executorlib 0.0.8__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (67) hide show
  1. executorlib-0.0.8/LICENSE +29 -0
  2. executorlib-0.0.8/MANIFEST.in +1 -0
  3. executorlib-0.0.8/PKG-INFO +230 -0
  4. executorlib-0.0.8/README.md +154 -0
  5. executorlib-0.0.8/executorlib/__init__.py +248 -0
  6. executorlib-0.0.8/executorlib/_version.py +21 -0
  7. executorlib-0.0.8/executorlib/backend/__init__.py +0 -0
  8. executorlib-0.0.8/executorlib/backend/cache_parallel.py +57 -0
  9. executorlib-0.0.8/executorlib/backend/cache_serial.py +6 -0
  10. executorlib-0.0.8/executorlib/backend/interactive_parallel.py +99 -0
  11. executorlib-0.0.8/executorlib/backend/interactive_serial.py +74 -0
  12. executorlib-0.0.8/executorlib/base/__init__.py +0 -0
  13. executorlib-0.0.8/executorlib/base/executor.py +167 -0
  14. executorlib-0.0.8/executorlib/cache/__init__.py +0 -0
  15. executorlib-0.0.8/executorlib/cache/backend.py +75 -0
  16. executorlib-0.0.8/executorlib/cache/executor.py +121 -0
  17. executorlib-0.0.8/executorlib/cache/queue_spawner.py +109 -0
  18. executorlib-0.0.8/executorlib/cache/shared.py +249 -0
  19. executorlib-0.0.8/executorlib/cache/subprocess_spawner.py +65 -0
  20. executorlib-0.0.8/executorlib/interactive/__init__.py +0 -0
  21. executorlib-0.0.8/executorlib/interactive/executor.py +329 -0
  22. executorlib-0.0.8/executorlib/interactive/flux.py +135 -0
  23. executorlib-0.0.8/executorlib/interactive/shared.py +657 -0
  24. executorlib-0.0.8/executorlib/interactive/slurm.py +109 -0
  25. executorlib-0.0.8/executorlib/standalone/__init__.py +21 -0
  26. executorlib-0.0.8/executorlib/standalone/command.py +14 -0
  27. executorlib-0.0.8/executorlib/standalone/hdf.py +116 -0
  28. executorlib-0.0.8/executorlib/standalone/inputcheck.py +201 -0
  29. executorlib-0.0.8/executorlib/standalone/interactive/__init__.py +0 -0
  30. executorlib-0.0.8/executorlib/standalone/interactive/backend.py +98 -0
  31. executorlib-0.0.8/executorlib/standalone/interactive/communication.py +213 -0
  32. executorlib-0.0.8/executorlib/standalone/interactive/spawner.py +174 -0
  33. executorlib-0.0.8/executorlib/standalone/plot.py +134 -0
  34. executorlib-0.0.8/executorlib/standalone/queue.py +19 -0
  35. executorlib-0.0.8/executorlib/standalone/serialize.py +82 -0
  36. executorlib-0.0.8/executorlib/standalone/thread.py +42 -0
  37. executorlib-0.0.8/executorlib.egg-info/PKG-INFO +230 -0
  38. executorlib-0.0.8/executorlib.egg-info/SOURCES.txt +65 -0
  39. executorlib-0.0.8/executorlib.egg-info/dependency_links.txt +1 -0
  40. executorlib-0.0.8/executorlib.egg-info/requires.txt +29 -0
  41. executorlib-0.0.8/executorlib.egg-info/top_level.txt +1 -0
  42. executorlib-0.0.8/pyproject.toml +74 -0
  43. executorlib-0.0.8/setup.cfg +4 -0
  44. executorlib-0.0.8/setup.py +8 -0
  45. executorlib-0.0.8/tests/test_backend_serial.py +85 -0
  46. executorlib-0.0.8/tests/test_cache_executor_interactive.py +33 -0
  47. executorlib-0.0.8/tests/test_cache_executor_mpi.py +44 -0
  48. executorlib-0.0.8/tests/test_cache_executor_pysqa_flux.py +49 -0
  49. executorlib-0.0.8/tests/test_cache_executor_serial.py +193 -0
  50. executorlib-0.0.8/tests/test_cache_hdf.py +105 -0
  51. executorlib-0.0.8/tests/test_cache_shared.py +109 -0
