evalscope 0.5.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of evalscope might be problematic. Click here for more details.
- evalscope-0.5.0/PKG-INFO +475 -0
- evalscope-0.5.0/README.md +449 -0
- evalscope-0.5.0/evalscope/__init__.py +3 -0
- evalscope-0.5.0/evalscope/backend/__init__.py +3 -0
- evalscope-0.5.0/evalscope/backend/base.py +27 -0
- evalscope-0.5.0/evalscope/backend/opencompass/__init__.py +3 -0
- evalscope-0.5.0/evalscope/backend/opencompass/api_meta_template.py +64 -0
- evalscope-0.5.0/evalscope/backend/opencompass/backend_manager.py +247 -0
- evalscope-0.5.0/evalscope/backend/opencompass/tasks/__init__.py +1 -0
- evalscope-0.5.0/evalscope/backend/opencompass/tasks/eval_api.py +30 -0
- evalscope-0.5.0/evalscope/backend/opencompass/tasks/eval_datasets.py +71 -0
- evalscope-0.5.0/evalscope/backend/vlm_eval_kit/__init__.py +1 -0
- evalscope-0.5.0/evalscope/backend/vlm_eval_kit/backend_manager.py +153 -0
- evalscope-0.5.0/evalscope/benchmarks/__init__.py +4 -0
- evalscope-0.5.0/evalscope/benchmarks/arc/__init__.py +5 -0
- evalscope-0.5.0/evalscope/benchmarks/arc/ai2_arc.py +148 -0
- evalscope-0.5.0/evalscope/benchmarks/arc/arc_adapter.py +231 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/__init__.py +6 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/bbh_adapter.py +308 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/boolean_expressions.txt +23 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/causal_judgement.txt +25 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/date_understanding.txt +33 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/disambiguation_qa.txt +37 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/dyck_languages.txt +72 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/formal_fallacies.txt +44 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/geometric_shapes.txt +78 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/hyperbaton.txt +28 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/logical_deduction_five_objects.txt +37 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/logical_deduction_seven_objects.txt +37 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/logical_deduction_three_objects.txt +37 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/movie_recommendation.txt +42 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/multistep_arithmetic_two.txt +25 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/navigate.txt +43 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/object_counting.txt +37 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/penguins_in_a_table.txt +41 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/reasoning_about_colored_objects.txt +63 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/ruin_names.txt +44 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/salient_translation_error_detection.txt +40 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/snarks.txt +30 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/sports_understanding.txt +10 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/temporal_sequences.txt +77 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/tracking_shuffled_objects_five_objects.txt +40 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/tracking_shuffled_objects_seven_objects.txt +40 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/tracking_shuffled_objects_three_objects.txt +40 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/web_of_lies.txt +28 -0
- evalscope-0.5.0/evalscope/benchmarks/bbh/cot_prompts/word_sorting.txt +17 -0
- evalscope-0.5.0/evalscope/benchmarks/benchmark.py +65 -0
- evalscope-0.5.0/evalscope/benchmarks/ceval/__init__.py +5 -0
- evalscope-0.5.0/evalscope/benchmarks/ceval/ceval_adapter.py +340 -0
- evalscope-0.5.0/evalscope/benchmarks/ceval/ceval_exam.py +159 -0
- evalscope-0.5.0/evalscope/benchmarks/cmmlu/__init__.py +5 -0
- evalscope-0.5.0/evalscope/benchmarks/cmmlu/cmmlu.py +166 -0
- evalscope-0.5.0/evalscope/benchmarks/cmmlu/cmmlu_adapter.py +369 -0
- evalscope-0.5.0/evalscope/benchmarks/competition_math/__init__.py +5 -0
- evalscope-0.5.0/evalscope/benchmarks/competition_math/competition_math.py +88 -0
- evalscope-0.5.0/evalscope/benchmarks/competition_math/competition_math_adapter.py +470 -0
- evalscope-0.5.0/evalscope/benchmarks/data_adapter.py +263 -0
- evalscope-0.5.0/evalscope/benchmarks/general_qa/__init__.py +5 -0
- evalscope-0.5.0/evalscope/benchmarks/general_qa/general_qa_adapter.py +186 -0
- evalscope-0.5.0/evalscope/benchmarks/gsm8k/__init__.py +5 -0
- evalscope-0.5.0/evalscope/benchmarks/gsm8k/gsm8k.py +127 -0
- evalscope-0.5.0/evalscope/benchmarks/gsm8k/gsm8k_adapter.py +236 -0
- evalscope-0.5.0/evalscope/benchmarks/hellaswag/__init__.py +5 -0
- evalscope-0.5.0/evalscope/benchmarks/hellaswag/hellaswag.py +116 -0
- evalscope-0.5.0/evalscope/benchmarks/hellaswag/hellaswag_adapter.py +222 -0
