eqcctpro 0.4.9__tar.gz → 0.5.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of eqcctpro might be problematic. Click here for more details.
- {eqcctpro-0.4.9 → eqcctpro-0.5.0}/PKG-INFO +48 -16
- {eqcctpro-0.4.9 → eqcctpro-0.5.0}/README.md +47 -15
- {eqcctpro-0.4.9 → eqcctpro-0.5.0}/eqcctpro.egg-info/PKG-INFO +48 -16
- {eqcctpro-0.4.9 → eqcctpro-0.5.0}/eqcctpro.egg-info/SOURCES.txt +0 -1
- {eqcctpro-0.4.9 → eqcctpro-0.5.0}/pyproject.toml +1 -1
- eqcctpro-0.4.9/setup.py +0 -60
- {eqcctpro-0.4.9 → eqcctpro-0.5.0}/eqcctpro/__init__.py +0 -0
- {eqcctpro-0.4.9 → eqcctpro-0.5.0}/eqcctpro.egg-info/dependency_links.txt +0 -0
- {eqcctpro-0.4.9 → eqcctpro-0.5.0}/eqcctpro.egg-info/requires.txt +0 -0
- {eqcctpro-0.4.9 → eqcctpro-0.5.0}/eqcctpro.egg-info/top_level.txt +0 -0
- {eqcctpro-0.4.9 → eqcctpro-0.5.0}/setup.cfg +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.2
|
|
2
2
|
Name: eqcctpro
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.5.0
|
|
4
4
|
Summary: EQCCTPro: A powerful seismic event detection toolkit
|
|
5
5
|
Author-email: Constantinos Skevofilax <constantinos.skevofilax@austin.utexas.edu>, Victor Salles <victor.salles@beg.utexas.edu>
|
|
6
6
|
Project-URL: Homepage, https://pypi.org/project/eqcctpro/
|
|
@@ -284,24 +284,50 @@ To evaluate your system’s runtime performance capabilites for both your CPU(s)
|
|
|
284
284
|
from eqcctpro import EvaluateSystem
|
|
285
285
|
|
|
286
286
|
eval_gpu = EvaluateSystem(
|
|
287
|
-
|
|
288
|
-
|
|
289
|
-
|
|
290
|
-
|
|
291
|
-
|
|
292
|
-
|
|
293
|
-
|
|
294
|
-
|
|
295
|
-
|
|
296
|
-
|
|
297
|
-
|
|
298
|
-
|
|
299
|
-
|
|
300
|
-
|
|
301
|
-
|
|
287
|
+
mode='gpu',
|
|
288
|
+
intra_threads=1,
|
|
289
|
+
inter_threads=1,
|
|
290
|
+
input_dir='/path/to/mseed',
|
|
291
|
+
output_dir='/path/to/outputs',
|
|
292
|
+
log_filepath='/path/to/outputs/eqcctpro.log',
|
|
293
|
+
csv_dir='/path/to/csv',
|
|
294
|
+
P_threshold=0.001,
|
|
295
|
+
S_threshold=0.02,
|
|
296
|
+
p_model_filepath='/path/to/model_p.h5',
|
|
297
|
+
s_model_filepath='/path/to/model_s.h5',
|
|
298
|
+
stations2use=2,
|
|
299
|
+
cpu_id_list=[0,1],
|
|
300
|
+
set_vram_mb=24750,
|
|
301
|
+
selected_gpus=[0]
|
|
302
302
|
)
|
|
303
303
|
eval_gpu.evaluate()
|
|
304
304
|
```
|
|
305
|
+
|
|
306
|
+
```python
|
|
307
|
+
from eqcctpro import EvaluateSystem
|
|
308
|
+
|
|
309
|
+
eval_cpu = EvaluateSystem(
|
|
310
|
+
mode='cpu',
|
|
311
|
+
intra_threads=1,
|
|
312
|
+
inter_threads=1,
|
|
313
|
+
input_dir='/path/to/mseed',
|
|
314
|
+
output_dir='/path/to/outputs',
|
|
315
|
+
log_filepath='/path/to/outputs/eqcctpro.log',
|
|
316
|
+
csv_dir='/path/to/csv',
|
|
317
|
+
P_threshold=0.001,
|
|
318
|
+
S_threshold=0.02,
|
|
319
|
+
p_model_filepath='/path/to/model_p.h5',
|
|
320
|
+
s_model_filepath='/path/to/model_s.h5',
|
|
321
|
+
stations2use=12,
|
|
322
|
+
cpu_id_list=range(87,102),
|
|
323
|
+
starting_amount_of_stations=2,
|
|
324
|
+
station_list_step_size=1,
|
|
325
|
+
min_cpu_amount=15,
|
|
326
|
+
min_conc_predictions=2,
|
|
327
|
+
conc_predictions_step_size=1)
|
|
328
|
+
eval_cpu.evaluate()
|
|
329
|
+
```
|
|
330
|
+
|
|
305
331
|
**EvaluateSystem** will iterate through different combinations of CPU(s), Concurrent Predictions, and Workloads (stations), as well as GPU(s), and the amount of VRAM (MB) each Concurrent Prediction can use.
