eqcctpro 0.6.1__tar.gz → 0.6.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of eqcctpro might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: eqcctpro
3
- Version: 0.6.1
3
+ Version: 0.6.3
4
4
  Summary: EQCCTPro: A powerful seismic event detection toolkit
5
5
  Author-email: Constantinos Skevofilax <constantinos.skevofilax@austin.utexas.edu>, Victor Salles <victor.salles@beg.utexas.edu>
6
6
  Project-URL: Homepage, https://pypi.org/project/eqcctpro/
@@ -13,7 +13,6 @@ Requires-Dist: numpy==1.26.4
13
13
  Requires-Dist: pandas==2.2.3
14
14
  Requires-Dist: matplotlib==3.10.0
15
15
  Requires-Dist: obspy==1.4.1
16
- Requires-Dist: progress==1.6
17
16
  Requires-Dist: psutil==6.1.1
18
17
  Requires-Dist: ray==2.42.1
19
18
  Requires-Dist: schedule==1.2.2
@@ -25,7 +24,7 @@ Requires-Dist: tensorboard==2.15.2
25
24
  Requires-Dist: tensorboard-data-server==0.7.2
26
25
  Requires-Dist: silence-tensorflow==1.2.3
27
26
  Requires-Dist: scipy==1.15.1
28
- Requires-Dist: protobuf==4.25.6
27
+ Requires-Dist: protobuf==4.25.8
29
28
  Requires-Dist: grpcio==1.70.0
30
29
  Requires-Dist: absl-py==2.1.0
31
30
  Requires-Dist: h5py==3.12.1
@@ -59,9 +58,9 @@ This method installs only the EQCCTPro package **without** the sample waveform d
59
58
  EQCCTPro **requires Python 3.10.14 or higher as well as minimum Tensorflow packages**. If you have a clean working environment, you can simply run `pip install eqcctpro`. However, if you have a nonclean environment, its highly recommended to create a new conda environment so that you can install the necessary packages safely with no issues. You can create a new conda environment with the correct Python version by using the following commands:
60
59
 