- evalscope-0.5.0/evalscope/benchmarks/humaneval/__init__.py +5 -0
- evalscope-0.5.0/evalscope/benchmarks/humaneval/humaneval.py +82 -0
- evalscope-0.5.0/evalscope/benchmarks/humaneval/humaneval_adapter.py +21 -0
- evalscope-0.5.0/evalscope/benchmarks/mmlu/__init__.py +5 -0
- evalscope-0.5.0/evalscope/benchmarks/mmlu/mmlu.py +174 -0
- evalscope-0.5.0/evalscope/benchmarks/mmlu/mmlu_adapter.py +375 -0
- evalscope-0.5.0/evalscope/benchmarks/race/__init__.py +5 -0
- evalscope-0.5.0/evalscope/benchmarks/race/race.py +118 -0
- evalscope-0.5.0/evalscope/benchmarks/race/race_adapter.py +229 -0
- evalscope-0.5.0/evalscope/benchmarks/trivia_qa/__init__.py +5 -0
- evalscope-0.5.0/evalscope/benchmarks/trivia_qa/trivia_qa.py +104 -0
- evalscope-0.5.0/evalscope/benchmarks/trivia_qa/trivia_qa_adapter.py +207 -0
- evalscope-0.5.0/evalscope/benchmarks/truthful_qa/__init__.py +5 -0
- evalscope-0.5.0/evalscope/benchmarks/truthful_qa/truthful_qa.py +167 -0
- evalscope-0.5.0/evalscope/benchmarks/truthful_qa/truthful_qa_adapter.py +351 -0
- evalscope-0.5.0/evalscope/cache.py +98 -0
- evalscope-0.5.0/evalscope/cli/__init__.py +1 -0
- evalscope-0.5.0/evalscope/cli/base.py +20 -0
- evalscope-0.5.0/evalscope/cli/cli.py +26 -0
- evalscope-0.5.0/evalscope/cli/start_perf.py +37 -0
- evalscope-0.5.0/evalscope/cli/start_server.py +138 -0
- evalscope-0.5.0/evalscope/config.py +165 -0
- evalscope-0.5.0/evalscope/constants.py +150 -0
- evalscope-0.5.0/evalscope/evaluator/__init__.py +3 -0
- evalscope-0.5.0/evalscope/evaluator/evaluator.py +689 -0
- evalscope-0.5.0/evalscope/evaluator/rating_eval.py +178 -0
- evalscope-0.5.0/evalscope/evaluator/reviewer/__init__.py +1 -0
- evalscope-0.5.0/evalscope/evaluator/reviewer/auto_reviewer.py +411 -0
- evalscope-0.5.0/evalscope/metrics/__init__.py +1 -0
- evalscope-0.5.0/evalscope/metrics/bundled_rouge_score/__init__.py +14 -0
- evalscope-0.5.0/evalscope/metrics/bundled_rouge_score/rouge_scorer.py +342 -0
- evalscope-0.5.0/evalscope/metrics/code_metric.py +104 -0
- evalscope-0.5.0/evalscope/metrics/math_accuracy.py +60 -0
- evalscope-0.5.0/evalscope/metrics/metrics.py +405 -0
- evalscope-0.5.0/evalscope/metrics/rouge_metric.py +129 -0
- evalscope-0.5.0/evalscope/models/__init__.py +4 -0
- evalscope-0.5.0/evalscope/models/custom/__init__.py +4 -0
- evalscope-0.5.0/evalscope/models/custom/custom_model.py +53 -0
- evalscope-0.5.0/evalscope/models/dummy_chat_model.py +50 -0
- evalscope-0.5.0/evalscope/models/model.py +88 -0
- evalscope-0.5.0/evalscope/models/model_adapter.py +586 -0
- evalscope-0.5.0/evalscope/models/openai_model.py +103 -0
- evalscope-0.5.0/evalscope/models/template.py +1446 -0
- evalscope-0.5.0/evalscope/perf/__init__.py +0 -0
- evalscope-0.5.0/evalscope/perf/_logging.py +32 -0
- evalscope-0.5.0/evalscope/perf/api_plugin_base.py +60 -0
- evalscope-0.5.0/evalscope/perf/custom_api.py +87 -0
- evalscope-0.5.0/evalscope/perf/dashscope_api.py +84 -0
- evalscope-0.5.0/evalscope/perf/dataset_plugin_base.py +64 -0
- evalscope-0.5.0/evalscope/perf/datasets/__init__.py +0 -0
- evalscope-0.5.0/evalscope/perf/datasets/line_by_line.py +18 -0
- evalscope-0.5.0/evalscope/perf/datasets/longalpaca_12k.py +20 -0
- evalscope-0.5.0/evalscope/perf/datasets/openqa.py +22 -0
- evalscope-0.5.0/evalscope/perf/how_to_analysis_result.py +24 -0
- evalscope-0.5.0/evalscope/perf/http_client.py +756 -0
- evalscope-0.5.0/evalscope/perf/openai_api.py +130 -0
- evalscope-0.5.0/evalscope/perf/plugin_registry.py +35 -0
- evalscope-0.5.0/evalscope/perf/query_parameters.py +42 -0
- evalscope-0.5.0/evalscope/perf/server_sent_event.py +43 -0
- evalscope-0.5.0/evalscope/preprocess/__init__.py +1 -0
- evalscope-0.5.0/evalscope/preprocess/tokenizers/__init__.py +0 -0
- evalscope-0.5.0/evalscope/preprocess/tokenizers/gpt2_tokenizer.py +221 -0
- evalscope-0.5.0/evalscope/registry/__init__.py +1 -0
- evalscope-0.5.0/evalscope/registry/tasks/arc.yaml +29 -0
- evalscope-0.5.0/evalscope/registry/tasks/bbh.yaml +27 -0
- evalscope-0.5.0/evalscope/registry/tasks/bbh_mini.yaml +27 -0
- evalscope-0.5.0/evalscope/registry/tasks/ceval.yaml +27 -0
- evalscope-0.5.0/evalscope/registry/tasks/ceval_mini.yaml +27 -0
- evalscope-0.5.0/evalscope/registry/tasks/cmmlu.yaml +27 -0
- evalscope-0.5.0/evalscope/registry/tasks/eval_qwen-7b-chat_v100.yaml +28 -0
- evalscope-0.5.0/evalscope/registry/tasks/general_qa.yaml +27 -0
- evalscope-0.5.0/evalscope/registry/tasks/gsm8k.yaml +29 -0
- evalscope-0.5.0/evalscope/registry/tasks/mmlu.yaml +29 -0
- evalscope-0.5.0/evalscope/registry/tasks/mmlu_mini.yaml +27 -0
- evalscope-0.5.0/evalscope/run.py +404 -0
- evalscope-0.5.0/evalscope/run_arena.py +204 -0
- evalscope-0.5.0/evalscope/run_ms.py +140 -0
- evalscope-0.5.0/evalscope/summarizer.py +144 -0
- evalscope-0.5.0/evalscope/third_party/__init__.py +1 -0
- evalscope-0.5.0/evalscope/third_party/toolbench_static/__init__.py +3 -0
- evalscope-0.5.0/evalscope/third_party/toolbench_static/eval.py +219 -0