|
|
306
332
|
**EvaluateSystem** will take time, depending on the number of CPU/GPUs, the amount of VRAM available, and the total workload that needs to be tested. However, after doing the testing once for most if not all usecases,
|
|
307
333
|
the trial data will be available and can be used to identify the optimal input parallelization configurations for **EQCCTMSeedRunner** to use to get the maximum amount of processing out of your system in the shortest amonut of time.
|
|
@@ -356,6 +382,12 @@ The following input parameters need to be configurated for **EvaluateSystem** to
|
|
|
356
382
|
- Is the minimum amount of CPUs you want to start your trials with
|
|
357
383
|
- By default, trials will start iterating with 1 CPU up to the maximum allocated
|
|
358
384
|
- Can now set a value as the starting point, such as 15 CPUs up to the maximum of for instance 25
|
|
385
|
+
- **`min_conc_predictions (int)`: default = 1**
|
|
386
|
+
- Is the minimum amount of concurrent predictions you want each trial iteration to start with
|
|
387
|
+
- By default, if `min_conc_predictions` and `conc_predictions_step_size` are set to 1, a custom step size iteration will be applied to test the 50 sample waveforms. The sequence follows: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, n+5, 50].
|
|
388
|
+
- **`conc_predictions_step_size (int)`: default = 1**
|
|
389
|
+
- Is the concurrent predictions step size you want each trial iteration to iterate with with
|
|
390
|
+
- By default, if `min_conc_predictions` and `conc_predictions_step_size` are set to 1, a custom step size iteration will be applied to test the 50 sample waveforms. The sequence follows: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, n+5, 50]
|
|
359
391
|
- **`set_vram_mb (float)`**
|
|
360
392
|
- Value of the maximum amount of VRAM EQCCTPro can use
|
|
361
393
|
- Must be a real value that is based on your hardware's physical memory space, if it exceeds the space the code will break due to OutOfMemoryError
|
|
@@ -251,24 +251,50 @@ To evaluate your system’s runtime performance capabilites for both your CPU(s)
|
|
|
251
251
|
from eqcctpro import EvaluateSystem
|
|
252
252
|
|
|
253
253
|
eval_gpu = EvaluateSystem(
|
|
254
|
-
|
|
255
|
-
|
|
256
|
-
|
|
257
|
-
|
|
258
|
-
|
|
259
|
-
|
|
260
|
-
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
|
|
264
|
-
|
|
265
|
-
|
|
266
|
-
|
|
267
|
-
|
|
268
|
-
|
|
254
|
+
mode='gpu',
|
|
255
|
+
intra_threads=1,
|
|
256
|
+
inter_threads=1,
|
|
257
|
+
input_dir='/path/to/mseed',
|
|
258
|
+
output_dir='/path/to/outputs',
|
|
259
|
+
log_filepath='/path/to/outputs/eqcctpro.log',
|
|
260
|
+
csv_dir='/path/to/csv',
|
|
261
|
+
P_threshold=0.001,
|
|
262
|
+
S_threshold=0.02,
|
|
263
|
+
p_model_filepath='/path/to/model_p.h5',
|
|
264
|
+
s_model_filepath='/path/to/model_s.h5',
|
|
265
|
+
stations2use=2,
|
|
266
|
+
cpu_id_list=[0,1],
|
|
267
|
+
set_vram_mb=24750,
|
|
268
|
+
selected_gpus=[0]
|
|
269
269
|
)
|
|
270
270
|
eval_gpu.evaluate()
|
|
271
271
|
```
|
|
272
|
+
|
|
273
|
+
```python
|
|
274
|
+
from eqcctpro import EvaluateSystem
|
|
275
|
+
|
|
276
|
+
eval_cpu = EvaluateSystem(
|
|
277
|
+
mode='cpu',
|
|
278
|
+
intra_threads=1,
|
|
279
|
+
inter_threads=1,
|
|
280
|
+
input_dir='/path/to/mseed',
|
|
281
|
+
output_dir='/path/to/outputs',
