eqcctpro 0.3__tar.gz → 0.4__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of eqcctpro might be problematic. Click here for more details.

eqcctpro-0.4/PKG-INFO ADDED
@@ -0,0 +1,136 @@
1
+ Metadata-Version: 2.2
2
+ Name: eqcctpro
3
+ Version: 0.4
4
+ Description-Content-Type: text/markdown
5
+ Requires-Dist: numpy==1.26.4
6
+ Requires-Dist: pandas==2.2.3
7
+ Requires-Dist: matplotlib==3.10.0
8
+ Requires-Dist: obspy==1.4.1
9
+ Requires-Dist: progress==1.6
10
+ Requires-Dist: psutil==6.1.1
11
+ Requires-Dist: ray==2.42.1
12
+ Requires-Dist: schedule==1.2.2
13
+ Requires-Dist: sdnotify==0.3.2
14
+ Requires-Dist: tensorflow==2.15.1
15
+ Requires-Dist: tensorflow-estimator==2.15.0
16
+ Requires-Dist: tensorflow-io-gcs-filesystem==0.37.1
17
+ Requires-Dist: tensorboard==2.15.2
18
+ Requires-Dist: tensorboard-data-server==0.7.2
19
+ Requires-Dist: silence-tensorflow==1.2.3
20
+ Requires-Dist: scipy==1.15.1
21
+ Requires-Dist: protobuf==4.25.6
22
+ Requires-Dist: grpcio==1.70.0
23
+ Requires-Dist: absl-py==2.1.0
24
+ Requires-Dist: h5py==3.12.1
25
+ Requires-Dist: pynvml==12.0.0
26
+ Dynamic: description
27
+ Dynamic: description-content-type
28
+ Dynamic: requires-dist
29
+
30
+ # EQCCTPro: powerful seismic event detection toolkit
31
+
32
+ EQCCTPro is a machine-learning based seismic event detection and processing framework designed for efficient execution on CPU and GPU architectures. It leverages machine learning models to analyze mSEED seismic data files and optimize computational resources based on the system's configuration.
33
+
34
+ ## Features
35
+ - Supports both CPU and GPU execution
36
+ - Configurable parallelism for optimized performance
37
+ - Automatic selection of best-use-case configurations
38
+ - Efficient handling of large-scale seismic data
39
+ - Includes tools for evaluating system performance
40
+
41
+ ## Installation
42
+ To install the necessary dependencies, create a conda environment using:
43
+
44
+ ```sh
45
+ conda env create -f environment.yml
46
+ conda activate eqcctpro
47
+ ```
48
+
49
+ ## Usage
50
+
51
+ ### Running EQCCTPro
52
+ To run EQCCTPro with a specified mSEED input directory and output directory:
53
+
54
+ ```python
55
+ from eqcctpro import EQCCTMSeedRunner
56
+
57
+ eqcct_runner = EQCCTMSeedRunner(
58
+ use_gpu=True,
59
+ intra_threads=1,
60
+ inter_threads=1,
61
+ cpu_id_list=[0,1,2,3,4],
62
+ input_dir='/path/to/mseed',
63
+ output_dir='/path/to/outputs',
64
+ log_filepath='/path/to/outputs/eqcctpro.log',
65
+ P_threshold=0.001,
66
+ S_threshold=0.02,
67
+ p_model_filepath='/path/to/model_p.h5',
68