- evalscope-0.5.0/evalscope/third_party/toolbench_static/infer.py +278 -0
- evalscope-0.5.0/evalscope/third_party/toolbench_static/llm/__init__.py +1 -0
- evalscope-0.5.0/evalscope/third_party/toolbench_static/llm/swift_infer.py +45 -0
- evalscope-0.5.0/evalscope/third_party/toolbench_static/toolbench_static.py +50 -0
- evalscope-0.5.0/evalscope/tools/__init__.py +1 -0
- evalscope-0.5.0/evalscope/tools/combine_reports.py +140 -0
- evalscope-0.5.0/evalscope/tools/gen_mmlu_subject_mapping.py +90 -0
- evalscope-0.5.0/evalscope/tools/rewrite_eval_results.py +95 -0
- evalscope-0.5.0/evalscope/utils/__init__.py +4 -0
- evalscope-0.5.0/evalscope/utils/arena_utils.py +247 -0
- evalscope-0.5.0/evalscope/utils/completion_parsers.py +87 -0
- evalscope-0.5.0/evalscope/utils/logger.py +64 -0
- evalscope-0.5.0/evalscope/utils/task_cfg_parser.py +10 -0
- evalscope-0.5.0/evalscope/utils/task_utils.py +19 -0
- evalscope-0.5.0/evalscope/utils/utils.py +625 -0
- evalscope-0.5.0/evalscope/version.py +4 -0
- evalscope-0.5.0/evalscope.egg-info/PKG-INFO +475 -0
- evalscope-0.5.0/evalscope.egg-info/SOURCES.txt +168 -0
- evalscope-0.5.0/evalscope.egg-info/dependency_links.txt +1 -0
- evalscope-0.5.0/evalscope.egg-info/entry_points.txt +3 -0
- evalscope-0.5.0/evalscope.egg-info/not-zip-safe +1 -0
- evalscope-0.5.0/evalscope.egg-info/requires.txt +100 -0
- evalscope-0.5.0/evalscope.egg-info/top_level.txt +1 -0
- evalscope-0.5.0/setup.cfg +4 -0
evalscope-0.5.0/PKG-INFO
ADDED
|
@@ -0,0 +1,475 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: evalscope
|
|
3
|
+
Version: 0.5.0
|
|
4
|
+
Summary: Eval-Scope: Lightweight LLMs Evaluation Framework
|
|
5
|
+
Home-page: https://github.com/modelscope/eval-scope
|
|
6
|
+
Author: ModelScope team
|
|
7
|
+
Author-email: contact@modelscope.cn
|
|
8
|
+
License: UNKNOWN
|
|
9
|
+
Keywords: python,llm,evaluation
|
|
10
|
+
Platform: UNKNOWN
|
|
11
|
+
Classifier: Development Status :: 4 - Beta
|
|
12
|
+
Classifier: License :: OSI Approved :: Apache Software License
|
|
13
|
+
Classifier: Operating System :: OS Independent
|
|
14
|
+
Classifier: Programming Language :: Python :: 3
|
|
15
|
+
Classifier: Programming Language :: Python :: 3.8
|
|
16
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
17
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
18
|
+
Requires-Python: >=3.8
|
|
19
|
+
Description-Content-Type: text/markdown
|
|
20
|
+
Provides-Extra: opencompass
|
|
21
|
+
Provides-Extra: vlmeval
|
|
22
|
+
Provides-Extra: inner
|
|
23
|
+
Provides-Extra: all
|
|
24
|
+
|
|
25
|
+
English | [简体中文](README_zh.md)
|
|
26
|
+
|
|
27
|
+
<p align="center">
|
|
28
|
+
<a href="https://pypi.org/project/evalscope"><img alt="PyPI - Downloads" src="https://img.shields.io/pypi/dm/evalscope">
|
|
29
|
+
</a>
|
|
30
|
+
<a href="https://github.com/modelscope/eval-scope/pulls"><img src="https://img.shields.io/badge/PR-welcome-55EB99.svg"></a>
|
|
31
|
+
<p>
|
|
32
|
+
|
|
33
|
+
## 📖 Table of Content
|
|
34
|
+
- [Introduction](#introduction)
|
|
35
|
+
- [News](#News)
|
|
36
|
+
- [Installation](#installation)
|
|
37
|
+
- [Quick Start](#quick-start)
|
|
38
|
+
- [Dataset List](#datasets-list)
|
|
39
|
+
- [Leaderboard](#leaderboard)
|
|
40
|
+
- [Experiments and Results](#Experiments-and-Results)
|
|
41
|
+
- [Model Serving Performance Evaluation](#Model-Serving-Performance-Evaluation)
|
|
42
|
+
|
|
43
|
+
## 📝 Introduction
|
|
44
|
+
|
|
45
|
+
Large Language Model (LLMs) evaluation has become a critical process for assessing and improving LLMs. To better support the evaluation of large models, we propose the Eval-Scope framework, which includes the following components and features:
|
|
46
|
+
|
|
47
|
+
- Pre-configured common benchmark datasets, including: MMLU, CMMLU, C-Eval, GSM8K, ARC, HellaSwag, TruthfulQA, MATH, HumanEval, etc.
|
|
48
|
+
- Implementation of common evaluation metrics
|
|
49
|
+
- Unified model integration, compatible with the generate and chat interfaces of multiple model series
|
|
50
|
+
- Automatic evaluation (evaluator):
|
|
51
|
+
- Automatic evaluation for objective questions
|
|
52
|
+
- Implementation of complex task evaluation using expert models
|
|
53
|
+
- Reports of evaluation generating
|
|
54
|
+
- Arena mode
|
|
55
|
+
- Visualization tools
|
|
56
|
+
- Model Inference Performance Evaluation [Tutorial](evalscope/perf/README.md)
|
|
57
|
+
- Support for OpenCompass as an Evaluation Backend, featuring advanced encapsulation and task simplification to easily submit tasks to OpenCompass for evaluation.
|
|
58
|
+
- Supports VLMEvalKit as the evaluation backend. It initiates VLMEvalKit's multimodal evaluation tasks through Eval-Scope, supporting various multimodal models and datasets.
|
|
59
|
+
- Full pipeline support: Seamlessly integrate with SWIFT to easily train and deploy model services, initiate evaluation tasks, view evaluation reports, and achieve an end-to-end large model development process.
