evolutionary-policy-optimization 0.2.10__tar.gz → 0.2.11__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (18) hide show
  1. {evolutionary_policy_optimization-0.2.10 → evolutionary_policy_optimization-0.2.11}/PKG-INFO +1 -1
  2. {evolutionary_policy_optimization-0.2.10 → evolutionary_policy_optimization-0.2.11}/evolutionary_policy_optimization/distributed.py +3 -1
  3. {evolutionary_policy_optimization-0.2.10 → evolutionary_policy_optimization-0.2.11}/pyproject.toml +1 -1
  4. {evolutionary_policy_optimization-0.2.10 → evolutionary_policy_optimization-0.2.11}/tests/test_epo.py +2 -1
  5. {evolutionary_policy_optimization-0.2.10 → evolutionary_policy_optimization-0.2.11}/.github/workflows/lint.yml +0 -0
  6. {evolutionary_policy_optimization-0.2.10 → evolutionary_policy_optimization-0.2.11}/.github/workflows/python-publish.yml +0 -0
  7. {evolutionary_policy_optimization-0.2.10 → evolutionary_policy_optimization-0.2.11}/.github/workflows/test.yml +0 -0
  8. {evolutionary_policy_optimization-0.2.10 → evolutionary_policy_optimization-0.2.11}/.gitignore +0 -0
  9. {evolutionary_policy_optimization-0.2.10 → evolutionary_policy_optimization-0.2.11}/LICENSE +0 -0
  10. {evolutionary_policy_optimization-0.2.10 → evolutionary_policy_optimization-0.2.11}/README.md +0 -0
  11. {evolutionary_policy_optimization-0.2.10 → evolutionary_policy_optimization-0.2.11}/evolutionary_policy_optimization/__init__.py +0 -0
  12. {evolutionary_policy_optimization-0.2.10 → evolutionary_policy_optimization-0.2.11}/evolutionary_policy_optimization/env_wrappers.py +0 -0
  13. {evolutionary_policy_optimization-0.2.10 → evolutionary_policy_optimization-0.2.11}/evolutionary_policy_optimization/epo.py +0 -0
  14. {evolutionary_policy_optimization-0.2.10 → evolutionary_policy_optimization-0.2.11}/evolutionary_policy_optimization/experimental.py +0 -0
  15. {evolutionary_policy_optimization-0.2.10 → evolutionary_policy_optimization-0.2.11}/evolutionary_policy_optimization/mock_env.py +0 -0
  16. {evolutionary_policy_optimization-0.2.10 → evolutionary_policy_optimization-0.2.11}/requirements.txt +0 -0
  17. {evolutionary_policy_optimization-0.2.10 → evolutionary_policy_optimization-0.2.11}/train_crossover_weight_space.py +0 -0
  18. {evolutionary_policy_optimization-0.2.10 → evolutionary_policy_optimization-0.2.11}/train_gym.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: evolutionary-policy-optimization
3
- Version: 0.2.10
3
+ Version: 0.2.11
4
4
  Summary: EPO - Pytorch
5
5
  Project-URL: Homepage, https://pypi.org/project/evolutionary-policy-optimization/
6
6
  Project-URL: Repository, https://github.com/lucidrains/evolutionary-policy-optimization
@@ -61,6 +61,8 @@ def has_only_one_value(t):
61
61
  return (t == t[0]).all()
62
62
 
63
63
  def all_gather_variable_dim(t, dim = 0, sizes = None):
64
+ device = t.device
65
+
64
66
  if not exists(sizes):
65
67
  sizes = gather_sizes(t, dim = dim)
66
68
 
@@ -77,7 +79,7 @@ def all_gather_variable_dim(t, dim = 0, sizes = None):
77
79
  gathered_tensors = torch.cat(gathered_tensors, dim = dim)
78
80
  seq = torch.arange(max_size, device = device)
79
81
 
80
- mask = einx.less('j i -> (i j)', seq, sizes)
82
+ mask = einx.less('j, i -> (i j)', seq, sizes)
81
83
  seq = torch.arange(mask.shape[-1], device = device)
82
84
  indices = seq[mask]
83
85
 
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "evolutionary-policy-optimization"
3
- version = "0.2.10"
3
+ version = "0.2.11"
4
4
  description = "EPO - Pytorch"
5
5
  authors = [
6
6
  { name = "Phil Wang", email = "lucidrains@gmail.com" }
@@ -58,7 +58,8 @@ def test_create_agent(
58
58
  actor_dim = 256,
59
59
  actor_mlp_depth = 2,
60
60
  critic_dim = 256,
61
- critic_mlp_depth = 4
61
+ critic_mlp_depth = 4,
62
+ wrap_with_accelerate = False
62
63
  )
63
64
 
64
65
  state = torch.randn(2, 512)