+ s_model_filepath='/path/to/model_s.h5',
69
+ number_of_concurrent_predictions=5,
70
+ best_usecase_config=True,
71
+ csv_dir='/path/to/csv',
72
+ selected_gpus=[0],
73
+ set_vram_mb=24750,
74
+ specific_stations='AT01, BP01, DG05'
75
+ )
76
+ eqcct_runner.run_eqcctpro()
77
+ ```
78
+
79
+ ### Evaluating System Performance
80
+ To evaluate the system’s GPU performance:
81
+
82
+ ```python
83
+ from eqcctpro import EvaluateSystem
84
+
85
+ eval_gpu = EvaluateSystem(
86
+ mode='gpu',
87
+ intra_threads=1,
88
+ inter_threads=1,
89
+ input_dir='/path/to/mseed',
90
+ output_dir='/path/to/outputs',
91
+ log_filepath='/path/to/outputs/eqcctpro.log',
92
+ csv_dir='/path/to/csv',
93
+ P_threshold=0.001,
94
+ S_threshold=0.02,
95
+ p_model_filepath='/path/to/model_p.h5',
96
+ s_model_filepath='/path/to/model_s.h5',
97
+ stations2use=2,
98
+ cpu_id_list=[0,1],
99
+ set_vram_mb=24750,
100
+ selected_gpus=[0]
101
+ )
102
+ eval_gpu.evaluate()
103
+ ```
104
+
105
+ ### Finding Optimal CPU/GPU Configurations
106
+ To determine the best CPU or GPU configuration:
107
+
108
+ ```python
109
+ from eqcctpro import OptimalCPUConfigurationFinder, OptimalGPUConfigurationFinder
110
+
111
+ csv_filepath = '/path/to/csv'
112
+
113
+ cpu_finder = OptimalCPUConfigurationFinder(csv_filepath)
114
+ best_cpu_config = cpu_finder.find_best_overall_usecase()
115
+ print(best_cpu_config)
116
+
117
+ optimal_cpu_config = cpu_finder.find_optimal_for(cpu=3, station_count=2)
118
+ print(optimal_cpu_config)
119
+
120
+ gpu_finder = OptimalGPUConfigurationFinder(csv_filepath)
121
+ best_gpu_config = gpu_finder.find_best_overall_usecase()
122
+ print(best_gpu_config)
123
+
124
+ optimal_gpu_config = gpu_finder.find_optimal_for(num_cpus=1, gpu_list=[0], station_count=1)
125
+ print(optimal_gpu_config)
126
+ ```
127
+
128
+ ## Configuration
129
+ The `environment.yml` file specifies the dependencies required to run EQCCTPro. Ensure you have the correct versions installed by using the provided conda environment setup.
130
+
131
+ ## License
132
+ EQCCTPro is provided under an open-source license. See LICENSE for details.
133
+
134
+ ## Contact
135
+ For inquiries or issues, please contact [your email or organization link].
136
+
eqcctpro-0.4/README.md ADDED
@@ -0,0 +1,107 @@
1
+ # EQCCTPro: powerful seismic event detection toolkit
2
+
3
+ EQCCTPro is a machine-learning based seismic event detection and processing framework designed for efficient execution on CPU and GPU architectures. It leverages machine learning models to analyze mSEED seismic data files and optimize computational resources based on the system's configuration.