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
**Features**
|
|
63
|
+
- Lightweight, minimizing unnecessary abstractions and configurations
|
|
64
|
+
- Easy to customize
|
|
65
|
+
- New datasets can be integrated by simply implementing a single class
|
|
66
|
+
- Models can be hosted on [ModelScope](https://modelscope.cn), and evaluations can be initiated with just a model id
|
|
67
|
+
- Supports deployment of locally hosted models
|
|
68
|
+
- Visualization of evaluation reports
|
|
69
|
+
- Rich evaluation metrics
|
|
70
|
+
- Model-based automatic evaluation process, supporting multiple evaluation modes
|
|
71
|
+
- Single mode: Expert models score individual models
|
|
72
|
+
- Pairwise-baseline mode: Comparison with baseline models
|
|
73
|
+
- Pairwise (all) mode: Pairwise comparison of all models
|
|
74
|
+
|
|
75
|
+
## 🎉 News
|
|
76
|
+
- **[2024.07.31]** Breaking change: The sdk name has been changed from `llmuses` to `evalscope`, please update the sdk name in your code.
|
|
77
|
+
- **[2024.07.26]** Supports **VLMEvalKit** as a third-party evaluation framework, initiating multimodal model evaluation tasks. [User Guide](#vlmevalkit-evaluation-backend) 🔥🔥🔥
|
|
78
|
+
- **[2024.06.29]** Supports **OpenCompass** as a third-party evaluation framework. We have provided a high-level wrapper, supporting installation via pip and simplifying the evaluation task configuration. [User Guide](#opencompass-evaluation-backend) 🔥🔥🔥
|
|
79
|
+
- **[2024.06.13]** Eval-Scope has been updated to version 0.3.x, which supports the ModelScope SWIFT framework for LLMs evaluation. 🚀🚀🚀
|
|
80
|
+
- **[2024.06.13]** We have supported the ToolBench as a third-party evaluation backend for Agents evaluation. 🚀🚀🚀
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
## 🛠️ Installation
|
|
85
|
+
### Install with pip
|
|
86
|
+
1. create conda environment
|
|
87
|
+
```shell
|
|
88
|
+
conda create -n eval-scope python=3.10
|
|
89
|
+
conda activate eval-scope
|
|
90
|
+
```
|
|
91
|
+
|
|
92
|
+
2. Install Eval-Scope
|
|
93
|
+
```shell
|
|
94
|
+
pip install evalscope
|
|
95
|
+
```
|
|
96
|
+
|
|
97
|
+
### Install from source code
|
|
98
|
+
1. Download source code
|
|
99
|
+
```shell
|
|
100
|
+
git clone https://github.com/modelscope/eval-scope.git
|
|
101
|
+
```
|
|
102
|
+
|
|
103
|
+
2. Install dependencies
|
|
104
|
+
```shell
|
|
105
|
+
cd eval-scope/
|
|
106
|
+
pip install -e .
|
|
107
|
+
```
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
## 🚀 Quick Start
|
|
111
|
+
|
|
112
|
+
### Simple Evaluation
|
|
113
|
+
command line with pip installation:
|
|
114
|
+
```shell
|
|
115
|
+
python -m evalscope.run --model ZhipuAI/chatglm3-6b --template-type chatglm3 --datasets arc --limit 100
|
|
116
|
+
```
|
|
117
|
+
command line with source code:
|
|
118
|
+
```shell
|
|
119
|
+
python evalscope/run.py --model ZhipuAI/chatglm3-6b --template-type chatglm3 --datasets mmlu ceval --limit 10
|
|
120
|
+
```
|
|
121
|
+
Parameters:
|
|
122
|
+
- --model: ModelScope model id, model link: [ZhipuAI/chatglm3-6b](https://modelscope.cn/models/ZhipuAI/chatglm3-6b/summary)
|
|
123
|
+
|
|
124
|
+
### Evaluation with Model Arguments
|
|
125
|
+
```shell
|
|
126
|
+
python evalscope/run.py --model ZhipuAI/chatglm3-6b --template-type chatglm3 --model-args revision=v1.0.2,precision=torch.float16,device_map=auto --datasets mmlu ceval --use-cache true --limit 10
|
|
127
|
+
```
|
|
128
|
+
```shell
|
|
129
|
+
python evalscope/run.py --model qwen/Qwen-1_8B --generation-config do_sample=false,temperature=0.0 --datasets ceval --dataset-args '{"ceval": {"few_shot_num": 0, "few_shot_random": false}}' --limit 10
|
|
130
|
+
```
|
|
131
|
+
Parameters:
|
|
132
|
+
- --model-args: Parameters of model: revision, precision, device_map, in format of key=value,key=value
|
|
133
|
+
- --datasets: datasets list, separated by space
|
|
134
|
+
- --use-cache: `true` or `false`, whether to use cache, default is `false`
|
|
135
|
+
- --dataset-args: evaluation settings,json format,key is the dataset name,value should be args for the dataset
|
|
136
|
+
- --few_shot_num: few-shot data number
|
|
137
|
+
- --few_shot_random: whether to use random few-shot data, default is `true`
|
|
138
|
+
- --local_path: local dataset path
|
|
139
|
+
- --limit: maximum number of samples to evaluate for each sub-dataset
|
|
140
|
+
- --template-type: model template type, see [Template Type List](https://github.com/modelscope/swift/blob/main/docs/source_en/LLM/Supported-models-datasets.md)
|
|
141
|
+
|
|
142
|
+
Note: you can use following command to check the template type list of the model:
|
|
143
|
+
```shell
|
|
144
|
+
from evalscope.models.template import TemplateType
|
|
145
|
+
print(TemplateType.get_template_name_list())
|
|
146
|
+
```
|
|
147
|
+
|
|
148
|
+
### Evaluation Backend
|
|
149
|
+
Eval-Scope supports using third-party evaluation frameworks to initiate evaluation tasks, which we call Evaluation Backend. Currently supported Evaluation Backend includes:
|
|
150
|
+
- **Native**: Eval-Scope's own **default evaluation framework**, supporting various evaluation modes including single model evaluation, arena mode, and baseline model comparison mode.
|
|
151
|
+
- [OpenCompass](https://github.com/open-compass/opencompass): Initiate OpenCompass evaluation tasks through Eval-Scope. Lightweight, easy to customize, supports seamless integration with the LLM fine-tuning framework [ModelScope Swift](https://github.com/modelscope/swift).
|
|
152
|
+
- [VLMEvalKit](https://github.com/open-compass/VLMEvalKit): Initiate VLMEvalKit multimodal evaluation tasks through Eval-Scope. Supports various multimodal models and datasets, and offers seamless integration with the LLM fine-tuning framework [ModelScope Swift](https://github.com/modelscope/swift).
|
|
153
|
+
- **ThirdParty**: The third-party task, e.g. [ToolBench](evalscope/thirdparty/toolbench/README.md), you can contribute your own evaluation task to Eval-Scope as third-party backend.
|
|
154
|
+
|
|
155
|
+
#### OpenCompass Eval-Backend
|
|
156
|
+
|
|
157
|
+
To facilitate the use of the OpenCompass evaluation backend, we have customized the OpenCompass source code and named it `ms-opencompass`. This version includes optimizations for evaluation task configuration and execution based on the original version, and it supports installation via PyPI. This allows users to initiate lightweight OpenCompass evaluation tasks through Eval-Scope. Additionally, we have initially opened up API-based evaluation tasks in the OpenAI API format. You can deploy model services using [ModelScope Swift](https://github.com/modelscope/swift), where [swift deploy](https://swift.readthedocs.io/en/latest/LLM/VLLM-inference-acceleration-and-deployment.html) supports using vLLM to launch model inference services.