  52. executorlib-0.0.8/tests/test_dependencies_executor.py +259 -0
  53. executorlib-0.0.8/tests/test_executor_backend_flux.py +169 -0
  54. executorlib-0.0.8/tests/test_executor_backend_mpi.py +143 -0
  55. executorlib-0.0.8/tests/test_executor_backend_mpi_noblock.py +83 -0
  56. executorlib-0.0.8/tests/test_flux_executor.py +160 -0
  57. executorlib-0.0.8/tests/test_integration_pyiron_workflow.py +237 -0
  58. executorlib-0.0.8/tests/test_local_executor.py +524 -0
  59. executorlib-0.0.8/tests/test_local_executor_future.py +143 -0
  60. executorlib-0.0.8/tests/test_pysqa_subprocess.py +45 -0
  61. executorlib-0.0.8/tests/test_shared_backend.py +118 -0
  62. executorlib-0.0.8/tests/test_shared_communication.py +103 -0
  63. executorlib-0.0.8/tests/test_shared_executorbase.py +23 -0
  64. executorlib-0.0.8/tests/test_shared_input_check.py +121 -0
  65. executorlib-0.0.8/tests/test_shared_thread.py +15 -0
  66. executorlib-0.0.8/tests/test_shell_executor.py +149 -0
  67. executorlib-0.0.8/tests/test_shell_interactive.py +129 -0
@@ -0,0 +1,29 @@
1
+ BSD 3-Clause License
2
+
3
+ Copyright (c) 2022, Jan Janssen
4
+ All rights reserved.
5
+
6
+ Redistribution and use in source and binary forms, with or without
7
+ modification, are permitted provided that the following conditions are met:
8
+
9
+ * Redistributions of source code must retain the above copyright notice, this
10
+ list of conditions and the following disclaimer.
11
+
12
+ * Redistributions in binary form must reproduce the above copyright notice,
13
+ this list of conditions and the following disclaimer in the documentation
14
+ and/or other materials provided with the distribution.
15
+
16
+ * Neither the name of the copyright holder nor the names of its
17
+ contributors may be used to endorse or promote products derived from
18
+ this software without specific prior written permission.
19
+
20
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
24
+ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
26
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
27
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@@ -0,0 +1 @@
1
+ include LICENSE
@@ -0,0 +1,230 @@
1
+ Metadata-Version: 2.1
2
+ Name: executorlib
3
+ Version: 0.0.8
4
+ Summary: Scale serial and MPI-parallel python functions over hundreds of compute nodes all from within a jupyter notebook or serial python process.
5
+ Author-email: Jan Janssen <janssen@lanl.gov>
6
+ License: BSD 3-Clause License
7
+
8
+ Copyright (c) 2022, Jan Janssen
9
+ All rights reserved.
10
+
11
+ Redistribution and use in source and binary forms, with or without
12
+ modification, are permitted provided that the following conditions are met:
13
+
14
+ * Redistributions of source code must retain the above copyright notice, this
15
+ list of conditions and the following disclaimer.
16
+
17
+ * Redistributions in binary form must reproduce the above copyright notice,
18
+ this list of conditions and the following disclaimer in the documentation
19
+ and/or other materials provided with the distribution.
20
+
21
+ * Neither the name of the copyright holder nor the names of its
22
+ contributors may be used to endorse or promote products derived from
23
+ this software without specific prior written permission.
