ezKit 1.9.2__tar.gz → 1.9.3__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {ezkit-1.9.2/ezKit.egg-info → ezkit-1.9.3}/PKG-INFO +1 -1
- ezkit-1.9.3/ezKit/stock.py +261 -0
- {ezkit-1.9.2 → ezkit-1.9.3/ezKit.egg-info}/PKG-INFO +1 -1
- {ezkit-1.9.2 → ezkit-1.9.3}/setup.py +1 -1
- ezkit-1.9.2/ezKit/stock.py +0 -113
- {ezkit-1.9.2 → ezkit-1.9.3}/LICENSE +0 -0
- {ezkit-1.9.2 → ezkit-1.9.3}/MANIFEST.in +0 -0
- {ezkit-1.9.2 → ezkit-1.9.3}/README.md +0 -0
- {ezkit-1.9.2 → ezkit-1.9.3}/ezKit/__init__.py +0 -0
- {ezkit-1.9.2 → ezkit-1.9.3}/ezKit/bottle.py +0 -0
- {ezkit-1.9.2 → ezkit-1.9.3}/ezKit/bottle_extensions.py +0 -0
- {ezkit-1.9.2 → ezkit-1.9.3}/ezKit/cipher.py +0 -0
- {ezkit-1.9.2 → ezkit-1.9.3}/ezKit/cls.py +0 -0
- {ezkit-1.9.2 → ezkit-1.9.3}/ezKit/database.py +0 -0
- {ezkit-1.9.2 → ezkit-1.9.3}/ezKit/http.py +0 -0
- {ezkit-1.9.2 → ezkit-1.9.3}/ezKit/mongo.py +0 -0
- {ezkit-1.9.2 → ezkit-1.9.3}/ezKit/qywx.py +0 -0
- {ezkit-1.9.2 → ezkit-1.9.3}/ezKit/redis.py +0 -0
- {ezkit-1.9.2 → ezkit-1.9.3}/ezKit/sendemail.py +0 -0
- {ezkit-1.9.2 → ezkit-1.9.3}/ezKit/token.py +0 -0
- {ezkit-1.9.2 → ezkit-1.9.3}/ezKit/utils.py +0 -0
- {ezkit-1.9.2 → ezkit-1.9.3}/ezKit/xftp.py +0 -0
- {ezkit-1.9.2 → ezkit-1.9.3}/ezKit.egg-info/SOURCES.txt +0 -0
- {ezkit-1.9.2 → ezkit-1.9.3}/ezKit.egg-info/dependency_links.txt +0 -0
- {ezkit-1.9.2 → ezkit-1.9.3}/ezKit.egg-info/requires.txt +0 -0
- {ezkit-1.9.2 → ezkit-1.9.3}/ezKit.egg-info/top_level.txt +0 -0
- {ezkit-1.9.2 → ezkit-1.9.3}/setup.cfg +0 -0
@@ -0,0 +1,261 @@
|
|
1
|
+
"""股票"""
|
2
|
+
import re
|
3
|
+
from copy import deepcopy
|
4
|
+
|
5
|
+
import akshare as ak
|
6
|
+
import numpy as np
|
7
|
+
import talib as ta
|
8
|
+
from loguru import logger
|
9
|
+
from pandas import DataFrame
|
10
|
+
from sqlalchemy.engine import Engine
|
11
|
+
|
12
|
+
from . import utils
|
13
|
+
|
14
|
+
|
15
|
+
def coderename(target: str | dict, restore: bool = False) -> str | dict | None:
|
16
|
+
"""代码重命名"""
|
17
|
+
|
18
|
+
# 正向:
|
19
|
+
# coderename('000001') => 'sz000001'
|
20
|
+
# coderename({'code': '000001', 'name': '平安银行'}) => {'code': 'sz000001', 'name': '平安银行'}
|