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
##### Installation
|
|
161
|
+
```shell
|
|
162
|
+
# Install with extra option
|
|
163
|
+
pip install evalscope[opencompass]
|
|
164
|
+
```
|
|
165
|
+
|
|
166
|
+
##### Data Preparation
|
|
167
|
+
Available datasets from OpenCompass backend:
|
|
168
|
+
```text
|
|
169
|
+
'obqa', 'AX_b', 'siqa', 'nq', 'mbpp', 'winogrande', 'mmlu', 'BoolQ', 'cluewsc', 'ocnli', 'lambada', 'CMRC', 'ceval', 'csl', 'cmnli', 'bbh', 'ReCoRD', 'math', 'humaneval', 'eprstmt', 'WSC', 'storycloze', 'MultiRC', 'RTE', 'chid', 'gsm8k', 'AX_g', 'bustm', 'afqmc', 'piqa', 'lcsts', 'strategyqa', 'Xsum', 'agieval', 'ocnli_fc', 'C3', 'tnews', 'race', 'triviaqa', 'CB', 'WiC', 'hellaswag', 'summedits', 'GaokaoBench', 'ARC_e', 'COPA', 'ARC_c', 'DRCD'
|
|
170
|
+
```
|
|
171
|
+
Refer to [OpenCompass datasets](https://hub.opencompass.org.cn/home)
|
|
172
|
+
|
|
173
|
+
You can use the following code to list all available datasets:
|
|
174
|
+
```python
|
|
175
|
+
from evalscope.backend.opencompass import OpenCompassBackendManager
|
|
176
|
+
print(f'** All datasets from OpenCompass backend: {OpenCompassBackendManager.list_datasets()}')
|
|
177
|
+
```
|
|
178
|
+
|
|
179
|
+
Dataset download:
|
|
180
|
+
- Option1: Download from ModelScope
|
|
181
|
+
```shell
|
|
182
|
+
git clone https://www.modelscope.cn/datasets/swift/evalscope_resource.git
|
|
183
|
+
```
|
|
184
|
+
|
|
185
|
+
- Option2: Download from OpenCompass GitHub
|
|
186
|
+
```shell
|
|
187
|
+
wget https://github.com/open-compass/opencompass/releases/download/0.2.2.rc1/OpenCompassData-complete-20240207.zip
|
|
188
|
+
```
|
|
189
|
+
|
|
190
|
+
Unzip the file and set the path to the `data` directory in current work directory.
|
|
191
|
+
|
|
192
|
+
|
|
193
|
+
##### Model Serving
|
|
194
|
+
We use ModelScope swift to deploy model services, see: [ModelScope Swift](hhttps://swift.readthedocs.io/en/latest/LLM/VLLM-inference-acceleration-and-deployment.html)
|
|
195
|
+
```shell
|
|
196
|
+
# Install ms-swift
|
|
197
|
+
pip install ms-swift
|
|
198
|
+
|
|
199
|
+
# Deploy model
|
|
200
|
+
CUDA_VISIBLE_DEVICES=0 swift deploy --model_type llama3-8b-instruct --port 8000
|
|
201
|
+
```
|
|
202
|
+
|
|
203
|
+
|
|
204
|
+
##### Model Evaluation
|
|
205
|
+
|
|
206
|
+
Refer to example: [example_eval_swift_openai_api](examples/example_eval_swift_openai_api.py) to configure and execute the evaluation task:
|
|
207
|
+
```shell
|
|
208
|
+
python examples/example_eval_swift_openai_api.py
|
|
209
|
+
```
|
|
210
|
+
|
|
211
|
+
#### VLMEvalKit Evaluation Backend
|
|
212
|
+
|
|
213
|
+
To facilitate the use of the VLMEvalKit evaluation backend, we have customized the VLMEvalKit source code and named it `ms-vlmeval`. This version encapsulates the configuration and execution of evaluation tasks based on the original version and supports installation via PyPI, allowing users to initiate lightweight VLMEvalKit evaluation tasks through Eval-Scope. Additionally, we support API-based evaluation tasks in the OpenAI API format. You can deploy multimodal model services using ModelScope [swift](https://github.com/modelscope/swift).