|
|
282
|
+
log_filepath='/path/to/outputs/eqcctpro.log',
|
|
283
|
+
csv_dir='/path/to/csv',
|
|
284
|
+
P_threshold=0.001,
|
|
285
|
+
S_threshold=0.02,
|
|
286
|
+
p_model_filepath='/path/to/model_p.h5',
|
|
287
|
+
s_model_filepath='/path/to/model_s.h5',
|
|
288
|
+
stations2use=12,
|
|
289
|
+
cpu_id_list=range(87,102),
|
|
290
|
+
starting_amount_of_stations=2,
|
|
291
|
+
station_list_step_size=1,
|
|
292
|
+
min_cpu_amount=15,
|
|
293
|
+
min_conc_predictions=2,
|
|
294
|
+
conc_predictions_step_size=1)
|
|
295
|
+
eval_cpu.evaluate()
|
|
296
|
+
```
|
|
297
|
+
|
|
272
298
|
**EvaluateSystem** will iterate through different combinations of CPU(s), Concurrent Predictions, and Workloads (stations), as well as GPU(s), and the amount of VRAM (MB) each Concurrent Prediction can use.
|
|
273
299
|
**EvaluateSystem** will take time, depending on the number of CPU/GPUs, the amount of VRAM available, and the total workload that needs to be tested. However, after doing the testing once for most if not all usecases,
|
|
274
300
|
the trial data will be available and can be used to identify the optimal input parallelization configurations for **EQCCTMSeedRunner** to use to get the maximum amount of processing out of your system in the shortest amonut of time.
|
|
@@ -323,6 +349,12 @@ The following input parameters need to be configurated for **EvaluateSystem** to
|
|
|
323
349
|
- Is the minimum amount of CPUs you want to start your trials with
|
|
324
350
|
- By default, trials will start iterating with 1 CPU up to the maximum allocated
|
|
325
351
|
- Can now set a value as the starting point, such as 15 CPUs up to the maximum of for instance 25
|
|
352
|
+
- **`min_conc_predictions (int)`: default = 1**
|
|
353
|
+
- Is the minimum amount of concurrent predictions you want each trial iteration to start with
|
|
354
|
+
- By default, if `min_conc_predictions` and `conc_predictions_step_size` are set to 1, a custom step size iteration will be applied to test the 50 sample waveforms. The sequence follows: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, n+5, 50].
|
|
355
|
+
- **`conc_predictions_step_size (int)`: default = 1**
|
|
356
|
+
- Is the concurrent predictions step size you want each trial iteration to iterate with with
|
|
357
|
+
- By default, if `min_conc_predictions` and `conc_predictions_step_size` are set to 1, a custom step size iteration will be applied to test the 50 sample waveforms. The sequence follows: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, n+5, 50]
|
|
326
358
|
- **`set_vram_mb (float)`**
|
|
327
359
|
- Value of the maximum amount of VRAM EQCCTPro can use
|
|
328
360
|
- Must be a real value that is based on your hardware's physical memory space, if it exceeds the space the code will break due to OutOfMemoryError
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.2
|
|
2
2
|
Name: eqcctpro
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.5.0
|
|
4
4
|
Summary: EQCCTPro: A powerful seismic event detection toolkit
|
|
5
5
|
Author-email: Constantinos Skevofilax <constantinos.skevofilax@austin.utexas.edu>, Victor Salles <victor.salles@beg.utexas.edu>
|
|
6
6
|
Project-URL: Homepage, https://pypi.org/project/eqcctpro/
|
|
@@ -284,24 +284,50 @@ To evaluate your system’s runtime performance capabilites for both your CPU(s)