61
60
  ```sh
62
- [skevofilaxc] conda create --name yourenvironemntname python=3.10.14 -y
63
- [skevofilaxc] conda activate yourenvironemntname
64
- [skevofilaxc] python3 --version
61
+ conda create --name yourenvironemntname python=3.10.14 -y
62
+ conda activate yourenvironemntname
63
+ python3 --version
65
64
  ```
66
65
  Expected output:
67
66
  ```
@@ -70,19 +69,19 @@ Python 3.10.14
70
69
 
71
70
  After activating your new conda environment, run the following command:
72
71
  ```sh
73
- [skevofilaxc] pip install eqcctpro
72
+ pip install eqcctpro
74
73
  ```
75
- You will have access to EQCCTPro and its functionality. However you will not have immediate access to the provided sample waveform data to use for testing. Youcan pull the waveform data either by downloading the .zip file from the repository or by following step 3.
74
+ You will have access to EQCCTPro and its functionality. However you will not have immediate access to the provided sample waveform data to use for testing. You can pull the waveform data either by downloading the .zip file from the repository or by following step 3.
76
75
 
77
76
  ### **Step 3 (Optional): Pull the EQCCTPro Folder**
78
77
  Although not required, **it is highly recommended** to pull the `EQCCTPro` folder to gain access to sample waveform data for testing.
79
78
 
80
79
  ```sh
81
- [skevofilaxc] mkdir my_work_directory
82
- [skevofilaxc] cd my_work_directory
83
- [skevofilaxc] git clone --depth 1 --filter=tree:0 https://github.com/ut-beg-texnet/eqcct.git --sparse
84
- [skevofilaxc] cd eqcct
85
- [skevofilaxc] git sparse-checkout set eqcctpro
80
+ mkdir my_work_directory
81
+ cd my_work_directory
82
+ git clone --depth 1 --filter=tree:0 https://github.com/ut-beg-texnet/eqcct.git --sparse
83
+ cd eqcct
84
+ git sparse-checkout set eqcctpro
86
85
  ```
87
86
 
88
87
  ---
@@ -92,33 +91,23 @@ This method sets up EQCCTPro **with a pre-created conda environment and sample w
92
91
 
93
92
  ### **Step 1: Clone the EQCCTPro Repository**
94
93
  ```sh
95
- [skevofilaxc] mkdir my_work_directory
96
- [skevofilaxc] cd my_work_directory
97
- [skevofilaxc] git clone --depth 1 --filter=tree:0 https://github.com/ut-beg-texnet/eqcct.git --sparse
98
- [skevofilaxc] cd eqcct
99
- [skevofilaxc] git sparse-checkout set eqcctpro
94
+ mkdir my_work_directory
95
+ cd my_work_directory
96
+ git clone --depth 1 --filter=tree:0 https://github.com/ut-beg-texnet/eqcct.git --sparse
97
+ cd eqcct
98
+ git sparse-checkout set eqcctpro
100
99
  ```
101
100
 
102
101
  ### **Step 2: Create and Activate the Conda Environment**
103
102
  A **pre-configured conda environment** is included in the repository to handle all dependencies.
104
103
 
105
104
  ```sh
106
- [skevofilaxc] conda env create -f environment.yml
107
- [skevofilaxc] conda activate eqcctpro
105
+ conda env create -f environment.yml
106
+ conda activate eqcctpro
108
107
  ```
109
108
 
110
- ### **Step 3: Install EQCCTPro**
111
- After activating the environment, install the EQCCTPro package:
112
- ```sh
113
- [skevofilaxc] pip install eqcctpro
114
- ```
115
-
116
- This will install any remaining dependencies needed for **EQCCTPro**.
117
-
118
- ---
119
-
120
109
  ## **More Information**
121
- For additional details and package updates, visit the **EQCCTPro PyPI page**:
110
+ For additional package updates, continue to check either this repository or visit the **EQCCTPro PyPI page**:
122
111
  🔗 [EQCCTPro on PyPI](https://pypi.org/project/eqcctpro/)
123
112
 
124
113
  ---
@@ -131,7 +120,7 @@ To understand how **EQCCTPro** works, it is **highly recommended** to use provid
131
120
  ### **Step 1: Unzip the Sample Wavefrom Data**
132
121
  After downloading the `.zip` file through the GitHub methods above, run:
133
122
  ```sh
134
- [skevofilaxc] unzip 230_stations_1_min_dt.zip
123
+ unzip 230_stations_1_min_dt.zip
135
124
  ```
136
125
  ### **Step 2: Check and Understand the Directory Structure**
137
126
  The extracted data will contain a timechunk subdirectories, comprised of multiple station directories:
@@ -385,7 +374,7 @@ the trial data will be available and can be used to identify the optimal input p
385
374
 
386
375
  The following input parameters need to be configurated for **EvaluateSystem** to evaluate your system based on your desired utilization of EQCCTPro:
387
376
 
388
- - **`mode (str)`**
377
+ - **`eval_mode (str)`**
389
378
  - Can be either `cpu` or `gpu`
390
379
  - Tells `EvaluateSystem` which computing approach the trials should it iterate with
391
380
  - **`intra_threads (int)`: default = 1**
@@ -434,7 +423,7 @@ The following input parameters need to be configurated for **EvaluateSystem** to
434
423
  - **`station_list_step_size (int)`: default = 1**
435
424
  - You can set a step size for the station list that is generated
436
425
  - For example if the stepsize is set to 10 and you start with 50 stations with a max of 100, then your list would be: [50, 60, 70, 80, 80, 100]
437
- - Using 1 will use the default step size of 1-10, then step size of 5 up to station2use
426
+ - Using 1 will use the default step size of 1-10, then step size of 5 up to stations2use
438
427
  - **`min_conc_stations (int)`: default = 1**
439
428
  - Is the minimum amount of concurrent stations predictions you want each trial iteration to start with
440
429
  - By default, if `min_conc_predictions` and `conc_predictions_step_size` are set to 1, a custom step size iteration will be applied to test the 50 sample waveforms. The sequence follows: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, n+5, 50].
@@ -466,8 +455,9 @@ The following input parameters need to be configurated for **EvaluateSystem** to
466
455
  - A temporary directory to store all temp files produced by EQCCTPro
467
456
  - Used to help ease system cleanup and to not write to system's default temporary directory
468
457
  - **`set_vram_mb (float)`**
469
- - Value of the maximum amount of VRAM EQCCTPro can use
470
- - Must be a real value that is based on your hardware's physical memory space, if it exceeds the space the code will break due to OutOfMemoryError
458
+ - Maximum amount of VRAM each Raylet can use (float).
459
+ - Must be a real value that is based on your GPU's physical VRAM space, if it exceeds the space the code will break due to OutOfMemoryError
460
+ - Good rule of thumb for calculating `set_vram_mb` = (GPU VRAM * .90 (to be safe)) / number_of_concurrent_station_predictions * number_of_concurrent_timechunk_predictions
471
461
  - **`selected_gpus (list)`: default = None**
472
462
  - List of GPU IDs on your computer you want to use if `mode = 'gpu'`
473
463
  - Non-existing GPU IDs will cause the code to exit
@@ -26,9 +26,9 @@ This method installs only the EQCCTPro package **without** the sample waveform d
26
26
  EQCCTPro **requires Python 3.10.14 or higher as well as minimum Tensorflow packages**. If you have a clean working environment, you can simply run `pip install eqcctpro`. However, if you have a nonclean environment, its highly recommended to create a new conda environment so that you can install the necessary packages safely with no issues. You can create a new conda environment with the correct Python version by using the following commands:
27
27
 
28
28
  ```sh
29
- [skevofilaxc] conda create --name yourenvironemntname python=3.10.14 -y
30
- [skevofilaxc] conda activate yourenvironemntname
31
- [skevofilaxc] python3 --version
29
+ conda create --name yourenvironemntname python=3.10.14 -y
30
+ conda activate yourenvironemntname
31
+ python3 --version
32
32
  ```
33
33
  Expected output:
34
34
  ```
@@ -37,19 +37,19 @@ Python 3.10.14
37
37
 