|
|
214
|
+
|
|
215
|
+
##### Installation
|
|
216
|
+
```shell
|
|
217
|
+
# Install with additional options
|
|
218
|
+
pip install evalscope[vlmeval]
|
|
219
|
+
```
|
|
220
|
+
|
|
221
|
+
##### Data Preparation
|
|
222
|
+
Currently supported datasets include:
|
|
223
|
+
```text
|
|
224
|
+
'COCO_VAL', 'MME', 'HallusionBench', 'POPE', 'MMBench_DEV_EN', 'MMBench_TEST_EN', 'MMBench_DEV_CN', 'MMBench_TEST_CN', 'MMBench', 'MMBench_CN', 'MMBench_DEV_EN_V11', 'MMBench_TEST_EN_V11', 'MMBench_DEV_CN_V11', 'MMBench_TEST_CN_V11', 'MMBench_V11', 'MMBench_CN_V11', 'SEEDBench_IMG', 'SEEDBench2', 'SEEDBench2_Plus', 'ScienceQA_VAL', 'ScienceQA_TEST', 'MMT-Bench_ALL_MI', 'MMT-Bench_ALL', 'MMT-Bench_VAL_MI', 'MMT-Bench_VAL', 'AesBench_VAL', 'AesBench_TEST', 'CCBench', 'AI2D_TEST', 'MMStar', 'RealWorldQA', 'MLLMGuard_DS', 'BLINK', 'OCRVQA_TEST', 'OCRVQA_TESTCORE', 'TextVQA_VAL', 'DocVQA_VAL', 'DocVQA_TEST', 'InfoVQA_ VAL', 'InfoVQA_TEST', 'ChartQA_VAL', 'ChartQA_TEST', 'MathVision', 'MathVision_MINI', 'MMMU_DEV_VAL', 'MMMU_TEST', 'OCRBench', 'MathVista_MINI', 'LLaVABench', 'MMVet', 'MTVQA_TEST', 'MMLongBench_DOC', 'VCR_EN_EASY_500', 'VCR_EN_EASY_100', 'VCR_EN_EASY_ALL', 'VCR_EN_HARD_500', 'VCR_EN_HARD_100', 'VCR_EN_HARD_ALL', 'VCR_ZH_EASY_500', 'VCR_ZH_EASY_100', 'VCR_Z H_EASY_ALL', 'VCR_ZH_HARD_500', 'VCR_ZH_HARD_100', 'VCR_ZH_HARD_ALL', 'MMBench-Video', 'Video-MME', 'MMBench_DEV_EN', 'MMBench_TEST_EN', 'MMBench_DEV_CN', 'MMBench_TEST_CN', 'MMBench', 'MMBench_CN', 'MMBench_DEV_EN_V11', 'MMBench_TEST_EN_V11', 'MMBench_DEV_CN_V11', 'MMBench_TEST_CN_V11', 'MM Bench_V11', 'MMBench_CN_V11', 'SEEDBench_IMG', 'SEEDBench2', 'SEEDBench2_Plus', 'ScienceQA_VAL', 'ScienceQA_TEST', 'MMT-Bench_ALL_MI', 'MMT-Bench_ALL', 'MMT-Bench_VAL_MI', 'MMT-Bench_VAL', 'AesBench_VAL', 'AesBench_TEST', 'CCBench', 'AI2D_TEST', 'MMStar', 'RealWorldQA', 'MLLMGuard_DS', 'BLINK'
|
|
225
|
+
```
|
|
226
|
+
For detailed information about the datasets, please refer to [VLMEvalKit Supported Multimodal Evaluation Sets](https://github.com/open-compass/VLMEvalKit/tree/main#-datasets-models-and-evaluation-results).
|
|
227
|
+
|
|
228
|
+
You can use the following to view the list of dataset names:
|
|
229
|
+
```python
|
|
230
|
+
from evalscope.backend.vlm_eval_kit import VLMEvalKitBackendManager
|
|
231
|
+
print(f'** All models from VLMEvalKit backend: {VLMEvalKitBackendManager.list(list_supported_VLMs().keys())}')
|
|
232
|
+
```
|
|
233
|
+
If the dataset file does not exist locally when loading the dataset, it will be automatically downloaded to the `~/LMUData/` directory.
|
|
234
|
+
|
|
235
|
+
|
|
236
|
+
##### Model Evaluation
|
|
237
|
+
There are two ways to evaluate the model:
|
|
238
|
+
|
|
239
|
+
###### 1. ModelScope Swift Deployment for Model Evaluation
|
|
240
|
+
**Model Deployment**
|
|
241
|
+
Deploy the model service using ModelScope Swift. For detailed instructions, refer to: [ModelScope Swift MLLM Deployment Guide](https://swift.readthedocs.io/en/latest/Multi-Modal/mutlimodal-deployment.html)
|
|
242
|
+
```shell
|
|
243
|
+
# Install ms-swift
|
|
244
|
+
pip install ms-swift
|
|
245
|
+
# Deploy the qwen-vl-chat multi-modal model service
|
|
246
|
+
CUDA_VISIBLE_DEVICES=0 swift deploy --model_type qwen-vl-chat --model_id_or_path models/Qwen-VL-Chat
|
|
247
|
+
```
|
|
248
|
+
**Model Evaluation**
|
|
249
|
+
Refer to the example file: [example_eval_vlm_swift](examples/example_eval_vlm_swift.py) to configure the evaluation task.
|
|
250
|
+
Execute the evaluation task:
|
|
251
|
+
```shell
|
|
252
|
+
python examples/example_eval_vlm_swift.py
|
|
253
|
+
```
|
|
254
|
+
|
|
255
|
+
###### 2. Local Model Inference Evaluation
|
|
256
|
+
**Model Inference Evaluation**
|
|
257
|
+
Skip the model service deployment and perform inference directly on the local machine. Refer to the example file: [example_eval_vlm_local](examples/example_eval_vlm_local.py) to configure the evaluation task.
|
|
258
|
+
Execute the evaluation task:
|
|
259
|
+
```shell
|
|
260
|
+
python examples/example_eval_vlm_local.py
|
|
261
|
+
```
|
|
262
|
+
|
|
263
|
+
|
|
264
|
+
##### (Optional) Deploy Judge Model
|
|
265
|
+
Deploy the local language model as a judge/extractor using ModelScope swift. For details, refer to: [ModelScope Swift LLM Deployment Guide](https://swift.readthedocs.io/en/latest/LLM/VLLM-inference-acceleration-and-deployment.html). If no judge model is deployed, exact matching will be used.
|
|
266
|
+
|
|
267
|
+
```shell
|
|
268
|
+
# Deploy qwen2-7b as a judge
|
|
269
|
+
CUDA_VISIBLE_DEVICES=1 swift deploy --model_type qwen2-7b-instruct --model_id_or_path models/Qwen2-7B-Instruct --port 8866
|
|
270
|
+
```
|
|
271
|
+
|
|
272
|
+
You **must configure the following environment variables for the judge model to be correctly invoked**:
|
|
273
|
+
```
|
|
274
|
+
OPENAI_API_KEY=EMPTY
|
|
275
|
+
OPENAI_API_BASE=http://127.0.0.1:8866/v1/chat/completions # api_base for the judge model
|
|
276
|
+
LOCAL_LLM=qwen2-7b-instruct # model_id for the judge model
|
|
277
|
+
```
|
|
278
|
+
|
|
279
|
+
##### Model Evaluation
|
|
280
|
+
Refer to the example file: [example_eval_vlm_swift](examples/example_eval_vlm_swift.py) to configure the evaluation task.
