
Machine Learning Engineer, Automator of Ideas ๐ก
|
|
260
|
+
GitHub: @raktimkalita
|
|
@@ -0,0 +1,290 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: ezyml
|
|
3
|
+
Version: 0.1
|
|
4
|
+
Summary: A lightweight tool to train, evaluate, and export ML models in one line.
|
|
5
|
+
Home-page: https://github.com/Rktim/ezyml
|
|
6
|
+
Author: Raktim Kalita
|
|
7
|
+
Author-email: raktimkalita.ai@gmail.com
|
|
8
|
+
Classifier: Programming Language :: Python :: 3
|
|
9
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
10
|
+
Classifier: Operating System :: OS Independent
|
|
11
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
12
|
+
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
|
13
|
+
Requires-Python: >=3.7
|
|
14
|
+
Description-Content-Type: text/markdown
|
|
15
|
+
License-File: LICENSE
|
|
16
|
+
Requires-Dist: scikit-learn
|
|
17
|
+
Requires-Dist: pandas
|
|
18
|
+
Requires-Dist: numpy
|
|
19
|
+
Requires-Dist: xgboost
|
|
20
|
+
Dynamic: author
|
|
21
|
+
Dynamic: author-email
|
|
22
|
+
Dynamic: classifier
|
|
23
|
+
Dynamic: description
|
|
24
|
+
Dynamic: description-content-type
|
|
25
|
+
Dynamic: home-page
|
|
26
|
+
Dynamic: license-file
|
|
27
|
+
Dynamic: requires-dist
|
|
28
|
+
Dynamic: requires-python
|
|
29
|
+
Dynamic: summary
|
|
30
|
+
|
|
31
|
+
๐ฆ ezyml โ Train and Export ML Models in 1 Line
|
|
32
|
+
ezyml is a lightweight Python and CLI tool to train, evaluate, and export ML models for classification, regression, clustering, and dimensionality reduction โ all in a single command or function call.
|
|
33
|
+
|
|
34
|
+
๐ Features
|
|
35
|
+
โ
Auto-detects task (classification / regression / clustering / PCA)
|
|
36
|
+
โ
Trains supported models with proper preprocessing
|
|
37
|
+
โ
Saves .pkl model and .json metrics
|
|
38
|
+
โ
Works as both a Python API and CLI tool
|
|
39
|
+
โ
Built-in support for 20+ ML models
|
|
40
|
+
โ
Optional dimensionality reduction with PCA/t-SNE
|
|
41
|
+
โ
Exportable model + report with 1 line
|
|
42
|
+
|
|
43
|
+
๐ฆ Installation
|
|
44
|
+
pip install ezyml
|
|
45
|
+
|
|
46
|
+
๐ป CLI Usage
|
|
47
|
+
๐ง Train a Classification Model
|
|
48
|
+
ezyml train
|
|
49
|
+
|
|
50
|
+
--data data.csv
|
|
51
|
+
|
|
52
|
+
--target label
|
|
53
|
+
|
|
54
|
+
--model xgboost
|
|
55
|
+
|
|
56
|
+
--output model.pkl
|
|
57
|
+
|
|
58
|
+
--report report.json
|
|
59
|
+
|
|
60
|
+
๐ Train a Regression Model
|
|
61
|
+
ezyml train --data house.csv --target price --model lasso --output house_model.pkl
|
|
62
|
+
|
|
63
|
+
๐ Clustering
|
|
64
|
+
ezyml train --data user_vectors.csv --model dbscan --task clustering
|
|
65
|
+
|
|
66
|
+
๐ Dimensionality Reduction (PCA)
|
|
67
|
+
ezyml reduce --data image_data.csv --model pca --components 2 --output pca_result.csv
|
|
68
|
+
|
|
69
|
+
๐งช Python API Usage
|
|
70
|
+
from ezyml import EZTrainer
|
|
71
|
+
|
|
72
|
+
Classification example
|
|
73
|
+
trainer = EZTrainer(data='heart.csv', target='label', model='naive_bayes')
|
|
74
|
+
trainer.train()
|
|
75
|
+
trainer.save_model('heart_model.pkl')
|
|
76
|
+
trainer.save_report('heart_report.json')
|
|
77
|
+
|
|
78
|
+
PCA example
|
|
79
|
+