24
+
25
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
26
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
29
+ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
31
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
34
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35
+
36
+ Project-URL: Homepage, https://github.com/pyiron/executorlib
37
+ Project-URL: Documentation, https://executorlib.readthedocs.io
38
+ Project-URL: Repository, https://github.com/pyiron/executorlib
39
+ Keywords: pyiron
40
+ Classifier: Development Status :: 5 - Production/Stable
41
+ Classifier: Topic :: Scientific/Engineering :: Physics
42
+ Classifier: License :: OSI Approved :: BSD License
43
+ Classifier: Intended Audience :: Science/Research
44
+ Classifier: Operating System :: OS Independent
45
+ Classifier: Programming Language :: Python :: 3.9
46
+ Classifier: Programming Language :: Python :: 3.10
47
+ Classifier: Programming Language :: Python :: 3.11
48
+ Classifier: Programming Language :: Python :: 3.12
49
+ Classifier: Programming Language :: Python :: 3.13
50
+ Requires-Python: <3.14,>=3.9
51
+ Description-Content-Type: text/markdown
52
+ License-File: LICENSE
53
+ Requires-Dist: cloudpickle<=3.1.1,>=2.0.0
54
+ Requires-Dist: pyzmq<=26.2.0,>=25.0.0
55
+ Provides-Extra: cache
56
+ Requires-Dist: h5py<=3.12.1,>=3.6.0; extra == "cache"
57
+ Provides-Extra: graph
58
+ Requires-Dist: pygraphviz<=1.14,>=1.10; extra == "graph"
59
+ Requires-Dist: networkx<=3.4.2,>=2.8.8; extra == "graph"
60
+ Provides-Extra: graphnotebook
61
+ Requires-Dist: pygraphviz<=1.14,>=1.10; extra == "graphnotebook"
62
+ Requires-Dist: networkx<=3.4.2,>=2.8.8; extra == "graphnotebook"
63
+ Requires-Dist: ipython<=8.31.0,>=7.33.0; extra == "graphnotebook"
64
+ Provides-Extra: mpi
65
+ Requires-Dist: mpi4py<=4.0.1,>=3.1.4; extra == "mpi"
66
+ Provides-Extra: submission
67
+ Requires-Dist: pysqa==0.2.3; extra == "submission"
68
+ Requires-Dist: h5py<=3.12.1,>=3.6.0; extra == "submission"
69
+ Provides-Extra: all
70
+ Requires-Dist: mpi4py<=4.0.1,>=3.1.4; extra == "all"
71
+ Requires-Dist: pysqa==0.2.3; extra == "all"
72
+ Requires-Dist: h5py<=3.12.1,>=3.6.0; extra == "all"
73
+ Requires-Dist: pygraphviz<=1.14,>=1.10; extra == "all"
74
+ Requires-Dist: networkx<=3.4.2,>=2.8.8; extra == "all"
75
+ Requires-Dist: ipython<=8.31.0,>=7.33.0; extra == "all"
76
+
77
+ # executorlib
78
+ [![Unittests](https://github.com/pyiron/executorlib/actions/workflows/unittest-openmpi.yml/badge.svg)](https://github.com/pyiron/executorlib/actions/workflows/unittest-openmpi.yml)
79
+ [![Coverage Status](https://coveralls.io/repos/github/pyiron/executorlib/badge.svg?branch=main)](https://coveralls.io/github/pyiron/executorlib?branch=main)
80
+ [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/pyiron/executorlib/HEAD?labpath=notebooks%2Fexamples.ipynb)
81
+
82
+ Up-scale python functions for high performance computing (HPC) with executorlib.
83
+
84
+ ## Key Features
85
+ * **Up-scale your Python functions beyond a single computer.** - executorlib extends the [Executor interface](https://docs.python.org/3/library/concurrent.futures.html#executor-objects)
86
+ from the Python standard library and combines it with job schedulers for high performance computing (HPC) including
87
+ the [Simple Linux Utility for Resource Management (SLURM)](https://slurm.schedmd.com) and [flux](http://flux-framework.org).
88
+ With this combination executorlib allows users to distribute their Python functions over multiple compute nodes.
89
+ * **Parallelize your Python program one function at a time** - executorlib allows users to assign dedicated computing
90
+ resources like CPU cores, threads or GPUs to one Python function call at a time. So you can accelerate your Python
91
+ code function by function.
92
+ * **Permanent caching of intermediate results to accelerate rapid prototyping** - To accelerate the development of
93
+ machine learning pipelines and simulation workflows executorlib provides optional caching of intermediate results for
94
+ iterative development in interactive environments like jupyter notebooks.