|
|
281
|
+
|
|
282
|
+
Execute the evaluation task:
|
|
283
|
+
|
|
284
|
+
```shell
|
|
285
|
+
python examples/example_eval_vlm_swift.py
|
|
286
|
+
```
|
|
287
|
+
|
|
288
|
+
|
|
289
|
+
### Local Dataset
|
|
290
|
+
You can use local dataset to evaluate the model without internet connection.
|
|
291
|
+
#### 1. Download and unzip the dataset
|
|
292
|
+
```shell
|
|
293
|
+
# set path to /path/to/workdir
|
|
294
|
+
wget https://modelscope.oss-cn-beijing.aliyuncs.com/open_data/benchmark/data.zip
|
|
295
|
+
unzip data.zip
|
|
296
|
+
```
|
|
297
|
+
|
|
298
|
+
|
|
299
|
+
#### 2. Use local dataset to evaluate the model
|
|
300
|
+
```shell
|
|
301
|
+
python evalscope/run.py --model ZhipuAI/chatglm3-6b --template-type chatglm3 --datasets arc --dataset-hub Local --dataset-args '{"arc": {"local_path": "/path/to/workdir/data/arc"}}' --limit 10
|
|
302
|
+
|
|
303
|
+
# Parameters:
|
|
304
|
+
# --dataset-hub: dataset sources: `ModelScope`, `Local`, `HuggingFace` (TO-DO) default to `ModelScope`
|
|
305
|
+
# --dataset-args: json format, key is the dataset name, value should be args for the dataset
|
|
306
|
+
```
|
|
307
|
+
|
|
308
|
+
#### 3. (Optional) Use local mode to submit evaluation task
|
|
309
|
+
|
|
310
|
+
```shell
|
|
311
|
+
# 1. Prepare the model local folder, the folder structure refers to chatglm3-6b, link: https://modelscope.cn/models/ZhipuAI/chatglm3-6b/files
|
|
312
|
+
# For example, download the model folder to the local path /path/to/ZhipuAI/chatglm3-6b
|
|
313
|
+
|
|
314
|
+
# 2. Execute the offline evaluation task
|
|
315
|
+
python evalscope/run.py --model /path/to/ZhipuAI/chatglm3-6b --template-type chatglm3 --datasets arc --dataset-hub Local --dataset-args '{"arc": {"local_path": "/path/to/workdir/data/arc"}}' --limit 10
|
|
316
|
+
```
|
|
317
|
+
|
|
318
|
+
|
|
319
|
+
### Use run_task function
|
|
320
|
+
|
|
321
|
+
#### 1. Configuration
|
|
322
|
+
```python
|
|
323
|
+
import torch
|
|
324
|
+
from evalscope.constants import DEFAULT_ROOT_CACHE_DIR
|
|
325
|
+
|
|
326
|
+
# Example configuration
|
|
327
|
+
your_task_cfg = {
|
|
328
|
+
'model_args': {'revision': None, 'precision': torch.float16, 'device_map': 'auto'},
|
|
329
|
+
'generation_config': {'do_sample': False, 'repetition_penalty': 1.0, 'max_new_tokens': 512},
|
|
330
|
+
'dataset_args': {},
|
|
331
|
+
'dry_run': False,
|
|
332
|
+
'model': 'ZhipuAI/chatglm3-6b',
|
|
333
|
+
'template_type': 'chatglm3',
|
|
334
|
+
'datasets': ['arc', 'hellaswag'],
|
|
335
|
+
'work_dir': DEFAULT_ROOT_CACHE_DIR,
|
|
336
|
+
'outputs': DEFAULT_ROOT_CACHE_DIR,
|
|
337
|
+
'mem_cache': False,
|
|
338
|
+
'dataset_hub': 'ModelScope',
|
|
339
|
+
'dataset_dir': DEFAULT_ROOT_CACHE_DIR,
|
|
340
|
+
'stage': 'all',
|
|
341
|
+
'limit': 10,
|
|
342
|
+
'debug': False
|
|
343
|
+
}
|
|
344
|
+
|
|
345
|
+
```
|
|
346
|
+
|
|
347
|
+
#### 2. Execute the task
|
|
348
|
+
```python
|
|
349
|
+
from evalscope.run import run_task
|
|
350
|
+
|
|
351
|
+
run_task(task_cfg=your_task_cfg)
|
|
352
|
+
```
|
|
353
|
+
|
|
354
|
+
|
|
355
|
+
### Arena Mode
|
|
356
|
+
The Arena mode allows multiple candidate models to be evaluated through pairwise battles, and can choose to use the AI Enhanced Auto-Reviewer (AAR) automatic evaluation process or manual evaluation to obtain the evaluation report. The process is as follows:
|
|
357
|
+
#### 1. Env preparation
|
|
358
|
+
```text
|
|
359
|
+
a. Data preparation, the question data format refers to: evalscope/registry/data/question.jsonl
|
|
360
|
+
b. If you need to use the automatic evaluation process (AAR), you need to configure the relevant environment variables. Taking the GPT-4 based auto-reviewer process as an example, you need to configure the following environment variables:
|
|
361
|
+
> export OPENAI_API_KEY=YOUR_OPENAI_API_KEY
|
|
362
|
+
```
|
|
363
|
+
|
|
364
|
+
#### 2. Configuration files
|
|
365
|
+
```text
|
|
366
|
+
Refer to : evalscope/registry/config/cfg_arena.yaml
|
|
367
|
+
Parameters:
|
|
368
|
+
questions_file: question data path
|
|
369
|
+
answers_gen: candidate model prediction result generation, supports multiple models, can control whether to enable the model through the enable parameter
|
|
370
|
+
reviews_gen: evaluation result generation, currently defaults to using GPT-4 as the Auto-reviewer, can control whether to enable this step through the enable parameter
|
|
371
|
+
elo_rating: ELO rating algorithm, can control whether to enable this step through the enable parameter, note that this step depends on the review_file must exist
|
|
372
|
+
```
|
|
373
|
+
|
|
374
|
+
#### 3. Execute the script
|
|
375
|
+
```shell
|
|
376
|
+
#Usage:
|
|
377
|
+
cd evalscope
|
|
378
|
+
|
|
379
|
+
# dry-run mode
|
|
380
|
+
python evalscope/run_arena.py -c registry/config/cfg_arena.yaml --dry-run
|
|
381
|
+
|
|
382
|
+
# Execute the script
|
|
383
|
+
python evalscope/run_arena.py --c registry/config/cfg_arena.yaml
|
|
384
|
+
```
|
|
385
|
+
|
|
386
|
+
#### 4. Visualization
|
|
387
|
+
|
|
388
|
+
```shell
|
|
389
|
+
# Usage:
|
|
390
|
+
streamlit run viz.py -- --review-file evalscope/registry/data/qa_browser/battle.jsonl --category-file evalscope/registry/data/qa_browser/category_mapping.yaml
|
|
391
|
+
```
|
|
392
|
+
|
|
393
|
+
|
|
394
|
+
### Single Model Evaluation Mode
|
|
395
|
+
|
|
396
|
+
In this mode, we only score the output of a single model, without pairwise comparison.