4
+
5
+ ## Features
6
+ - Supports both CPU and GPU execution
7
+ - Configurable parallelism for optimized performance
8
+ - Automatic selection of best-use-case configurations
9
+ - Efficient handling of large-scale seismic data
10
+ - Includes tools for evaluating system performance
11
+
12
+ ## Installation
13
+ To install the necessary dependencies, create a conda environment using:
14
+
15
+ ```sh
16
+ conda env create -f environment.yml
17
+ conda activate eqcctpro
18
+ ```
19
+
20
+ ## Usage
21
+
22
+ ### Running EQCCTPro
23
+ To run EQCCTPro with a specified mSEED input directory and output directory:
24
+
25
+ ```python
26
+ from eqcctpro import EQCCTMSeedRunner
27
+
28
+ eqcct_runner = EQCCTMSeedRunner(
29
+ use_gpu=True,
30
+ intra_threads=1,
31
+ inter_threads=1,
32
+ cpu_id_list=[0,1,2,3,4],
33
+ input_dir='/path/to/mseed',
34
+ output_dir='/path/to/outputs',
35
+ log_filepath='/path/to/outputs/eqcctpro.log',
36
+ P_threshold=0.001,
37
+ S_threshold=0.02,
38
+ p_model_filepath='/path/to/model_p.h5',
39
+ s_model_filepath='/path/to/model_s.h5',
40
+ number_of_concurrent_predictions=5,
41
+ best_usecase_config=True,
42
+ csv_dir='/path/to/csv',
43
+ selected_gpus=[0],
44
+ set_vram_mb=24750,
45
+ specific_stations='AT01, BP01, DG05'
46
+ )
47
+ eqcct_runner.run_eqcctpro()
48
+ ```
49
+
50
+ ### Evaluating System Performance
51
+ To evaluate the system’s GPU performance:
52
+
53
+ ```python
54
+ from eqcctpro import EvaluateSystem
55
+
56
+ eval_gpu = EvaluateSystem(
57
+ mode='gpu',
58
+ intra_threads=1,
59
+ inter_threads=1,
60
+ input_dir='/path/to/mseed',
61
+ output_dir='/path/to/outputs',
62
+ log_filepath='/path/to/outputs/eqcctpro.log',
63
+ csv_dir='/path/to/csv',
64
+ P_threshold=0.001,
65
+ S_threshold=0.02,
66
+ p_model_filepath='/path/to/model_p.h5',
67
+ s_model_filepath='/path/to/model_s.h5',
68
+ stations2use=2,
69
+ cpu_id_list=[0,1],
70
+ set_vram_mb=24750,
71
+ selected_gpus=[0]
72
+ )
73
+ eval_gpu.evaluate()
74
+ ```
75
+
76
+ ### Finding Optimal CPU/GPU Configurations
77
+ To determine the best CPU or GPU configuration:
78
+
79
+ ```python
80
+ from eqcctpro import OptimalCPUConfigurationFinder, OptimalGPUConfigurationFinder
81
+
82
+ csv_filepath = '/path/to/csv'
83
+
84
+ cpu_finder = OptimalCPUConfigurationFinder(csv_filepath)
85
+ best_cpu_config = cpu_finder.find_best_overall_usecase()
86
+ print(best_cpu_config)
87
+
88
+ optimal_cpu_config = cpu_finder.find_optimal_for(cpu=3, station_count=2)
89
+ print(optimal_cpu_config)
90
+
91
+ gpu_finder = OptimalGPUConfigurationFinder(csv_filepath)
92
+ best_gpu_config = gpu_finder.find_best_overall_usecase()
93
+ print(best_gpu_config)
94
+
95
+ optimal_gpu_config = gpu_finder.find_optimal_for(num_cpus=1, gpu_list=[0], station_count=1)
96
+ print(optimal_gpu_config)
97
+ ```
98
+
99
+ ## Configuration
100
+ The `environment.yml` file specifies the dependencies required to run EQCCTPro. Ensure you have the correct versions installed by using the provided conda environment setup.
101
+
102
+ ## License
103
+ EQCCTPro is provided under an open-source license. See LICENSE for details.
104
+
105
+ ## Contact
106
+ For inquiries or issues, please contact [your email or organization link].