95
+
96
+ ## Examples
97
+ The Python standard library provides the [Executor interface](https://docs.python.org/3/library/concurrent.futures.html#executor-objects)
98
+ with the [ProcessPoolExecutor](https://docs.python.org/3/library/concurrent.futures.html#processpoolexecutor) and the
99
+ [ThreadPoolExecutor](https://docs.python.org/3/library/concurrent.futures.html#threadpoolexecutor) for parallel
100
+ execution of Python functions on a single computer. executorlib extends this functionality to distribute Python
101
+ functions over multiple computers within a high performance computing (HPC) cluster. This can be either achieved by
102
+ submitting each function as individual job to the HPC job scheduler - [HPC Submission Mode](https://executorlib.readthedocs.io/en/latest/2-hpc-submission.html) -
103
+ or by requesting a compute allocation of multiple nodes and then distribute the Python functions within this - allocation -
104
+ [HPC Allocation Mode](https://executorlib.readthedocs.io/en/latest/3-hpc-allocation.html). Finally, to accelerate the
105
+ development process executorlib also provides a - [Local Mode](https://executorlib.readthedocs.io/en/latest/1-local.html) -
106
+ to use the executorlib functionality on a single workstation for testing. Starting with the [Local Mode](https://executorlib.readthedocs.io/en/latest/1-local.html)
107
+ set by setting the backend parameter to local - `backend="local"`:
108
+ ```python
109
+ from executorlib import Executor
110
+
111
+
112
+ with Executor(backend="local") as exe:
113
+ future_lst = [exe.submit(sum, [i, i]) for i in range(1, 5)]
114
+ print([f.result() for f in future_lst])
115
+ ```
116
+ In the same way executorlib can also execute Python functions which use additional computing resources, like multiple
117
+ CPU cores, CPU threads or GPUs. For example if the Python function internally uses the Message Passing Interface (MPI)
118
+ via the [mpi4py](https://mpi4py.readthedocs.io) Python libary:
119
+ ```python
120
+ from executorlib import Executor
121
+
122
+
123
+ def calc(i):
124
+ from mpi4py import MPI
125
+
126
+ size = MPI.COMM_WORLD.Get_size()
127
+ rank = MPI.COMM_WORLD.Get_rank()
128
+ return i, size, rank
129
+
130
+
131
+ with Executor(backend="local") as exe:
132
+ fs = exe.submit(calc, 3, resource_dict={"cores": 2})
133
+ print(fs.result())
134
+ ```
135
+ The additional `resource_dict` parameter defines the computing resources allocated to the execution of the submitted
136
+ Python function. In addition to the compute cores `cores`, the resource dictionary can also define the threads per core
137
+ as `threads_per_core`, the GPUs per core as `gpus_per_core`, the working directory with `cwd`, the option to use the
138
+ OpenMPI oversubscribe feature with `openmpi_oversubscribe` and finally for the [Simple Linux Utility for Resource
139
+ Management (SLURM)](https://slurm.schedmd.com) queuing system the option to provide additional command line arguments
140
+ with the `slurm_cmd_args` parameter - [resource dictionary](https://executorlib.readthedocs.io/en/latest/trouble_shooting.html#resource-dictionary)
141
+ This flexibility to assign computing resources on a per-function-call basis simplifies the up-scaling of Python programs.
142
+ Only the part of the Python functions which benefit from parallel execution are implemented as MPI parallel Python
143
+ funtions, while the rest of the program remains serial.
144
+
145
+ The same function can be submitted to the [SLURM](https://slurm.schedmd.com) queuing by just changing the `backend`
146
+ parameter to `slurm_submission`. The rest of the example remains the same, which highlights how executorlib accelerates
147
+ the rapid prototyping and up-scaling of HPC Python programs.
148
+ ```python
149
+ from executorlib import Executor
150
+
151
+
152
+ def calc(i):
153
+ from mpi4py import MPI
154
+
155
+ size = MPI.COMM_WORLD.Get_size()
156
+ rank = MPI.COMM_WORLD.Get_rank()
157
+ return i, size, rank
158
+
159
+
160
+ with Executor(backend="slurm_submission") as exe:
161
+ fs = exe.submit(calc, 3, resource_dict={"cores": 2})
162
+ print(fs.result())
163
+ ```
164
+ In this case the [Python simple queuing system adapter (pysqa)](https://pysqa.readthedocs.io) is used to submit the
165
+ `calc()` function to the [SLURM](https://slurm.schedmd.com) job scheduler and request an allocation with two CPU cores
166
+ for the execution of the function - [HPC Submission Mode](https://executorlib.readthedocs.io/en/latest/2-hpc-submission.html). In the background the [sbatch](https://slurm.schedmd.com/sbatch.html)
167
+ command is used to request the allocation to execute the Python function.
168
+
169
+ Within a given [SLURM](https://slurm.schedmd.com) allocation executorlib can also be used to assign a subset of the
170
+ available computing resources to execute a given Python function. In terms of the [SLURM](https://slurm.schedmd.com)
171
+ commands, this functionality internally uses the [srun](https://slurm.schedmd.com/srun.html) command to receive a subset
172
+ of the resources of a given queuing system allocation.