38
38
  After activating your new conda environment, run the following command:
39
39
  ```sh
40
- [skevofilaxc] pip install eqcctpro
40
+ pip install eqcctpro
41
41
  ```
42
- You will have access to EQCCTPro and its functionality. However you will not have immediate access to the provided sample waveform data to use for testing. Youcan pull the waveform data either by downloading the .zip file from the repository or by following step 3.
42
+ You will have access to EQCCTPro and its functionality. However you will not have immediate access to the provided sample waveform data to use for testing. You can pull the waveform data either by downloading the .zip file from the repository or by following step 3.
43
43
 
44
44
  ### **Step 3 (Optional): Pull the EQCCTPro Folder**
45
45
  Although not required, **it is highly recommended** to pull the `EQCCTPro` folder to gain access to sample waveform data for testing.
46
46
 
47
47
  ```sh
48
- [skevofilaxc] mkdir my_work_directory
49
- [skevofilaxc] cd my_work_directory
50
- [skevofilaxc] git clone --depth 1 --filter=tree:0 https://github.com/ut-beg-texnet/eqcct.git --sparse
51
- [skevofilaxc] cd eqcct
52
- [skevofilaxc] git sparse-checkout set eqcctpro
48
+ mkdir my_work_directory
49
+ cd my_work_directory
50
+ git clone --depth 1 --filter=tree:0 https://github.com/ut-beg-texnet/eqcct.git --sparse
51
+ cd eqcct
52
+ git sparse-checkout set eqcctpro
53
53
  ```
54
54
 
55
55
  ---
@@ -59,33 +59,23 @@ This method sets up EQCCTPro **with a pre-created conda environment and sample w
59
59
 