21
|
+
# 反向:
|
22
|
+
# coderename('sz000001', restore=True) => '000001'
|
23
|
+
# coderename({'code': 'sz000001', 'name': '平安银行'}) => {'code': '000001', 'name': '平安银行'}
|
24
|
+
|
25
|
+
# 判断参数类型
|
26
|
+
match True:
|
27
|
+
case True if True not in [isinstance(target, str), isinstance(target, dict)]:
|
28
|
+
logger.error("argument type error: target")
|
29
|
+
return None
|
30
|
+
case _:
|
31
|
+
pass
|
32
|
+
|
33
|
+
# 判断参数数据
|
34
|
+
match True:
|
35
|
+
case True if True not in [utils.isTrue(target, str), utils.isTrue(target, dict)]:
|
36
|
+
logger.error("argument data error: data")
|
37
|
+
return None
|
38
|
+
case _:
|
39
|
+
pass
|
40
|
+
|
41
|
+
try:
|
42
|
+
|
43
|
+
# 初始化
|
44
|
+
code_object: dict = {}
|
45
|
+
code_name: str | dict = ""
|
46
|
+
|
47
|
+
# 判断 target 是 string 还是 dictionary
|
48
|
+
if isinstance(target, str) and utils.isTrue(target, str):
|
49
|
+
code_name = target
|
50
|
+
elif isinstance(target, dict) and utils.isTrue(target, dict):
|
51
|
+
code_object = deepcopy(target)
|
52
|
+
code_name = str(deepcopy(target["code"]))
|
53
|
+
else:
|
54
|
+
return None
|
55
|
+
|
56
|
+
# 是否还原
|
57
|
+
if utils.isTrue(restore, bool):
|
58
|
+
if len(code_name) == 8 and re.match(r"^(sz|sh)", code_name):
|
59
|
+
code_name = deepcopy(code_name[2:8])
|
60
|
+
else:
|
61
|
+
return None
|
62
|
+
else:
|
63
|
+
if code_name[0:2] == "00":
|
64
|
+
code_name = f"sz{code_name}"
|
65
|
+
elif code_name[0:2] == "60":
|
66
|
+
code_name = f"sh{code_name}"
|
67
|
+
else:
|
68
|
+
return None
|
69
|
+
|
70
|
+
# 返回结果
|
71
|
+
if utils.isTrue(target, str):
|
72
|
+
return code_name
|
73
|
+
|
74
|
+
if utils.isTrue(target, dict):
|
75
|
+
code_object["code"] = code_name
|
76
|
+
return code_object
|
77
|
+
|
78
|
+
return None
|
79
|
+
|
80
|
+
except Exception as e:
|
81
|
+
logger.exception(e)
|
82
|
+
return None
|
83
|
+
|
84
|
+
|
85
|
+
# --------------------------------------------------------------------------------------------------
|
86
|
+
|
87
|
+
|
88
|
+
def kdj_vector(df: DataFrame, cp: int = 9, sp1: int = 3, sp2: int = 3) -> DataFrame | None:
|
89
|
+
"""KDJ计算器"""