173
+ ```python
174
+ from executorlib import Executor
175
+
176
+
177
+ def calc(i):
178
+ from mpi4py import MPI
179
+
180
+ size = MPI.COMM_WORLD.Get_size()
181
+ rank = MPI.COMM_WORLD.Get_rank()
182
+ return i, size, rank
183
+
184
+
185
+ with Executor(backend="slurm_allocation") as exe:
186
+ fs = exe.submit(calc, 3, resource_dict={"cores": 2})
187
+ print(fs.result())
188
+ ```
189
+ In addition, to support for [SLURM](https://slurm.schedmd.com) executorlib also provides support for the hierarchical
190
+ [flux](http://flux-framework.org) job scheduler. The [flux](http://flux-framework.org) job scheduler is developed at
191
+ [Larwence Livermore National Laboratory](https://computing.llnl.gov/projects/flux-building-framework-resource-management)
192
+ to address the needs for the up-coming generation of Exascale computers. Still even on traditional HPC clusters the
193
+ hierarchical approach of the [flux](http://flux-framework.org) is beneficial to distribute hundreds of tasks within a
194
+ given allocation. Even when [SLURM](https://slurm.schedmd.com) is used as primary job scheduler of your HPC, it is
195
+ recommended to use [SLURM with flux](https://executorlib.readthedocs.io/en/latest/3-hpc-allocation.html#slurm-with-flux)
196
+ as hierarchical job scheduler within the allocations.
197
+
198
+ ## Documentation
199
+ * [Installation](https://executorlib.readthedocs.io/en/latest/installation.html)
200
+ * [Minimal](https://executorlib.readthedocs.io/en/latest/installation.html#minimal)
201
+ * [MPI Support](https://executorlib.readthedocs.io/en/latest/installation.html#mpi-support)
202
+ * [Caching](https://executorlib.readthedocs.io/en/latest/installation.html#caching)
203
+ * [HPC Submission Mode](https://executorlib.readthedocs.io/en/latest/installation.html#hpc-submission-mode)
204
+ * [HPC Allocation Mode](https://executorlib.readthedocs.io/en/latest/installation.html#hpc-allocation-mode)
205
+ * [Visualisation](https://executorlib.readthedocs.io/en/latest/installation.html#visualisation)
206
+ * [For Developers](https://executorlib.readthedocs.io/en/latest/installation.html#for-developers)
207
+ * [Local Mode](https://executorlib.readthedocs.io/en/latest/1-local.html)
208
+ * [Basic Functionality](https://executorlib.readthedocs.io/en/latest/1-local.html#basic-functionality)
209
+ * [Parallel Functions](https://executorlib.readthedocs.io/en/latest/1-local.html#parallel-functions)
210
+ * [Performance Optimization](https://executorlib.readthedocs.io/en/latest/1-local.html#performance-optimization)
211
+ * [HPC Submission Mode](https://executorlib.readthedocs.io/en/latest/2-hpc-submission.html)
212
+ * [SLURM](https://executorlib.readthedocs.io/en/latest/2-hpc-submission.html#slurm)
213
+ * [Flux](https://executorlib.readthedocs.io/en/latest/2-hpc-submission.html#flux)
214
+ * [HPC Allocation Mode](https://executorlib.readthedocs.io/en/latest/3-hpc-allocation.html)
215
+ * [SLURM](https://executorlib.readthedocs.io/en/latest/3-hpc-allocation.html#slurm)
216
+ * [SLURM with Flux](https://executorlib.readthedocs.io/en/latest/3-hpc-allocation.html#slurm-with-flux)
217
+ * [Flux](https://executorlib.readthedocs.io/en/latest/3-hpc-allocation.html#flux)
218
+ * [Trouble Shooting](https://executorlib.readthedocs.io/en/latest/trouble_shooting.html)
219
+ * [Filesystem Usage](https://executorlib.readthedocs.io/en/latest/trouble_shooting.html#filesystem-usage)
220
+ * [Firewall Issues](https://executorlib.readthedocs.io/en/latest/trouble_shooting.html#firewall-issues)
221
+ * [Message Passing Interface](https://executorlib.readthedocs.io/en/latest/trouble_shooting.html#message-passing-interface)
222
+ * [Python Version](https://executorlib.readthedocs.io/en/latest/trouble_shooting.html#python-version)
223
+ * [Resource Dictionary](https://executorlib.readthedocs.io/en/latest/trouble_shooting.html#resource-dictionary)
224
+ * [SSH Connection](https://executorlib.readthedocs.io/en/latest/trouble_shooting.html#ssh-connection)
225
+ * [Developer](https://executorlib.readthedocs.io/en/latest/4-developer.html)
226
+ * [Communication](https://executorlib.readthedocs.io/en/latest/4-developer.html#communication)
227