60
60
  ### **Step 1: Clone the EQCCTPro Repository**
61
61
  ```sh
62
- [skevofilaxc] mkdir my_work_directory
63
- [skevofilaxc] cd my_work_directory
64
- [skevofilaxc] git clone --depth 1 --filter=tree:0 https://github.com/ut-beg-texnet/eqcct.git --sparse
65
- [skevofilaxc] cd eqcct
66
- [skevofilaxc] git sparse-checkout set eqcctpro
62
+ mkdir my_work_directory
63
+ cd my_work_directory
64
+ git clone --depth 1 --filter=tree:0 https://github.com/ut-beg-texnet/eqcct.git --sparse
65
+ cd eqcct
66
+ git sparse-checkout set eqcctpro
67
67
  ```
68
68
 
69
69
  ### **Step 2: Create and Activate the Conda Environment**
70
70
  A **pre-configured conda environment** is included in the repository to handle all dependencies.
71
71
 
72
72
  ```sh
73
- [skevofilaxc] conda env create -f environment.yml
74
- [skevofilaxc] conda activate eqcctpro
73
+ conda env create -f environment.yml
74
+ conda activate eqcctpro
75
75
  ```
76
76
 
77
- ### **Step 3: Install EQCCTPro**
78
- After activating the environment, install the EQCCTPro package:
79
- ```sh
80
- [skevofilaxc] pip install eqcctpro
81
- ```
82
-
83
- This will install any remaining dependencies needed for **EQCCTPro**.
84
-
85
- ---
86
-
87
77
  ## **More Information**
88
- For additional details and package updates, visit the **EQCCTPro PyPI page**:
78
+ For additional package updates, continue to check either this repository or visit the **EQCCTPro PyPI page**:
89
79
  🔗 [EQCCTPro on PyPI](https://pypi.org/project/eqcctpro/)
90
80
 
91
81
  ---
@@ -98,7 +88,7 @@ To understand how **EQCCTPro** works, it is **highly recommended** to use provid
98
88
  ### **Step 1: Unzip the Sample Wavefrom Data**
99
89
  After downloading the `.zip` file through the GitHub methods above, run:
100
90
  ```sh
101
- [skevofilaxc] unzip 230_stations_1_min_dt.zip
91
+ unzip 230_stations_1_min_dt.zip
102
92
  ```
103
93
  ### **Step 2: Check and Understand the Directory Structure**
104
94
  The extracted data will contain a timechunk subdirectories, comprised of multiple station directories:
@@ -352,7 +342,7 @@ the trial data will be available and can be used to identify the optimal input p
352
342
 
353
343
  The following input parameters need to be configurated for **EvaluateSystem** to evaluate your system based on your desired utilization of EQCCTPro:
354
344
 