|
90
|
+
|
91
|
+
# 计算周期:Calculation Period, 也可使用 Lookback Period 表示回溯周期, 指用于计算指标值的时间周期.
|
92
|
+
# 移动平均周期: Smoothing Period 或 Moving Average Period, 指对指标进行平滑处理时采用的周期.
|
93
|
+
# 同花顺默认参数: 9 3 3
|
94
|
+
# https://www.daimajiaoliu.com/daima/4ed4ffa26100400
|
95
|
+
# 说明: KDJ 指标的中文名称又叫随机指标, 融合了动量观念、强弱指标和移动平均线的一些优点, 能够比较迅速、快捷、直观地研判行情, 被广泛用于股市的中短期趋势分析.
|
96
|
+
# 有采用 ewm 使用 com=2 的, 但是如果使用 com=2 在默认值的情况下KDJ值是正确的.
|
97
|
+
# 但是非默认值, 比如调整参数, 尝试慢速 KDJ 时就不对了, 最终采用 alpha = 1/m 的情况, 对比同花顺数据, 是正确的.
|
98
|
+
|
99
|
+
# 判断参数类型
|
100
|
+
match True:
|
101
|
+
case True if not isinstance(df, DataFrame):
|
102
|
+
logger.error("argument type error: df")
|
103
|
+
return None
|
104
|
+
case _:
|
105
|
+
pass
|
106
|
+
|
107
|
+
try:
|
108
|
+
low_list = df['low'].rolling(cp).min()
|
109
|
+
high_list = df['high'].rolling(cp).max()
|
110
|
+
rsv = (df['close'] - low_list) / (high_list - low_list) * 100
|
111
|
+
df['K'] = rsv.ewm(alpha=1 / sp1, adjust=False).mean()
|
112
|
+
df['D'] = df['K'].ewm(alpha=1 / sp2, adjust=False).mean()
|
113
|
+
df['J'] = (3 * df['K']) - (2 * df['D'])
|
114
|
+
return df
|
115
|
+
except Exception as e:
|
116
|
+
logger.exception(e)
|
117
|
+
return None
|
118
|
+
|
119
|
+
|
120
|
+
# --------------------------------------------------------------------------------------------------
|
121
|
+
|
122
|
+
|
123
|
+
def data_vector(
|
124
|
+
df: DataFrame,
|
125
|
+
macd_options: tuple[int, int, int] = (12, 26, 9),
|
126
|
+
kdj_options: tuple[int, int, int] = (9, 3, 3)
|
127
|
+
) -> DataFrame | None:
|
128
|
+
"""数据运算"""
|
129
|
+
|
130
|
+
try:
|
131
|
+
|
132
|
+
# 数据为空
|
133
|
+
if isinstance(df, DataFrame) and df.empty:
|
134
|
+
return None
|
135
|
+
|
136
|
+
# ------------------------------------------------------------------------------------------
|
137
|
+
|
138
|
+
# 计算均线: 3,7日均线
|
139
|
+
# pylint: disable=E1101
|
140
|
+
# df['SMA03'] = ta.SMA(df['close'], timeperiod=3) # type: ignore
|
141
|
+
# df['SMA07'] = ta.SMA(df['close'], timeperiod=7) # type: ignore
|
142
|
+
|
143
|
+
# 3,7日均线金叉: 0 无, 1 金叉, 2 死叉
|
144
|
+
# df['SMA37_X'] = 0
|
145
|
+
# sma37_position = df['SMA03'] > df['SMA07']
|
146
|
+
# df.loc[sma37_position[(sma37_position is True) & (sma37_position.shift() is False)].index, 'SMA37_X'] = 1 # type: ignore
|
147
|
+
# df.loc[sma37_position[(sma37_position is False) & (sma37_position.shift() is True)].index, 'SMA37_X'] = 2 # type: ignore
|
148
|
+
|
149
|
+
# 计算均线: 20,25日均线
|
150
|
+
# df['SMA20'] = ta.SMA(df['close'], timeperiod=20) # type: ignore
|
151
|
+
# df['SMA25'] = ta.SMA(df['close'], timeperiod=25) # type: ignore
|
152
|
+
|
153
|
+
# 20,25日均线金叉: 0 无, 1 金叉, 2 死叉
|
154
|
+
# df['SMA225_X'] = 0
|
155
|
+
# sma225_position = df['SMA20'] > df['SMA25']
|
156
|
+
# df.loc[sma225_position[(sma225_position is True) & (sma225_position.shift() is False)].index, 'SMA225_X'] = 1 # type: ignore
|
157
|
+
# df.loc[sma225_position[(sma225_position is False) & (sma225_position.shift() is True)].index, 'SMA225_X'] = 2 # type: ignore
|
158
|
+
|
159
|
+
# ------------------------------------------------------------------------------------------
|
