eqcctpro 0.4.9__tar.gz → 0.5.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of eqcctpro might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: eqcctpro
3
- Version: 0.4.9
3
+ Version: 0.5.0
4
4
  Summary: EQCCTPro: A powerful seismic event detection toolkit
5
5
  Author-email: Constantinos Skevofilax <constantinos.skevofilax@austin.utexas.edu>, Victor Salles <victor.salles@beg.utexas.edu>
6
6
  Project-URL: Homepage, https://pypi.org/project/eqcctpro/
@@ -284,24 +284,50 @@ To evaluate your system’s runtime performance capabilites for both your CPU(s)
284
284
  from eqcctpro import EvaluateSystem
285
285
 
286
286
  eval_gpu = EvaluateSystem(
287
- mode='gpu',
288
- intra_threads=1,
289
- inter_threads=1,
290
- input_dir='/path/to/mseed',
291
- output_dir='/path/to/outputs',
292
- log_filepath='/path/to/outputs/eqcctpro.log',
293
- csv_dir='/path/to/csv',
294
- P_threshold=0.001,
295
- S_threshold=0.02,
296
- p_model_filepath='/path/to/model_p.h5',
297
- s_model_filepath='/path/to/model_s.h5',
298
- stations2use=2,
299
- cpu_id_list=[0,1],
300
- set_vram_mb=24750,
301
- selected_gpus=[0]
287
+ mode='gpu',
288
+ intra_threads=1,
289
+ inter_threads=1,
290
+ input_dir='/path/to/mseed',
291
+ output_dir='/path/to/outputs',
292
+ log_filepath='/path/to/outputs/eqcctpro.log',
293
+ csv_dir='/path/to/csv',
294
+ P_threshold=0.001,
295
+ S_threshold=0.02,
296
+ p_model_filepath='/path/to/model_p.h5',
297
+ s_model_filepath='/path/to/model_s.h5',
298
+ stations2use=2,
299
+ cpu_id_list=[0,1],
300
+ set_vram_mb=24750,
301
+ selected_gpus=[0]
302
302
  )
303
303
  eval_gpu.evaluate()
304
304
  ```
305
+
306
+ ```python
307
+ from eqcctpro import EvaluateSystem
308
+
309
+ eval_cpu = EvaluateSystem(
310
+ mode='cpu',
311
+ intra_threads=1,
312
+ inter_threads=1,
313
+ input_dir='/path/to/mseed',
314
+ output_dir='/path/to/outputs',
315
+ log_filepath='/path/to/outputs/eqcctpro.log',
316
+ csv_dir='/path/to/csv',
317
+ P_threshold=0.001,
318
+ S_threshold=0.02,
319
+ p_model_filepath='/path/to/model_p.h5',
320
+ s_model_filepath='/path/to/model_s.h5',
321
+ stations2use=12,
322
+ cpu_id_list=range(87,102),
323
+ starting_amount_of_stations=2,
324
+ station_list_step_size=1,
325
+ min_cpu_amount=15,
326
+ min_conc_predictions=2,
327
+ conc_predictions_step_size=1)
328
+ eval_cpu.evaluate()
329
+ ```
330
+
305
331
  **EvaluateSystem** will iterate through different combinations of CPU(s), Concurrent Predictions, and Workloads (stations), as well as GPU(s), and the amount of VRAM (MB) each Concurrent Prediction can use.
306
332
  **EvaluateSystem** will take time, depending on the number of CPU/GPUs, the amount of VRAM available, and the total workload that needs to be tested. However, after doing the testing once for most if not all usecases,
307
333
  the trial data will be available and can be used to identify the optimal input parallelization configurations for **EQCCTMSeedRunner** to use to get the maximum amount of processing out of your system in the shortest amonut of time.
@@ -356,6 +382,12 @@ The following input parameters need to be configurated for **EvaluateSystem** to
356
382
  - Is the minimum amount of CPUs you want to start your trials with
357
383
  - By default, trials will start iterating with 1 CPU up to the maximum allocated
358
384
  - Can now set a value as the starting point, such as 15 CPUs up to the maximum of for instance 25
385
+ - **`min_conc_predictions (int)`: default = 1**
386
+ - Is the minimum amount of concurrent predictions you want each trial iteration to start with
387
+ - By default, if `min_conc_predictions` and `conc_predictions_step_size` are set to 1, a custom step size iteration will be applied to test the 50 sample waveforms. The sequence follows: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, n+5, 50].