|
|
|
284
284
|
from eqcctpro import EvaluateSystem
|
|
285
285
|
|
|
286
286
|
eval_gpu = EvaluateSystem(
|
|
287
|
-
|
|
288
|
-
|
|
289
|
-
|
|
290
|
-
|
|
291
|
-
|
|
292
|
-
|
|
293
|
-
|
|
294
|
-
|
|
295
|
-
|
|
296
|
-
|
|
297
|
-
|
|
298
|
-
|
|
299
|
-
|
|
300
|
-
|
|
301
|
-
|
|
287
|
+
mode='gpu',
|
|
288
|
+
intra_threads=1,
|
|
289
|
+
inter_threads=1,
|
|
290
|
+
input_dir='/path/to/mseed',
|
|
291
|
+
output_dir='/path/to/outputs',
|
|
292
|
+
log_filepath='/path/to/outputs/eqcctpro.log',
|
|
293
|
+
csv_dir='/path/to/csv',
|
|
294
|
+
P_threshold=0.001,
|
|
295
|
+
S_threshold=0.02,
|
|
296
|
+
p_model_filepath='/path/to/model_p.h5',
|
|
297
|
+
s_model_filepath='/path/to/model_s.h5',
|
|
298
|
+
stations2use=2,
|
|
299
|
+
cpu_id_list=[0,1],
|
|
300
|
+
set_vram_mb=24750,
|
|
301
|
+
selected_gpus=[0]
|
|
302
302
|
)
|
|
303
303
|
eval_gpu.evaluate()
|
|
304
304
|
```
|
|
305
|
+
|
|
306
|
+
```python
|
|
307
|
+
from eqcctpro import EvaluateSystem
|
|
308
|
+
|
|
309
|
+
eval_cpu = EvaluateSystem(
|
|
310
|
+
mode='cpu',
|
|
311
|
+
intra_threads=1,
|
|
312
|
+
inter_threads=1,
|
|
313
|
+
input_dir='/path/to/mseed',
|
|
314
|
+
output_dir='/path/to/outputs',
|
|
315
|
+
log_filepath='/path/to/outputs/eqcctpro.log',
|
|
316
|
+
csv_dir='/path/to/csv',
|
|
317
|
+
P_threshold=0.001,
|
|
318
|
+
S_threshold=0.02,
|
|
319
|
+
p_model_filepath='/path/to/model_p.h5',
|
|
320
|
+
s_model_filepath='/path/to/model_s.h5',
|
|
321
|
+
stations2use=12,
|
|
322
|
+
cpu_id_list=range(87,102),
|
|
323
|
+
starting_amount_of_stations=2,
|
|
324
|
+
station_list_step_size=1,
|
|
325
|
+
min_cpu_amount=15,
|
|
326
|
+
min_conc_predictions=2,
|
|
327
|
+
conc_predictions_step_size=1)
|
|
328
|
+
eval_cpu.evaluate()
|
|
329
|
+
```
|
|
330
|
+
|
|
305
331
|
**EvaluateSystem** will iterate through different combinations of CPU(s), Concurrent Predictions, and Workloads (stations), as well as GPU(s), and the amount of VRAM (MB) each Concurrent Prediction can use.
|
|
306
332
|
**EvaluateSystem** will take time, depending on the number of CPU/GPUs, the amount of VRAM available, and the total workload that needs to be tested. However, after doing the testing once for most if not all usecases,
|
|
307
333
|
the trial data will be available and can be used to identify the optimal input parallelization configurations for **EQCCTMSeedRunner** to use to get the maximum amount of processing out of your system in the shortest amonut of time.
|
|
@@ -356,6 +382,12 @@ The following input parameters need to be configurated for **EvaluateSystem** to
|
|
|
356
382
|
- Is the minimum amount of CPUs you want to start your trials with
|
|
357
383
|
- By default, trials will start iterating with 1 CPU up to the maximum allocated
|
|
358
384
|
- Can now set a value as the starting point, such as 15 CPUs up to the maximum of for instance 25
|
|
385
|
+
- **`min_conc_predictions (int)`: default = 1**
|
|
386
|
+
- Is the minimum amount of concurrent predictions you want each trial iteration to start with
|
|
387
|
+
- By default, if `min_conc_predictions` and `conc_predictions_step_size` are set to 1, a custom step size iteration will be applied to test the 50 sample waveforms. The sequence follows: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, n+5, 50].