160
|
+
|
161
|
+
# 计算 MACD: 默认参数 12 26 9
|
162
|
+
macd_dif, macd_dea, macd_bar = ta.MACD(df['close'].values, fastperiod=macd_options[0], slowperiod=macd_options[1], signalperiod=macd_options[2]) # type: ignore
|
163
|
+
macd_dif[np.isnan(macd_dif)], macd_dea[np.isnan(macd_dea)], macd_bar[np.isnan(macd_bar)] = 0, 0, 0
|
164
|
+
|
165
|
+
# https://www.bilibili.com/read/cv10185856
|
166
|
+
df['MACD'] = 2 * (macd_dif - macd_dea)
|
167
|
+
df['MACD_DIF'] = macd_dif
|
168
|
+
df['MACD_DEA'] = macd_dea
|
169
|
+
|
170
|
+
# MACD 金叉死叉: 0 无, 1 金叉, 2 死叉
|
171
|
+
df['MACD_X'] = 0
|
172
|
+
macd_position = df['MACD_DIF'] > df['MACD_DEA']
|
173
|
+
df.loc[macd_position[(macd_position is True) & (macd_position.shift() is False)].index, 'MACD_X'] = 1 # type: ignore
|
174
|
+
df.loc[macd_position[(macd_position is False) & (macd_position.shift() is True)].index, 'MACD_X'] = 2 # type: ignore
|
175
|
+
|
176
|
+
# ------------------------------------------------------------------------------------------
|
177
|
+
|
178
|
+
# 计算 KDJ: : 默认参数 9 3 3
|
179
|
+
kdj_data = kdj_vector(df, kdj_options[0], kdj_options[1], kdj_options[2])
|
180
|
+
|
181
|
+
if kdj_data is not None:
|
182
|
+
|
183
|
+
# KDJ 数据
|
184
|
+
df['K'] = kdj_data['K'].values
|
185
|
+
df['D'] = kdj_data['D'].values
|
186
|
+
df['J'] = kdj_data['J'].values
|
187
|
+
|
188
|
+
# KDJ 金叉死叉: 0 无, 1 金叉, 2 死叉
|
189
|
+
df['KDJ_X'] = 0
|
190
|
+
kdj_position = df['J'] > df['D']
|
191
|
+
df.loc[kdj_position[(kdj_position is True) & (kdj_position.shift() is False)].index, 'KDJ_X'] = 1 # type: ignore
|
192
|
+
df.loc[kdj_position[(kdj_position is False) & (kdj_position.shift() is True)].index, 'KDJ_X'] = 2 # type: ignore
|
193
|
+
|
194
|
+
# ------------------------------------------------------------------------------------------
|
195
|
+
|
196
|
+
return df
|
197
|
+
|
198
|
+
except Exception as e:
|
199
|
+
logger.exception(e)
|
200
|
+
return None
|
201
|
+
|
202
|
+
|
203
|
+
# --------------------------------------------------------------------------------------------------
|
204
|
+
|
205
|
+
|
206
|
+
def get_code_name_from_akshare() -> DataFrame | None:
|
207
|
+
"""获取股票代码和名称"""
|
208
|
+
info = "获取股票代码和名称"
|
209
|
+
try:
|
210
|
+
logger.info(f"{info} ......")
|
211
|
+
df: DataFrame = ak.stock_info_a_code_name()
|
212
|
+
if df.empty:
|
213
|
+
logger.error(f"{info} [失败]")
|
214
|
+
return None
|
215
|
+
# 排除 ST、证券和银行
|
216
|
+
# https://towardsdatascience.com/8-ways-to-filter-pandas-dataframes-d34ba585c1b8
|
217
|
+
df = df[df.code.str.contains("^00|^60") & ~df.name.str.contains("ST|证券|银行")]
|
218
|
+
logger.success(f"{info} [成功]")
|
219
|
+
return df
|
220
|
+
except Exception as e:
|
221
|
+
logger.error(f"{info} [失败]")
|
222
|
+
logger.exception(e)
|
223
|
+
return None
|
224
|
+
|
225
|
+
|
226
|
+
# --------------------------------------------------------------------------------------------------
|
227
|
+
|
228
|
+
|
229
|
+
def get_stock_data_from_akshare(code: str) -> DataFrame | None:
|
230
|
+
"""从 akshare 获取数据"""
|
231
|
+
info = f"获取股票所有数据: {code}"
|
232
|
+
try:
|
233
|
+
logger.info(f"{info} ......")