388
+ - **`conc_predictions_step_size (int)`: default = 1**
389
+ - Is the concurrent predictions step size you want each trial iteration to iterate with with
390
+ - By default, if `min_conc_predictions` and `conc_predictions_step_size` are set to 1, a custom step size iteration will be applied to test the 50 sample waveforms. The sequence follows: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, n+5, 50]
359
391
  - **`set_vram_mb (float)`**
360
392
  - Value of the maximum amount of VRAM EQCCTPro can use
361
393
  - Must be a real value that is based on your hardware's physical memory space, if it exceeds the space the code will break due to OutOfMemoryError
@@ -251,24 +251,50 @@ To evaluate your system’s runtime performance capabilites for both your CPU(s)
251
251
  from eqcctpro import EvaluateSystem
252
252
 
253
253
  eval_gpu = EvaluateSystem(
254
- mode='gpu',
255
- intra_threads=1,
256
- inter_threads=1,
257
- input_dir='/path/to/mseed',
258
- output_dir='/path/to/outputs',
259
- log_filepath='/path/to/outputs/eqcctpro.log',
260
- csv_dir='/path/to/csv',
261
- P_threshold=0.001,
262
- S_threshold=0.02,
263
- p_model_filepath='/path/to/model_p.h5',
264
- s_model_filepath='/path/to/model_s.h5',
265
- stations2use=2,
266
- cpu_id_list=[0,1],
267
- set_vram_mb=24750,
268
- selected_gpus=[0]
254
+ mode='gpu',
255
+ intra_threads=1,
256
+ inter_threads=1,
257
+ input_dir='/path/to/mseed',
258
+ output_dir='/path/to/outputs',
259
+ log_filepath='/path/to/outputs/eqcctpro.log',
260
+ csv_dir='/path/to/csv',
261
+ P_threshold=0.001,
262
+ S_threshold=0.02,
263
+ p_model_filepath='/path/to/model_p.h5',
264
+ s_model_filepath='/path/to/model_s.h5',
265
+ stations2use=2,
266
+ cpu_id_list=[0,1],
267
+ set_vram_mb=24750,
268
+ selected_gpus=[0]
269
269
  )
270
270
  eval_gpu.evaluate()
271
271
  ```
272
+
273
+ ```python
274
+ from eqcctpro import EvaluateSystem
275
+
276
+ eval_cpu = EvaluateSystem(
277
+ mode='cpu',
278
+ intra_threads=1,
279
+ inter_threads=1,
280
+ input_dir='/path/to/mseed',
281
+ output_dir='/path/to/outputs',
282
+ log_filepath='/path/to/outputs/eqcctpro.log',
283
+ csv_dir='/path/to/csv',
284
+ P_threshold=0.001,
285
+ S_threshold=0.02,
286
+ p_model_filepath='/path/to/model_p.h5',
287
+ s_model_filepath='/path/to/model_s.h5',
288
+ stations2use=12,
289
+ cpu_id_list=range(87,102),
290
+ starting_amount_of_stations=2,
291
+ station_list_step_size=1,
292
+ min_cpu_amount=15,
293
+ min_conc_predictions=2,
294
+ conc_predictions_step_size=1)
295
+ eval_cpu.evaluate()
296
+ ```
297
+
272
298
  **EvaluateSystem** will iterate through different combinations of CPU(s), Concurrent Predictions, and Workloads (stations), as well as GPU(s), and the amount of VRAM (MB) each Concurrent Prediction can use.
273
299
  **EvaluateSystem** will take time, depending on the number of CPU/GPUs, the amount of VRAM available, and the total workload that needs to be tested. However, after doing the testing once for most if not all usecases,
274
300
  the trial data will be available and can be used to identify the optimal input parallelization configurations for **EQCCTMSeedRunner** to use to get the maximum amount of processing out of your system in the shortest amonut of time.
@@ -323,6 +349,12 @@ The following input parameters need to be configurated for **EvaluateSystem** to
323
349
  - Is the minimum amount of CPUs you want to start your trials with
324
350
  - By default, trials will start iterating with 1 CPU up to the maximum allocated
325
351
  - Can now set a value as the starting point, such as 15 CPUs up to the maximum of for instance 25
352
+ - **`min_conc_predictions (int)`: default = 1**
353
+ - Is the minimum amount of concurrent predictions you want each trial iteration to start with
354
+ - By default, if `min_conc_predictions` and `conc_predictions_step_size` are set to 1, a custom step size iteration will be applied to test the 50 sample waveforms. The sequence follows: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, n+5, 50].