|
|
388
|
+
- **`conc_predictions_step_size (int)`: default = 1**
|
|
389
|
+
- Is the concurrent predictions step size you want each trial iteration to iterate with with
|
|
390
|
+
- By default, if `min_conc_predictions` and `conc_predictions_step_size` are set to 1, a custom step size iteration will be applied to test the 50 sample waveforms. The sequence follows: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, n+5, 50]
|
|
359
391
|
- **`set_vram_mb (float)`**
|
|
360
392
|
- Value of the maximum amount of VRAM EQCCTPro can use
|
|
361
393
|
- Must be a real value that is based on your hardware's physical memory space, if it exceeds the space the code will break due to OutOfMemoryError
|
eqcctpro-0.4.9/setup.py
DELETED
|
@@ -1,60 +0,0 @@
|
|
|
1
|
-
from setuptools import setup, find_packages
|
|
2
|
-
import os
|
|
3
|
-
import sys
|
|
4
|
-
|
|
5
|
-
# Ensure the user has the latest Python version
|
|
6
|
-
REQUIRED_PYTHON = (3, 10, 14) # Change this to the minimum version you require
|
|
7
|
-
|
|
8
|
-
if sys.version_info < REQUIRED_PYTHON:
|
|
9
|
-
sys.stderr.write(f"""
|
|
10
|
-
==========================
|
|
11
|
-
Unsupported Python version
|
|
12
|
-
==========================
|
|
13
|
-
This package requires Python {REQUIRED_PYTHON[0]}.{REQUIRED_PYTHON[1]}.{REQUIRED_PYTHON[2]} or higher.
|
|
14
|
-
You are using Python {sys.version_info.major}.{sys.version_info.minor}.
|
|
15
|
-
Please upgrade Python and try again.
|
|
16
|
-
|
|
17
|
-
Visit https://www.python.org/downloads/ to install the latest version.
|
|
18
|
-
""")
|
|
19
|
-
sys.exit(1)
|
|
20
|
-
|
|
21
|
-
# Ensure TensorFlow and CUDA are initialized before running
|
|
22
|
-
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
|
23
|
-
os.environ["TF_ENABLE_ONEDNN_OPTS"] = "1"
|
|
24
|
-
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
25
|
-
os.environ["NVIDIA_LOG_LEVEL"] = "ERROR"
|
|
26
|
-
os.environ["CUDA_MODULE_LOADING"] = "LAZY"
|
|
27
|
-
|
|
28
|
-
with open("README.md", "r") as f:
|
|
29
|
-
description = f.read()
|
|
30
|
-
|
|
31
|
-
setup(
|
|
32
|
-
name="eqcctpro",
|
|
33
|
-
version="0.4.4",
|
|
34
|
-
packages=find_packages(),
|
|
35
|
-
install_requires=[
|
|
36
|
-
"numpy==1.26.4",
|
|
37
|
-
"pandas==2.2.3",
|
|
38
|
-
"matplotlib==3.10.0",
|
|
39
|
-
"obspy==1.4.1",
|
|
40
|
-
"progress==1.6",
|
|
41
|
-
"psutil==6.1.1",
|
|
42
|
-
"ray==2.42.1",
|
|
43
|
-
"schedule==1.2.2",
|
|
44
|
-
"sdnotify==0.3.2",
|
|
45
|
-
"tensorflow>=2.15,<2.19", # Updated TensorFlow constraint
|
|
46
|
-
"tensorflow-estimator>=2.15,<2.19", # Updated TensorFlow Estimator constraint
|
|
47
|
-
"tensorflow-io-gcs-filesystem==0.37.1",
|
|
48
|
-
"tensorboard==2.15.2",
|
|
49
|
-
"tensorboard-data-server==0.7.2",
|
|
50
|
-
"silence-tensorflow==1.2.3",
|
|
51
|
-
"scipy==1.15.1",
|
|
52
|
-
"protobuf==4.25.6",
|
|
53
|
-
"grpcio==1.70.0",
|
|
54
|
-
"absl-py==2.1.0",
|
|
55
|
-
"h5py==3.12.1",
|
|
56
|
-
"pynvml==12.0.0",
|
|
57
|
-
],
|
|
58
|
-
long_description=description,
|
|
59
|
-
long_description_content_type="text/markdown"
|
|
60
|
-
)
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|