|
234
|
+
df: DataFrame = ak.stock_zh_a_daily(symbol=code, adjust="qfq")
|
235
|
+
df = df.round({'turnover': 4})
|
236
|
+
logger.success(f"{info} [成功]")
|
237
|
+
return df[['date', 'open', 'close', 'high', 'low', 'volume', 'turnover']].copy()
|
238
|
+
except Exception as e:
|
239
|
+
logger.error(f"{info} [失败]")
|
240
|
+
logger.exception(e)
|
241
|
+
return None
|
242
|
+
|
243
|
+
|
244
|
+
# --------------------------------------------------------------------------------------------------
|
245
|
+
|
246
|
+
|
247
|
+
def save_data_to_database(engine: Engine, code: str) -> bool:
|
248
|
+
"""保存股票数据到数据库"""
|
249
|
+
info: str = "保存股票数据到数据库"
|
250
|
+
try:
|
251
|
+
logger.info(f"{info} ......")
|
252
|
+
df: DataFrame | None = get_stock_data_from_akshare(code)
|
253
|
+
if df is None:
|
254
|
+
return False
|
255
|
+
df.to_sql(name=code, con=engine, if_exists="replace", index=False)
|
256
|
+
logger.success(f"{info} [成功]")
|
257
|
+
return True
|
258
|
+
except Exception as e:
|
259
|
+
logger.success(f"{info} [失败]")
|
260
|
+
logger.exception(e)
|
261
|
+
return False
|
ezkit-1.9.2/ezKit/stock.py
DELETED
@@ -1,113 +0,0 @@
|
|
1
|
-
"""股票"""
|
2
|
-
import re
|
3
|
-
from copy import deepcopy
|
4
|
-
|
5
|
-
from loguru import logger
|
6
|
-
from pandas import DataFrame
|
7
|
-
|
8
|
-
from . import utils
|
9
|
-
|
10
|
-
|
11
|
-
def coderename(target: str | dict, restore: bool = False) -> str | dict | None:
|
12
|
-
"""代码重命名"""
|
13
|
-
|
14
|
-
# 正向:
|
15
|
-
# coderename('000001') => 'sz000001'
|
16
|
-
# coderename({'code': '000001', 'name': '平安银行'}) => {'code': 'sz000001', 'name': '平安银行'}
|
17
|
-
# 反向:
|
18
|
-
# coderename('sz000001', restore=True) => '000001'
|
19
|
-
# coderename({'code': 'sz000001', 'name': '平安银行'}) => {'code': '000001', 'name': '平安银行'}
|
20
|
-
|
21
|
-
# 判断参数类型
|
22
|
-
match True:
|
23
|
-
case True if True not in [isinstance(target, str), isinstance(target, dict)]:
|
24
|
-
logger.error("argument type error: target")
|
25
|
-
return None
|
26
|
-
case _:
|
27
|
-
pass
|
28
|
-
|
29
|
-
# 判断参数数据
|
30
|
-
match True:
|
31
|
-
case True if True not in [utils.isTrue(target, str), utils.isTrue(target, dict)]:
|
32
|
-
logger.error("argument data error: data")
|
33
|
-
return None
|
34
|
-
case _:
|
35
|
-
pass
|
36
|
-
|
37
|
-
try:
|
38
|
-
|
39
|
-
# 初始化
|
40
|
-
code_object: dict = {}
|
41
|
-
code_name: str | dict = ""
|
42
|
-
|
43
|
-
# 判断 target 是 string 还是 dictionary
|
44
|
-
if isinstance(target, str) and utils.isTrue(target, str):