|
|
397
|
+
#### 1. Configuration file
|
|
398
|
+
```text
|
|
399
|
+
Refer to: evalscope/registry/config/cfg_single.yaml
|
|
400
|
+
Parameters:
|
|
401
|
+
questions_file: question data path
|
|
402
|
+
answers_gen: candidate model prediction result generation, supports multiple models, can control whether to enable the model through the enable parameter
|
|
403
|
+
reviews_gen: evaluation result generation, currently defaults to using GPT-4 as the Auto-reviewer, can control whether to enable this step through the enable parameter
|
|
404
|
+
rating_gen: rating algorithm, can control whether to enable this step through the enable parameter, note that this step depends on the review_file must exist
|
|
405
|
+
```
|
|
406
|
+
#### 2. Execute the script
|
|
407
|
+
```shell
|
|
408
|
+
#Example:
|
|
409
|
+
python evalscope/run_arena.py --c registry/config/cfg_single.yaml
|
|
410
|
+
```
|
|
411
|
+
|
|
412
|
+
### Baseline Model Comparison Mode
|
|
413
|
+
|
|
414
|
+
In this mode, we select the baseline model, and compare other models with the baseline model for scoring. This mode can easily add new models to the Leaderboard (just need to run the scoring with the new model and the baseline model).
|
|
415
|
+
|
|
416
|
+
#### 1. Configuration file
|
|
417
|
+
```text
|
|
418
|
+
Refer to: evalscope/registry/config/cfg_pairwise_baseline.yaml
|
|
419
|
+
Parameters:
|
|
420
|
+
questions_file: question data path
|
|
421
|
+
answers_gen: candidate model prediction result generation, supports multiple models, can control whether to enable the model through the enable parameter
|
|
422
|
+
reviews_gen: evaluation result generation, currently defaults to using GPT-4 as the Auto-reviewer, can control whether to enable this step through the enable parameter
|
|
423
|
+
rating_gen: rating algorithm, can control whether to enable this step through the enable parameter, note that this step depends on the review_file must exist
|
|
424
|
+
```
|
|
425
|
+
#### 2. Execute the script
|
|
426
|
+
```shell
|
|
427
|
+
# Example:
|
|
428
|
+
python evalscope/run_arena.py --c registry/config/cfg_pairwise_baseline.yaml
|
|
429
|
+
```
|
|
430
|
+
|
|
431
|
+
|
|
432
|
+
## Datasets list
|
|
433
|
+
|
|
434
|
+
| DatasetName | Link | Status | Note |
|
|
435
|
+
|--------------------|----------------------------------------------------------------------------------------|--------|------|
|
|
436
|
+
| `mmlu` | [mmlu](https://modelscope.cn/datasets/modelscope/mmlu/summary) | Active | |
|
|
437
|
+
| `ceval` | [ceval](https://modelscope.cn/datasets/modelscope/ceval-exam/summary) | Active | |
|
|
438
|
+
| `gsm8k` | [gsm8k](https://modelscope.cn/datasets/modelscope/gsm8k/summary) | Active | |
|
|
439
|
+
| `arc` | [arc](https://modelscope.cn/datasets/modelscope/ai2_arc/summary) | Active | |
|
|
440
|
+
| `hellaswag` | [hellaswag](https://modelscope.cn/datasets/modelscope/hellaswag/summary) | Active | |
|
|
441
|
+
| `truthful_qa` | [truthful_qa](https://modelscope.cn/datasets/modelscope/truthful_qa/summary) | Active | |
|
|
442
|
+
| `competition_math` | [competition_math](https://modelscope.cn/datasets/modelscope/competition_math/summary) | Active | |
|
|
443
|
+
| `humaneval` | [humaneval](https://modelscope.cn/datasets/modelscope/humaneval/summary) | Active | |
|
|
444
|
+
| `bbh` | [bbh](https://modelscope.cn/datasets/modelscope/bbh/summary) | Active | |
|
|
445
|
+
| `race` | [race](https://modelscope.cn/datasets/modelscope/race/summary) | Active | |
|
|
446
|
+
| `trivia_qa` | [trivia_qa](https://modelscope.cn/datasets/modelscope/trivia_qa/summary) | To be intergrated | |
|
|
447
|
+
|
|
448
|
+
|
|
449
|
+
## Leaderboard
|
|
450
|
+
The LLM Leaderboard aims to provide an objective and comprehensive evaluation standard and platform to help researchers and developers understand and compare the performance of models on various tasks on ModelScope.
|
|
451
|
+
|
|
452
|
+
[Leaderboard](https://modelscope.cn/leaderboard/58/ranking?type=free)
|
|
453
|
+
|
|
454
|
+
|
|
455
|
+
|
|
456
|
+
## Experiments and Results
|
|
457
|
+
[Experiments](./resources/experiments.md)
|
|
458
|
+
|
|
459
|
+
## Model Serving Performance Evaluation
|
|
460
|
+
[Perf](evalscope/perf/README.md)
|
|
461
|
+
|
|
462
|
+
## TO-DO List
|
|
463
|
+
- ✅Agents evaluation
|
|
464
|
+
- [ ] vLLM
|
|
465
|
+
- [ ] Distributed evaluating
|
|
466
|
+
- ✅ Multi-modal evaluation
|
|
467
|
+
- [ ] Benchmarks
|
|
468
|
+
- [ ] GAIA
|
|
469
|
+
- [ ] GPQA
|
|
470
|
+
- ✅ MBPP
|
|
471
|
+
- [ ] Auto-reviewer
|
|
472
|
+
- [ ] Qwen-max
|
|
473
|
+
|
|
474
|
+
|
|
475
|
+
|