+ * [External Executables](https://executorlib.readthedocs.io/en/latest/4-developer.html#external-executables)
228
+ * [License](https://executorlib.readthedocs.io/en/latest/4-developer.html#license)
229
+ * [Modules](https://executorlib.readthedocs.io/en/latest/4-developer.html#modules)
230
+ * [Interface](https://executorlib.readthedocs.io/en/latest/api.html)
@@ -0,0 +1,154 @@
1
+ # executorlib
2
+ [![Unittests](https://github.com/pyiron/executorlib/actions/workflows/unittest-openmpi.yml/badge.svg)](https://github.com/pyiron/executorlib/actions/workflows/unittest-openmpi.yml)
3
+ [![Coverage Status](https://coveralls.io/repos/github/pyiron/executorlib/badge.svg?branch=main)](https://coveralls.io/github/pyiron/executorlib?branch=main)
4
+ [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/pyiron/executorlib/HEAD?labpath=notebooks%2Fexamples.ipynb)
5
+
6
+ Up-scale python functions for high performance computing (HPC) with executorlib.
7
+
8
+ ## Key Features
9
+ * **Up-scale your Python functions beyond a single computer.** - executorlib extends the [Executor interface](https://docs.python.org/3/library/concurrent.futures.html#executor-objects)
10
+ from the Python standard library and combines it with job schedulers for high performance computing (HPC) including
11
+ the [Simple Linux Utility for Resource Management (SLURM)](https://slurm.schedmd.com) and [flux](http://flux-framework.org).
12
+ With this combination executorlib allows users to distribute their Python functions over multiple compute nodes.
13
+ * **Parallelize your Python program one function at a time** - executorlib allows users to assign dedicated computing
14
+ resources like CPU cores, threads or GPUs to one Python function call at a time. So you can accelerate your Python
15
+ code function by function.
16
+ * **Permanent caching of intermediate results to accelerate rapid prototyping** - To accelerate the development of
17
+ machine learning pipelines and simulation workflows executorlib provides optional caching of intermediate results for
18
+ iterative development in interactive environments like jupyter notebooks.
19
+
20
+ ## Examples
21
+ The Python standard library provides the [Executor interface](https://docs.python.org/3/library/concurrent.futures.html#executor-objects)
22
+ with the [ProcessPoolExecutor](https://docs.python.org/3/library/concurrent.futures.html#processpoolexecutor) and the
23
+ [ThreadPoolExecutor](https://docs.python.org/3/library/concurrent.futures.html#threadpoolexecutor) for parallel
24
+ execution of Python functions on a single computer. executorlib extends this functionality to distribute Python
25
+ functions over multiple computers within a high performance computing (HPC) cluster. This can be either achieved by
26
+ submitting each function as individual job to the HPC job scheduler - [HPC Submission Mode](https://executorlib.readthedocs.io/en/latest/2-hpc-submission.html) -
27
+ or by requesting a compute allocation of multiple nodes and then distribute the Python functions within this - allocation -
28
+ [HPC Allocation Mode](https://executorlib.readthedocs.io/en/latest/3-hpc-allocation.html). Finally, to accelerate the
29
+ development process executorlib also provides a - [Local Mode](https://executorlib.readthedocs.io/en/latest/1-local.html) -
30
+ to use the executorlib functionality on a single workstation for testing. Starting with the [Local Mode](https://executorlib.readthedocs.io/en/latest/1-local.html)
31
+ set by setting the backend parameter to local - `backend="local"`:
32
+ ```python
33
+ from executorlib import Executor
34
+
35
+
36
+ with Executor(backend="local") as exe:
37
+ future_lst = [exe.submit(sum, [i, i]) for i in range(1, 5)]
38
+ print([f.result() for f in future_lst])
39
+ ```
40
+ In the same way executorlib can also execute Python functions which use additional computing resources, like multiple
41
+ CPU cores, CPU threads or GPUs. For example if the Python function internally uses the Message Passing Interface (MPI)
42
+ via the [mpi4py](https://mpi4py.readthedocs.io) Python libary:
43
+ ```python
44
+ from executorlib import Executor
45
+
46
+
47
+ def calc(i):
48
+ from mpi4py import MPI
49
+
50
+ size = MPI.COMM_WORLD.Get_size()
51