355
- - **`mode (str)`**
345
+ - **`eval_mode (str)`**
356
346
  - Can be either `cpu` or `gpu`
357
347
  - Tells `EvaluateSystem` which computing approach the trials should it iterate with
358
348
  - **`intra_threads (int)`: default = 1**
@@ -401,7 +391,7 @@ The following input parameters need to be configurated for **EvaluateSystem** to
401
391
  - **`station_list_step_size (int)`: default = 1**
402
392
  - You can set a step size for the station list that is generated
403
393
  - For example if the stepsize is set to 10 and you start with 50 stations with a max of 100, then your list would be: [50, 60, 70, 80, 80, 100]
404
- - Using 1 will use the default step size of 1-10, then step size of 5 up to station2use
394
+ - Using 1 will use the default step size of 1-10, then step size of 5 up to stations2use
405
395
  - **`min_conc_stations (int)`: default = 1**
406
396
  - Is the minimum amount of concurrent stations predictions you want each trial iteration to start with
407
397
  - By default, if `min_conc_predictions` and `conc_predictions_step_size` are set to 1, a custom step size iteration will be applied to test the 50 sample waveforms. The sequence follows: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, n+5, 50].
@@ -433,8 +423,9 @@ The following input parameters need to be configurated for **EvaluateSystem** to
433
423
  - A temporary directory to store all temp files produced by EQCCTPro
434
424
  - Used to help ease system cleanup and to not write to system's default temporary directory
435
425
  - **`set_vram_mb (float)`**
436
- - Value of the maximum amount of VRAM EQCCTPro can use
437
- - Must be a real value that is based on your hardware's physical memory space, if it exceeds the space the code will break due to OutOfMemoryError
426
+ - Maximum amount of VRAM each Raylet can use (float).
427
+ - Must be a real value that is based on your GPU's physical VRAM space, if it exceeds the space the code will break due to OutOfMemoryError
428
+ - Good rule of thumb for calculating `set_vram_mb` = (GPU VRAM * .90 (to be safe)) / number_of_concurrent_station_predictions * number_of_concurrent_timechunk_predictions
438
429
  - **`selected_gpus (list)`: default = None**
439
430
  - List of GPU IDs on your computer you want to use if `mode = 'gpu'`
440
431
  - Non-existing GPU IDs will cause the code to exit
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: eqcctpro
3
- Version: 0.6.1
3
+ Version: 0.6.3
4
4
  Summary: EQCCTPro: A powerful seismic event detection toolkit
5
5
  Author-email: Constantinos Skevofilax <constantinos.skevofilax@austin.utexas.edu>, Victor Salles <victor.salles@beg.utexas.edu>
6
6
  Project-URL: Homepage, https://pypi.org/project/eqcctpro/
@@ -13,7 +13,6 @@ Requires-Dist: numpy==1.26.4
13
13
  Requires-Dist: pandas==2.2.3
14
14
  Requires-Dist: matplotlib==3.10.0
15
15
  Requires-Dist: obspy==1.4.1
16
- Requires-Dist: progress==1.6
17
16
  Requires-Dist: psutil==6.1.1
18
17
  Requires-Dist: ray==2.42.1
19
18
  Requires-Dist: schedule==1.2.2
@@ -25,7 +24,7 @@ Requires-Dist: tensorboard==2.15.2
25
24
  Requires-Dist: tensorboard-data-server==0.7.2
26
25
  Requires-Dist: silence-tensorflow==1.2.3
27
26
  Requires-Dist: scipy==1.15.1
28
- Requires-Dist: protobuf==4.25.6
27
+ Requires-Dist: protobuf==4.25.8
29
28
  Requires-Dist: grpcio==1.70.0
30
29
  Requires-Dist: absl-py==2.1.0
31
30
  Requires-Dist: h5py==3.12.1
@@ -59,9 +58,9 @@ This method installs only the EQCCTPro package **without** the sample waveform d
59
58
  EQCCTPro **requires Python 3.10.14 or higher as well as minimum Tensorflow packages**. If you have a clean working environment, you can simply run `pip install eqcctpro`. However, if you have a nonclean environment, its highly recommended to create a new conda environment so that you can install the necessary packages safely with no issues. You can create a new conda environment with the correct Python version by using the following commands:
60
59
 