107
+
@@ -0,0 +1,136 @@
1
+ Metadata-Version: 2.2
2
+ Name: eqcctpro
3
+ Version: 0.4
4
+ Description-Content-Type: text/markdown
5
+ Requires-Dist: numpy==1.26.4
6
+ Requires-Dist: pandas==2.2.3
7
+ Requires-Dist: matplotlib==3.10.0
8
+ Requires-Dist: obspy==1.4.1
9
+ Requires-Dist: progress==1.6
10
+ Requires-Dist: psutil==6.1.1
11
+ Requires-Dist: ray==2.42.1
12
+ Requires-Dist: schedule==1.2.2
13
+ Requires-Dist: sdnotify==0.3.2
14
+ Requires-Dist: tensorflow==2.15.1
15
+ Requires-Dist: tensorflow-estimator==2.15.0
16
+ Requires-Dist: tensorflow-io-gcs-filesystem==0.37.1
17
+ Requires-Dist: tensorboard==2.15.2
18
+ Requires-Dist: tensorboard-data-server==0.7.2
19
+ Requires-Dist: silence-tensorflow==1.2.3
20
+ Requires-Dist: scipy==1.15.1
21
+ Requires-Dist: protobuf==4.25.6
22
+ Requires-Dist: grpcio==1.70.0
23
+ Requires-Dist: absl-py==2.1.0
24
+ Requires-Dist: h5py==3.12.1
25
+ Requires-Dist: pynvml==12.0.0
26
+ Dynamic: description
27
+ Dynamic: description-content-type
28
+ Dynamic: requires-dist
29
+
30
+ # EQCCTPro: powerful seismic event detection toolkit
31
+
32
+ EQCCTPro is a machine-learning based seismic event detection and processing framework designed for efficient execution on CPU and GPU architectures. It leverages machine learning models to analyze mSEED seismic data files and optimize computational resources based on the system's configuration.
33
+
34
+ ## Features
35
+ - Supports both CPU and GPU execution
36
+ - Configurable parallelism for optimized performance
37
+ - Automatic selection of best-use-case configurations
38
+ - Efficient handling of large-scale seismic data
39
+ - Includes tools for evaluating system performance
40
+
41
+ ## Installation
42
+ To install the necessary dependencies, create a conda environment using:
43
+
44
+ ```sh
45
+ conda env create -f environment.yml
46
+ conda activate eqcctpro
47
+ ```
48
+
49
+ ## Usage
50
+
51
+ ### Running EQCCTPro
52
+ To run EQCCTPro with a specified mSEED input directory and output directory:
53
+
54
+ ```python
55
+ from eqcctpro import EQCCTMSeedRunner
56
+
57
+ eqcct_runner = EQCCTMSeedRunner(
58
+ use_gpu=True,
59
+ intra_threads=1,
60
+ inter_threads=1,
61
+ cpu_id_list=[0,1,2,3,4],
62
+ input_dir='/path/to/mseed',
63
+ output_dir='/path/to/outputs',
64
+ log_filepath='/path/to/outputs/eqcctpro.log',
65
+ P_threshold=0.001,
66
+ S_threshold=0.02,
67
+ p_model_filepath='/path/to/model_p.h5',
68
+ s_model_filepath='/path/to/model_s.h5',
69
+ number_of_concurrent_predictions=5,
70
+ best_usecase_config=True,
71
+ csv_dir='/path/to/csv',
72
+ selected_gpus=[0],
73
+ set_vram_mb=24750,
74
+ specific_stations='AT01, BP01, DG05'
75
+ )
76
+ eqcct_runner.run_eqcctpro()
77
+ ```
78
+
79
+ ### Evaluating System Performance
80
+ To evaluate the system’s GPU performance:
81
+
82
+ ```python
83
+ from eqcctpro import EvaluateSystem
84
+
85
+ eval_gpu = EvaluateSystem(
86
+ mode='gpu',
87
+ intra_threads=1,
88
+ inter_threads=1,
89
+ input_dir='/path/to/mseed',
90
+ output_dir='/path/to/outputs',
91
+ log_filepath='/path/to/outputs/eqcctpro.log',
92
+ csv_dir='/path/to/csv',
93
+ P_threshold=0.001,