trainer = EZTrainer(data='high_dim.csv', model='pca', task='dim_reduction', n_components=2)
|
|
80
|
+
trainer.train()
|
|
81
|
+
trainer.save_transformed('pca_output.csv')
|
|
82
|
+
|
|
83
|
+
๐งฐ Supported Tasks and Models
|
|
84
|
+
๐ง Classification Models
|
|
85
|
+
Model Name
|
|
86
|
+
|
|
87
|
+
Code ID
|
|
88
|
+
|
|
89
|
+
Logistic Regression
|
|
90
|
+
|
|
91
|
+
logistic_regression
|
|
92
|
+
|
|
93
|
+
Random Forest
|
|
94
|
+
|
|
95
|
+
random_forest
|
|
96
|
+
|
|
97
|
+
XGBoost Classifier
|
|
98
|
+
|
|
99
|
+
xgboost
|
|
100
|
+
|
|
101
|
+
SVM (Linear)
|
|
102
|
+
|
|
103
|
+
svm
|
|
104
|
+
|
|
105
|
+
Naive Bayes
|
|
106
|
+
|
|
107
|
+
naive_bayes
|
|
108
|
+
|
|
109
|
+
Gradient Boosting
|
|
110
|
+
|
|
111
|
+
gradient_boosting
|
|
112
|
+
|
|
113
|
+
Extra Trees
|
|
114
|
+
|
|
115
|
+
extra_trees
|
|
116
|
+
|
|
117
|
+
K-Nearest Neighbors
|
|
118
|
+
|
|
119
|
+
knn
|
|
120
|
+
|
|
121
|
+
๐ Regression Models
|
|
122
|
+
Model Name
|
|
123
|
+
|
|
124
|
+
Code ID
|
|
125
|
+
|
|
126
|
+
Linear Regression
|
|
127
|
+
|
|
128
|
+
linear_regression
|
|
129
|
+
|
|
130
|
+
Ridge Regression
|
|
131
|
+
|
|
132
|
+
ridge
|
|
133
|
+
|
|
134
|
+
Lasso Regression
|
|
135
|
+
|
|
136
|
+
lasso
|
|
137
|
+
|
|
138
|
+
ElasticNet
|
|
139
|
+
|
|
140
|
+
elasticnet
|
|
141
|
+
|
|
142
|
+
Random Forest Regr.
|
|
143
|
+
|
|
144
|
+
random_forest
|
|
145
|
+
|
|
146
|
+
XGBoost Regr.
|
|
147
|
+
|
|
148
|
+
xgboost
|
|
149
|
+
|
|
150
|
+
SVR
|
|
151
|
+
|
|
152
|
+
svr
|
|
153
|
+
|
|
154
|
+
Gradient Boosting
|
|
155
|
+
|
|
156
|
+
gradient_boosting
|
|
157
|
+
|
|
158
|
+
๐ Clustering Models
|
|
159
|
+
Model Name
|
|
160
|
+
|
|
161
|
+
Code ID
|
|
162
|
+
|
|
163
|
+
KMeans
|
|
164
|
+
|
|
165
|
+
kmeans
|
|
166
|
+
|
|
167
|
+
DBSCAN
|
|
168
|
+
|
|
169
|
+
dbscan
|
|
170
|
+
|
|
171
|
+
Agglomerative Clustering
|
|
172
|
+
|
|
173
|
+
agglo
|
|
174
|
+
|
|
175
|
+
๐ Dimensionality Reduction
|
|
176
|
+
Method
|
|
177
|
+
|
|
178
|
+
Code ID
|
|
179
|
+
|
|
180
|
+
PCA
|
|
181
|
+
|
|
182
|
+
pca
|
|
183
|
+
|
|
184
|
+
t-SNE
|
|
185
|
+
|
|
186
|
+
tsne
|
|
187
|
+
|
|
188
|
+
๐ Metrics
|
|
189
|
+
Task
|
|
190
|
+
|
|
191
|
+
Metrics
|
|
192
|
+
|
|
193
|
+
Classification
|
|
194
|
+
|
|
195
|
+
Accuracy, F1, ROC AUC, Confusion Matrix
|
|
196
|
+
|
|
197
|
+
Regression
|
|
198
|
+
|
|
199
|
+
MAE, MSE, RMSE, Rยฒ
|
|
200
|
+
|
|
201
|
+
Clustering
|
|
202
|
+
|
|
203
|
+
Silhouette Score, n_clusters
|
|
204
|
+
|
|
205
|
+
PCA/t-SNE
|
|
206
|
+
|
|
207
|
+
None (returns transformed data)
|
|
208
|
+
|
|
209
|
+
๐ง API Reference: EZTrainer
|
|
210
|
+
EZTrainer(
|
|
211
|
+
data: str | pd.DataFrame,
|
|
212
|
+
target: str | None = None,
|
|
213
|
+
model: str = "random_forest",
|
|
214
|
+
task: str = "auto", # or: classification, regression, clustering, dim_reduction
|
|
215
|
+
test_size: float = 0.2,
|
|
216
|
+
scale: bool = True,
|
|
217
|
+
n_components: int = None, # For PCA or t-SNE
|
|
218
|
+
)
|
|
219
|
+
|
|
220
|
+
Methods
|
|
221
|
+
Method
|
|
222
|
+
|
|
223
|
+
Description
|
|
224
|
+
|
|
225
|
+
.train()
|
|
226
|
+
|
|
227
|
+
Trains the selected model
|
|
228
|
+
|
|
229
|
+
.save_model(path)