355
+ - **`conc_predictions_step_size (int)`: default = 1**
356
+ - Is the concurrent predictions step size you want each trial iteration to iterate with with
357
+ - By default, if `min_conc_predictions` and `conc_predictions_step_size` are set to 1, a custom step size iteration will be applied to test the 50 sample waveforms. The sequence follows: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, n+5, 50]
326
358
  - **`set_vram_mb (float)`**
327
359
  - Value of the maximum amount of VRAM EQCCTPro can use
328
360
  - Must be a real value that is based on your hardware's physical memory space, if it exceeds the space the code will break due to OutOfMemoryError
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: eqcctpro
3
- Version: 0.4.9
3
+ Version: 0.5.0
4
4
  Summary: EQCCTPro: A powerful seismic event detection toolkit
5
5
  Author-email: Constantinos Skevofilax <constantinos.skevofilax@austin.utexas.edu>, Victor Salles <victor.salles@beg.utexas.edu>
6
6
  Project-URL: Homepage, https://pypi.org/project/eqcctpro/
@@ -284,24 +284,50 @@ To evaluate your system’s runtime performance capabilites for both your CPU(s)
284
284
  from eqcctpro import EvaluateSystem
285
285
 
286
286
  eval_gpu = EvaluateSystem(
287
- mode='gpu',
288
- intra_threads=1,
289
- inter_threads=1,
290
- input_dir='/path/to/mseed',
291
- output_dir='/path/to/outputs',
292
- log_filepath='/path/to/outputs/eqcctpro.log',
293
- csv_dir='/path/to/csv',
294
- P_threshold=0.001,
295
- S_threshold=0.02,
296
- p_model_filepath='/path/to/model_p.h5',
297
- s_model_filepath='/path/to/model_s.h5',
298
- stations2use=2,
299
- cpu_id_list=[0,1],
300
- set_vram_mb=24750,
301
- selected_gpus=[0]
287
+ mode='gpu',
288
+ intra_threads=1,
289
+ inter_threads=1,
290
+ input_dir='/path/to/mseed',
291
+ output_dir='/path/to/outputs',
292
+ log_filepath='/path/to/outputs/eqcctpro.log',
293
+ csv_dir='/path/to/csv',
294
+ P_threshold=0.001,
295
+ S_threshold=0.02,
296
+ p_model_filepath='/path/to/model_p.h5',
297
+ s_model_filepath='/path/to/model_s.h5',
298
+ stations2use=2,
299
+ cpu_id_list=[0,1],
300
+ set_vram_mb=24750,
301
+ selected_gpus=[0]
302
302
  )
303
303
  eval_gpu.evaluate()
304
304
  ```
305
+
306
+ ```python
307
+ from eqcctpro import EvaluateSystem
308
+
309
+ eval_cpu = EvaluateSystem(
310
+ mode='cpu',
311
+ intra_threads=1,
312
+ inter_threads=1,
313
+ input_dir='/path/to/mseed',
314
+ output_dir='/path/to/outputs',
315
+ log_filepath='/path/to/outputs/eqcctpro.log',
316
+ csv_dir='/path/to/csv',
317
+ P_threshold=0.001,
318
+ S_threshold=0.02,
319
+ p_model_filepath='/path/to/model_p.h5',
320
+ s_model_filepath='/path/to/model_s.h5',
321
+ stations2use=12,
322
+ cpu_id_list=range(87,102),
323
+ starting_amount_of_stations=2,
324
+ station_list_step_size=1,
325
+ min_cpu_amount=15,
326
+ min_conc_predictions=2,
327
+ conc_predictions_step_size=1)
328
+ eval_cpu.evaluate()
329
+ ```
330
+
305
331
  **EvaluateSystem** will iterate through different combinations of CPU(s), Concurrent Predictions, and Workloads (stations), as well as GPU(s), and the amount of VRAM (MB) each Concurrent Prediction can use.
306
332
  **EvaluateSystem** will take time, depending on the number of CPU/GPUs, the amount of VRAM available, and the total workload that needs to be tested. However, after doing the testing once for most if not all usecases,
307
333
  the trial data will be available and can be used to identify the optimal input parallelization configurations for **EQCCTMSeedRunner** to use to get the maximum amount of processing out of your system in the shortest amonut of time.