61
60
  ```sh
62
- [skevofilaxc] conda create --name yourenvironemntname python=3.10.14 -y
63
- [skevofilaxc] conda activate yourenvironemntname
64
- [skevofilaxc] python3 --version
61
+ conda create --name yourenvironemntname python=3.10.14 -y
62
+ conda activate yourenvironemntname
63
+ python3 --version
65
64
  ```
66
65
  Expected output:
67
66
  ```
@@ -70,19 +69,19 @@ Python 3.10.14
70
69
 
71
70
  After activating your new conda environment, run the following command:
72
71
  ```sh
73
- [skevofilaxc] pip install eqcctpro
72
+ pip install eqcctpro
74
73
  ```
75
- You will have access to EQCCTPro and its functionality. However you will not have immediate access to the provided sample waveform data to use for testing. Youcan pull the waveform data either by downloading the .zip file from the repository or by following step 3.
74
+ You will have access to EQCCTPro and its functionality. However you will not have immediate access to the provided sample waveform data to use for testing. You can pull the waveform data either by downloading the .zip file from the repository or by following step 3.
76
75
 
77
76
  ### **Step 3 (Optional): Pull the EQCCTPro Folder**
78
77
  Although not required, **it is highly recommended** to pull the `EQCCTPro` folder to gain access to sample waveform data for testing.
79
78
 
80
79
  ```sh
81
- [skevofilaxc] mkdir my_work_directory
82
- [skevofilaxc] cd my_work_directory
83
- [skevofilaxc] git clone --depth 1 --filter=tree:0 https://github.com/ut-beg-texnet/eqcct.git --sparse
84
- [skevofilaxc] cd eqcct
85
- [skevofilaxc] git sparse-checkout set eqcctpro
80
+ mkdir my_work_directory
81
+ cd my_work_directory
82
+ git clone --depth 1 --filter=tree:0 https://github.com/ut-beg-texnet/eqcct.git --sparse
83
+ cd eqcct
84
+ git sparse-checkout set eqcctpro
86
85
  ```
87
86
 
88
87
  ---
@@ -92,33 +91,23 @@ This method sets up EQCCTPro **with a pre-created conda environment and sample w
92
91
 
93
92
  ### **Step 1: Clone the EQCCTPro Repository**
94
93
  ```sh
95
- [skevofilaxc] mkdir my_work_directory
96
- [skevofilaxc] cd my_work_directory
97
- [skevofilaxc] git clone --depth 1 --filter=tree:0 https://github.com/ut-beg-texnet/eqcct.git --sparse
98
- [skevofilaxc] cd eqcct
99
- [skevofilaxc] git sparse-checkout set eqcctpro
94
+ mkdir my_work_directory
95
+ cd my_work_directory
96
+ git clone --depth 1 --filter=tree:0 https://github.com/ut-beg-texnet/eqcct.git --sparse
97
+ cd eqcct
98
+ git sparse-checkout set eqcctpro
100
99
  ```
101
100
 
102
101
  ### **Step 2: Create and Activate the Conda Environment**
103
102
  A **pre-configured conda environment** is included in the repository to handle all dependencies.
104
103
 
105
104
  ```sh
106
- [skevofilaxc] conda env create -f environment.yml
107
- [skevofilaxc] conda activate eqcctpro
105
+ conda env create -f environment.yml
106
+ conda activate eqcctpro
108
107
  ```
109
108
 
110
- ### **Step 3: Install EQCCTPro**
111
- After activating the environment, install the EQCCTPro package:
112
- ```sh
113
- [skevofilaxc] pip install eqcctpro
114
- ```
115
-
116
- This will install any remaining dependencies needed for **EQCCTPro**.
117
-
118
- ---
119
-
120
109
  ## **More Information**
121
- For additional details and package updates, visit the **EQCCTPro PyPI page**:
110
+ For additional package updates, continue to check either this repository or visit the **EQCCTPro PyPI page**:
122
111
  🔗 [EQCCTPro on PyPI](https://pypi.org/project/eqcctpro/)
123
112
 
124
113
  ---
@@ -131,7 +120,7 @@ To understand how **EQCCTPro** works, it is **highly recommended** to use provid
131
120
  ### **Step 1: Unzip the Sample Wavefrom Data**
132
121
  After downloading the `.zip` file through the GitHub methods above, run:
133
122
  ```sh
134
- [skevofilaxc] unzip 230_stations_1_min_dt.zip
123
+ unzip 230_stations_1_min_dt.zip
135
124
  ```
136
125
  ### **Step 2: Check and Understand the Directory Structure**
137