|
|
230
|
+
|
|
231
|
+
Saves the model to .pkl
|
|
232
|
+
|
|
233
|
+
.save_report(path)
|
|
234
|
+
|
|
235
|
+
Saves metrics/report as .json
|
|
236
|
+
|
|
237
|
+
.save_transformed(path)
|
|
238
|
+
|
|
239
|
+
Saves transformed data for PCA/t-SNE
|
|
240
|
+
|
|
241
|
+
.predict(X)
|
|
242
|
+
|
|
243
|
+
Returns predictions
|
|
244
|
+
|
|
245
|
+
๐งฐ CLI Reference
|
|
246
|
+
|
|
247
|
+
General training
|
|
248
|
+
ezyml train
|
|
249
|
+
|
|
250
|
+
--data FILE.csv
|
|
251
|
+
|
|
252
|
+
--target TARGET
|
|
253
|
+
|
|
254
|
+
--model MODEL_NAME
|
|
255
|
+
|
|
256
|
+
--output model.pkl
|
|
257
|
+
|
|
258
|
+
--report metrics.json
|
|
259
|
+
|
|
260
|
+
--task classification|regression|clustering
|
|
261
|
+
|
|
262
|
+
Dimensionality Reduction
|
|
263
|
+
ezyml reduce --data FILE.csv --model pca --components 2 --output reduced.csv
|
|
264
|
+
|
|
265
|
+
๐งช Examples
|
|
266
|
+
Classify Titanic Dataset with Extra Trees:
|
|
267
|
+
|
|
268
|
+
ezyml train --data titanic.csv --target Survived --model extra_trees --output model.pkl
|
|
269
|
+
|
|
270
|
+
Regress Housing Prices using Ridge:
|
|
271
|
+
|
|
272
|
+
ezyml train --data housing.csv --target price --model ridge --output model.pkl
|
|
273
|
+
|
|
274
|
+
Cluster Data:
|
|
275
|
+
|
|
276
|
+
ezyml train --data vectors.csv --model kmeans --task clustering
|
|
277
|
+
|
|
278
|
+
PCA:
|
|
279
|
+
|
|
280
|
+
ezyml reduce --data features.csv --model pca --components 2 --output pca_data.csv
|
|
281
|
+
|
|
282
|
+
|
|
283
|
+
|
|
284
|
+
๐ License
|
|
285
|
+
MIT License
|
|
286
|
+
|
|
287
|
+
๐จโ๐ป Author
|
|
288
|
+
Raktim Kalita
|
|
289
|
+
Machine Learning Engineer, Automator of Ideas ๐ก
|
|
290
|
+
GitHub: @raktimkalita
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
|
ezyml-0.1/setup.cfg
ADDED
ezyml-0.1/setup.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
from setuptools import setup, find_packages
|
|
2
|
+
|
|
3
|
+
# Read the contents of your README file
|
|
4
|
+
with open("README.md", "r", encoding="utf-8") as fh:
|
|
5
|
+
long_description = fh.read()
|
|
6
|
+
|
|
7
|
+
setup(
|
|
8
|
+
name="ezyml",
|
|
9
|
+
version="0.1",
|
|
10
|
+
author="Raktim Kalita",
|
|
11
|
+
author_email="raktimkalita.ai@gmail.com",
|
|
12
|
+
description="A lightweight tool to train, evaluate, and export ML models in one line.",
|
|
13
|
+
long_description=long_description,
|
|
14
|
+
long_description_content_type="text/markdown",
|
|
15
|
+
url="https://github.com/Rktim/ezyml",
|
|
16
|
+
packages=find_packages(),
|
|
17
|
+
classifiers=[
|
|
18
|
+
"Programming Language :: Python :: 3",
|
|
19
|
+
"License :: OSI Approved :: MIT License",
|
|
20
|
+
"Operating System :: OS Independent",
|
|
21
|
+
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
|
22
|
+
"Topic :: Software Development :: Libraries :: Python Modules",
|
|
23
|
+
],
|
|
24
|
+
python_requires='>=3.7',
|
|
25
|
+
install_requires=[
|
|
26
|
+
'scikit-learn',
|
|
27
|
+
'pandas',
|
|
28
|
+
'numpy',
|
|
29
|
+
'xgboost',
|
|
30
|
+
],
|
|
31
|
+
entry_points={
|
|
32
|
+
'console_scripts': [
|
|
33
|
+
'ezyml=ezyml.cli:main',
|
|
34
|
+
],
|
|
35
|
+
},
|
|
36
|
+
)
|