@@ -356,6 +382,12 @@ The following input parameters need to be configurated for **EvaluateSystem** to
356
382
  - Is the minimum amount of CPUs you want to start your trials with
357
383
  - By default, trials will start iterating with 1 CPU up to the maximum allocated
358
384
  - Can now set a value as the starting point, such as 15 CPUs up to the maximum of for instance 25
385
+ - **`min_conc_predictions (int)`: default = 1**
386
+ - Is the minimum amount of concurrent predictions you want each trial iteration to start with
387
+ - By default, if `min_conc_predictions` and `conc_predictions_step_size` are set to 1, a custom step size iteration will be applied to test the 50 sample waveforms. The sequence follows: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, n+5, 50].
388
+ - **`conc_predictions_step_size (int)`: default = 1**
389
+ - Is the concurrent predictions step size you want each trial iteration to iterate with with
390
+ - By default, if `min_conc_predictions` and `conc_predictions_step_size` are set to 1, a custom step size iteration will be applied to test the 50 sample waveforms. The sequence follows: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, n+5, 50]
359
391
  - **`set_vram_mb (float)`**
360
392
  - Value of the maximum amount of VRAM EQCCTPro can use
361
393
  - Must be a real value that is based on your hardware's physical memory space, if it exceeds the space the code will break due to OutOfMemoryError
@@ -1,6 +1,5 @@
1
1
  README.md
2
2
  pyproject.toml
3
- setup.py
4
3
  eqcctpro/__init__.py
5
4
  eqcctpro.egg-info/PKG-INFO
6
5
  eqcctpro.egg-info/SOURCES.txt
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "eqcctpro"
7
- version = "0.4.9"
7
+ version = "0.5.0"
8
8
  description = "EQCCTPro: A powerful seismic event detection toolkit"
9
9
  readme = "README.md"
10
10
  requires-python = ">=3.10.14"
eqcctpro-0.4.9/setup.py DELETED
@@ -1,60 +0,0 @@
1
- from setuptools import setup, find_packages
2
- import os
3
- import sys
4
-
5
- # Ensure the user has the latest Python version
6
- REQUIRED_PYTHON = (3, 10, 14) # Change this to the minimum version you require
7
-
8
- if sys.version_info < REQUIRED_PYTHON:
9
- sys.stderr.write(f"""
10
- ==========================
11
- Unsupported Python version
12
- ==========================
13
- This package requires Python {REQUIRED_PYTHON[0]}.{REQUIRED_PYTHON[1]}.{REQUIRED_PYTHON[2]} or higher.
14
- You are using Python {sys.version_info.major}.{sys.version_info.minor}.
15
- Please upgrade Python and try again.
16
-
17
- Visit https://www.python.org/downloads/ to install the latest version.
18
- """)
19
- sys.exit(1)
20
-
21
- # Ensure TensorFlow and CUDA are initialized before running
22
- os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
23
- os.environ["TF_ENABLE_ONEDNN_OPTS"] = "1"
24
- os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
25
- os.environ["NVIDIA_LOG_LEVEL"] = "ERROR"
26
- os.environ["CUDA_MODULE_LOADING"] = "LAZY"
27
-
28
- with open("README.md", "r") as f:
29
- description = f.read()
30
-
31
- setup(
32
- name="eqcctpro",
33
- version="0.4.4",
34
- packages=find_packages(),
35
- install_requires=[
36
- "numpy==1.26.4",
37
- "pandas==2.2.3",
38
- "matplotlib==3.10.0",
39
- "obspy==1.4.1",
40
- "progress==1.6",
41
- "psutil==6.1.1",
42
- "ray==2.42.1",
43
- "schedule==1.2.2",
44
- "sdnotify==0.3.2",
45
- "tensorflow>=2.15,<2.19", # Updated TensorFlow constraint
46
- "tensorflow-estimator>=2.15,<2.19", # Updated TensorFlow Estimator constraint
47
- "tensorflow-io-gcs-filesystem==0.37.1",
48
- "tensorboard==2.15.2",
49
- "tensorboard-data-server==0.7.2",
50
- "silence-tensorflow==1.2.3",
51
- "scipy==1.15.1",
52
- "protobuf==4.25.6",
53
- "grpcio==1.70.0",
54
- "absl-py==2.1.0",
55
- "h5py==3.12.1",
56
- "pynvml==12.0.0",
57
- ],
58
- long_description=description,
59
- long_description_content_type="text/markdown"
60
- )
File without changes
File without changes