+ rank = MPI.COMM_WORLD.Get_rank()
52
+ return i, size, rank
53
+
54
+
55
+ with Executor(backend="local") as exe:
56
+ fs = exe.submit(calc, 3, resource_dict={"cores": 2})
57
+ print(fs.result())
58
+ ```
59
+ The additional `resource_dict` parameter defines the computing resources allocated to the execution of the submitted
60
+ Python function. In addition to the compute cores `cores`, the resource dictionary can also define the threads per core
61
+ as `threads_per_core`, the GPUs per core as `gpus_per_core`, the working directory with `cwd`, the option to use the
62
+ OpenMPI oversubscribe feature with `openmpi_oversubscribe` and finally for the [Simple Linux Utility for Resource
63
+ Management (SLURM)](https://slurm.schedmd.com) queuing system the option to provide additional command line arguments
64
+ with the `slurm_cmd_args` parameter - [resource dictionary](https://executorlib.readthedocs.io/en/latest/trouble_shooting.html#resource-dictionary)
65
+ This flexibility to assign computing resources on a per-function-call basis simplifies the up-scaling of Python programs.
66
+ Only the part of the Python functions which benefit from parallel execution are implemented as MPI parallel Python
67
+ funtions, while the rest of the program remains serial.
68
+
69
+ The same function can be submitted to the [SLURM](https://slurm.schedmd.com) queuing by just changing the `backend`
70
+ parameter to `slurm_submission`. The rest of the example remains the same, which highlights how executorlib accelerates
71
+ the rapid prototyping and up-scaling of HPC Python programs.
72
+ ```python
73
+ from executorlib import Executor
74
+
75
+
76
+ def calc(i):
77
+ from mpi4py import MPI
78
+
79
+ size = MPI.COMM_WORLD.Get_size()
80
+ rank = MPI.COMM_WORLD.Get_rank()
81
+ return i, size, rank
82
+
83
+
84
+ with Executor(backend="slurm_submission") as exe:
85
+ fs = exe.submit(calc, 3, resource_dict={"cores": 2})
86
+ print(fs.result())
87
+ ```
88
+ In this case the [Python simple queuing system adapter (pysqa)](https://pysqa.readthedocs.io) is used to submit the
89
+ `calc()` function to the [SLURM](https://slurm.schedmd.com) job scheduler and request an allocation with two CPU cores
90
+ for the execution of the function - [HPC Submission Mode](https://executorlib.readthedocs.io/en/latest/2-hpc-submission.html). In the background the [sbatch](https://slurm.schedmd.com/sbatch.html)
91
+ command is used to request the allocation to execute the Python function.
92
+
93
+ Within a given [SLURM](https://slurm.schedmd.com) allocation executorlib can also be used to assign a subset of the
94
+ available computing resources to execute a given Python function. In terms of the [SLURM](https://slurm.schedmd.com)
95
+ commands, this functionality internally uses the [srun](https://slurm.schedmd.com/srun.html) command to receive a subset
96
+ of the resources of a given queuing system allocation.
97
+ ```python
98
+ from executorlib import Executor
99
+
100
+
101
+ def calc(i):
102
+ from mpi4py import MPI
103
+
104
+ size = MPI.COMM_WORLD.Get_size()
105
+ rank = MPI.COMM_WORLD.Get_rank()
106
+ return i, size, rank
107
+
108
+
109
+ with Executor(backend="slurm_allocation") as exe:
110
+ fs = exe.submit(calc, 3, resource_dict={"cores": 2})
111
+ print(fs.result())
112
+ ```
113
+ In addition, to support for [SLURM](https://slurm.schedmd.com) executorlib also provides support for the hierarchical
114
+ [flux](http://flux-framework.org) job scheduler. The [flux](http://flux-framework.org) job scheduler is developed at
115
+ [Larwence Livermore National Laboratory](https://computing.llnl.gov/projects/flux-building-framework-resource-management)
116
+ to address the needs for the up-coming generation of Exascale computers. Still even on traditional HPC clusters the
117
+ hierarchical approach of the [flux](http://flux-framework.org) is beneficial to distribute hundreds of tasks within a
118
+ given allocation. Even when [SLURM](https://slurm.schedmd.com) is used as primary job scheduler of your HPC, it is
119
+ recommended to use [SLURM with flux](https://executorlib.readthedocs.io/en/latest/3-hpc-allocation.html#slurm-with-flux)
120
+ as hierarchical job scheduler within the allocations.