|
45
|
-
code_name = target
|
46
|
-
elif isinstance(target, dict) and utils.isTrue(target, dict):
|
47
|
-
code_object = deepcopy(target)
|
48
|
-
code_name = str(deepcopy(target["code"]))
|
49
|
-
else:
|
50
|
-
return None
|
51
|
-
|
52
|
-
# 是否还原
|
53
|
-
if utils.isTrue(restore, bool):
|
54
|
-
if len(code_name) == 8 and re.match(r"^(sz|sh)", code_name):
|
55
|
-
code_name = deepcopy(code_name[2:8])
|
56
|
-
else:
|
57
|
-
return None
|
58
|
-
else:
|
59
|
-
if code_name[0:2] == "00":
|
60
|
-
code_name = f"sz{code_name}"
|
61
|
-
elif code_name[0:2] == "60":
|
62
|
-
code_name = f"sh{code_name}"
|
63
|
-
else:
|
64
|
-
return None
|
65
|
-
|
66
|
-
# 返回结果
|
67
|
-
if utils.isTrue(target, str):
|
68
|
-
return code_name
|
69
|
-
|
70
|
-
if utils.isTrue(target, dict):
|
71
|
-
code_object["code"] = code_name
|
72
|
-
return code_object
|
73
|
-
|
74
|
-
return None
|
75
|
-
|
76
|
-
except Exception as e:
|
77
|
-
logger.exception(e)
|
78
|
-
return None
|
79
|
-
|
80
|
-
|
81
|
-
# --------------------------------------------------------------------------------------------------
|
82
|
-
|
83
|
-
|
84
|
-
def kdj_vector(df: DataFrame, cp: int = 9, sp1: int = 3, sp2: int = 3) -> DataFrame | None:
|
85
|
-
"""KDJ计算器"""
|
86
|
-
|
87
|
-
# 计算周期:Calculation Period, 也可使用 Lookback Period 表示回溯周期, 指用于计算指标值的时间周期.
|
88
|
-
# 移动平均周期: Smoothing Period 或 Moving Average Period, 指对指标进行平滑处理时采用的周期.
|
89
|
-
# 同花顺默认参数: 9 3 3
|
90
|
-
# https://www.daimajiaoliu.com/daima/4ed4ffa26100400
|
91
|
-
# 说明: KDJ 指标的中文名称又叫随机指标, 融合了动量观念、强弱指标和移动平均线的一些优点, 能够比较迅速、快捷、直观地研判行情, 被广泛用于股市的中短期趋势分析.
|
92
|
-
# 有采用 ewm 使用 com=2 的, 但是如果使用 com=2 在默认值的情况下KDJ值是正确的.
|
93
|
-
# 但是非默认值, 比如调整参数, 尝试慢速 KDJ 时就不对了, 最终采用 alpha = 1/m 的情况, 对比同花顺数据, 是正确的.
|
94
|
-
|
95
|
-
# 判断参数类型
|
96
|
-
match True:
|
97
|
-
case True if not isinstance(df, DataFrame):
|
98
|
-
logger.error("argument type error: df")
|
99
|
-
return None
|
100
|
-
case _:
|
101
|
-
pass
|
102
|
-
|
103
|
-
try:
|
104
|
-
low_list = df['low'].rolling(cp).min()
|
105
|
-
high_list = df['high'].rolling(cp).max()
|
106
|
-
rsv = (df['close'] - low_list) / (high_list - low_list) * 100
|
107
|
-
df['K'] = rsv.ewm(alpha=1 / sp1, adjust=False).mean()
|
108
|
-
df['D'] = df['K'].ewm(alpha=1 / sp2, adjust=False).mean()
|
109
|
-
df['J'] = (3 * df['K']) - (2 * df['D'])
|
110
|
-
return df
|
111
|
-
except Exception as e:
|
112
|
-
logger.exception(e)
|
113
|
-
return None
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|