126
  The extracted data will contain a timechunk subdirectories, comprised of multiple station directories:
@@ -385,7 +374,7 @@ the trial data will be available and can be used to identify the optimal input p
385
374
 
386
375
  The following input parameters need to be configurated for **EvaluateSystem** to evaluate your system based on your desired utilization of EQCCTPro:
387
376
 
388
- - **`mode (str)`**
377
+ - **`eval_mode (str)`**
389
378
  - Can be either `cpu` or `gpu`
390
379
  - Tells `EvaluateSystem` which computing approach the trials should it iterate with
391
380
  - **`intra_threads (int)`: default = 1**
@@ -434,7 +423,7 @@ The following input parameters need to be configurated for **EvaluateSystem** to
434
423
  - **`station_list_step_size (int)`: default = 1**
435
424
  - You can set a step size for the station list that is generated
436
425
  - For example if the stepsize is set to 10 and you start with 50 stations with a max of 100, then your list would be: [50, 60, 70, 80, 80, 100]
437
- - Using 1 will use the default step size of 1-10, then step size of 5 up to station2use
426
+ - Using 1 will use the default step size of 1-10, then step size of 5 up to stations2use
438
427
  - **`min_conc_stations (int)`: default = 1**
439
428
  - Is the minimum amount of concurrent stations predictions you want each trial iteration to start with
440
429
  - By default, if `min_conc_predictions` and `conc_predictions_step_size` are set to 1, a custom step size iteration will be applied to test the 50 sample waveforms. The sequence follows: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, n+5, 50].
@@ -466,8 +455,9 @@ The following input parameters need to be configurated for **EvaluateSystem** to
466
455
  - A temporary directory to store all temp files produced by EQCCTPro
467
456
  - Used to help ease system cleanup and to not write to system's default temporary directory
468
457
  - **`set_vram_mb (float)`**
469
- - Value of the maximum amount of VRAM EQCCTPro can use
470
- - Must be a real value that is based on your hardware's physical memory space, if it exceeds the space the code will break due to OutOfMemoryError
458
+ - Maximum amount of VRAM each Raylet can use (float).
459
+ - Must be a real value that is based on your GPU's physical VRAM space, if it exceeds the space the code will break due to OutOfMemoryError
460
+ - Good rule of thumb for calculating `set_vram_mb` = (GPU VRAM * .90 (to be safe)) / number_of_concurrent_station_predictions * number_of_concurrent_timechunk_predictions
471
461
  - **`selected_gpus (list)`: default = None**
472
462
  - List of GPU IDs on your computer you want to use if `mode = 'gpu'`
473
463
  - Non-existing GPU IDs will cause the code to exit
@@ -2,7 +2,6 @@ numpy==1.26.4
2
2
  pandas==2.2.3
3
3
  matplotlib==3.10.0
4
4
  obspy==1.4.1
5
- progress==1.6
6
5
  psutil==6.1.1
7
6
  ray==2.42.1
8
7
  schedule==1.2.2
@@ -14,7 +13,7 @@ tensorboard==2.15.2
14
13
  tensorboard-data-server==0.7.2
15
14
  silence-tensorflow==1.2.3
16
15
  scipy==1.15.1
17
- protobuf==4.25.6
16
+ protobuf==4.25.8
18
17
  grpcio==1.70.0
19
18
  absl-py==2.1.0
20
19
  h5py==3.12.1
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "eqcctpro"
7
- version = "0.6.1"
7
+ version = "0.6.3"
8
8
  description = "EQCCTPro: A powerful seismic event detection toolkit"
9
9
  readme = "README.md"
10
10
  requires-python = ">=3.10.14"
@@ -18,7 +18,6 @@ dependencies = [
18
18
  "pandas==2.2.3",
19
19
  "matplotlib==3.10.0",
20
20
  "obspy==1.4.1",
21
- "progress==1.6",
22
21
  "psutil==6.1.1",
23
22
  "ray==2.42.1",
24
23
  "schedule==1.2.2",
@@ -30,7 +29,7 @@ dependencies = [
30
29
  "tensorboard-data-server==0.7.2",
31
30
  "silence-tensorflow==1.2.3",
32
31
  "scipy==1.15.1",
33
- "protobuf==4.25.6",
32
+ "protobuf==4.25.8",
34
33
  "grpcio==1.70.0",
35
34
  "absl-py==2.1.0",
36
35
  "h5py==3.12.1",
File without changes
File without changes