121
+
122
+ ## Documentation
123
+ * [Installation](https://executorlib.readthedocs.io/en/latest/installation.html)
124
+ * [Minimal](https://executorlib.readthedocs.io/en/latest/installation.html#minimal)
125
+ * [MPI Support](https://executorlib.readthedocs.io/en/latest/installation.html#mpi-support)
126
+ * [Caching](https://executorlib.readthedocs.io/en/latest/installation.html#caching)
127
+ * [HPC Submission Mode](https://executorlib.readthedocs.io/en/latest/installation.html#hpc-submission-mode)
128
+ * [HPC Allocation Mode](https://executorlib.readthedocs.io/en/latest/installation.html#hpc-allocation-mode)
129
+ * [Visualisation](https://executorlib.readthedocs.io/en/latest/installation.html#visualisation)
130
+ * [For Developers](https://executorlib.readthedocs.io/en/latest/installation.html#for-developers)
131
+ * [Local Mode](https://executorlib.readthedocs.io/en/latest/1-local.html)
132
+ * [Basic Functionality](https://executorlib.readthedocs.io/en/latest/1-local.html#basic-functionality)
133
+ * [Parallel Functions](https://executorlib.readthedocs.io/en/latest/1-local.html#parallel-functions)
134
+ * [Performance Optimization](https://executorlib.readthedocs.io/en/latest/1-local.html#performance-optimization)
135
+ * [HPC Submission Mode](https://executorlib.readthedocs.io/en/latest/2-hpc-submission.html)
136
+ * [SLURM](https://executorlib.readthedocs.io/en/latest/2-hpc-submission.html#slurm)
137
+ * [Flux](https://executorlib.readthedocs.io/en/latest/2-hpc-submission.html#flux)
138
+ * [HPC Allocation Mode](https://executorlib.readthedocs.io/en/latest/3-hpc-allocation.html)
139
+ * [SLURM](https://executorlib.readthedocs.io/en/latest/3-hpc-allocation.html#slurm)
140
+ * [SLURM with Flux](https://executorlib.readthedocs.io/en/latest/3-hpc-allocation.html#slurm-with-flux)
141
+ * [Flux](https://executorlib.readthedocs.io/en/latest/3-hpc-allocation.html#flux)
142
+ * [Trouble Shooting](https://executorlib.readthedocs.io/en/latest/trouble_shooting.html)
143
+ * [Filesystem Usage](https://executorlib.readthedocs.io/en/latest/trouble_shooting.html#filesystem-usage)
144
+ * [Firewall Issues](https://executorlib.readthedocs.io/en/latest/trouble_shooting.html#firewall-issues)
145
+ * [Message Passing Interface](https://executorlib.readthedocs.io/en/latest/trouble_shooting.html#message-passing-interface)
146
+ * [Python Version](https://executorlib.readthedocs.io/en/latest/trouble_shooting.html#python-version)
147
+ * [Resource Dictionary](https://executorlib.readthedocs.io/en/latest/trouble_shooting.html#resource-dictionary)
148
+ * [SSH Connection](https://executorlib.readthedocs.io/en/latest/trouble_shooting.html#ssh-connection)
149
+ * [Developer](https://executorlib.readthedocs.io/en/latest/4-developer.html)
150
+ * [Communication](https://executorlib.readthedocs.io/en/latest/4-developer.html#communication)
151
+ * [External Executables](https://executorlib.readthedocs.io/en/latest/4-developer.html#external-executables)
152
+ * [License](https://executorlib.readthedocs.io/en/latest/4-developer.html#license)
153
+ * [Modules](https://executorlib.readthedocs.io/en/latest/4-developer.html#modules)
154
+ * [Interface](https://executorlib.readthedocs.io/en/latest/api.html)