94
+ S_threshold=0.02,
95
+ p_model_filepath='/path/to/model_p.h5',
96
+ s_model_filepath='/path/to/model_s.h5',
97
+ stations2use=2,
98
+ cpu_id_list=[0,1],
99
+ set_vram_mb=24750,
100
+ selected_gpus=[0]
101
+ )
102
+ eval_gpu.evaluate()
103
+ ```
104
+
105
+ ### Finding Optimal CPU/GPU Configurations
106
+ To determine the best CPU or GPU configuration:
107
+
108
+ ```python
109
+ from eqcctpro import OptimalCPUConfigurationFinder, OptimalGPUConfigurationFinder
110
+
111
+ csv_filepath = '/path/to/csv'
112
+
113
+ cpu_finder = OptimalCPUConfigurationFinder(csv_filepath)
114
+ best_cpu_config = cpu_finder.find_best_overall_usecase()
115
+ print(best_cpu_config)
116
+
117
+ optimal_cpu_config = cpu_finder.find_optimal_for(cpu=3, station_count=2)
118
+ print(optimal_cpu_config)
119
+
120
+ gpu_finder = OptimalGPUConfigurationFinder(csv_filepath)
121
+ best_gpu_config = gpu_finder.find_best_overall_usecase()
122
+ print(best_gpu_config)
123
+
124
+ optimal_gpu_config = gpu_finder.find_optimal_for(num_cpus=1, gpu_list=[0], station_count=1)
125
+ print(optimal_gpu_config)
126
+ ```
127
+
128
+ ## Configuration
129
+ The `environment.yml` file specifies the dependencies required to run EQCCTPro. Ensure you have the correct versions installed by using the provided conda environment setup.
130
+
131
+ ## License
132
+ EQCCTPro is provided under an open-source license. See LICENSE for details.
133
+
134
+ ## Contact
135
+ For inquiries or issues, please contact [your email or organization link].
136
+
@@ -8,9 +8,13 @@ os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
8
8
  os.environ["NVIDIA_LOG_LEVEL"] = "ERROR"
9
9
  os.environ["CUDA_MODULE_LOADING"] = "LAZY"
10
10
 
11
+
12
+ with open ("README.md", "r") as f:
13
+ description = f.read()
14
+
11
15
  setup(
12
16
  name="eqcctpro",
13
- version="0.3",
17
+ version="0.4",
14
18
  packages=find_packages(),
15
19
  install_requires=[
16
20
  "numpy==1.26.4",
@@ -35,4 +39,6 @@ setup(
35
39
  "h5py==3.12.1",
36
40
  "pynvml==12.0.0",
37
41
  ],
42
+ long_description = description,
43
+ long_description_content_type="text/markdown"
38
44
  )
eqcctpro-0.3/PKG-INFO DELETED
@@ -1,25 +0,0 @@
1
- Metadata-Version: 2.2
2
- Name: eqcctpro
3
- Version: 0.3
4
- Requires-Dist: numpy==1.26.4
5
- Requires-Dist: pandas==2.2.3
6
- Requires-Dist: matplotlib==3.10.0
7
- Requires-Dist: obspy==1.4.1
8
- Requires-Dist: progress==1.6
9
- Requires-Dist: psutil==6.1.1
10
- Requires-Dist: ray==2.42.1
11
- Requires-Dist: schedule==1.2.2
12
- Requires-Dist: sdnotify==0.3.2
13
- Requires-Dist: tensorflow==2.15.1
14
- Requires-Dist: tensorflow-estimator==2.15.0
15
- Requires-Dist: tensorflow-io-gcs-filesystem==0.37.1
16
- Requires-Dist: tensorboard==2.15.2
17
- Requires-Dist: tensorboard-data-server==0.7.2
18
- Requires-Dist: silence-tensorflow==1.2.3
19
- Requires-Dist: scipy==1.15.1
20
- Requires-Dist: protobuf==4.25.6
21
- Requires-Dist: grpcio==1.70.0
22
- Requires-Dist: absl-py==2.1.0
23
- Requires-Dist: h5py==3.12.1
24
- Requires-Dist: pynvml==12.0.0
25
- Dynamic: requires-dist
eqcctpro-0.3/README.md DELETED
@@ -1 +0,0 @@
1
- hello!
@@ -1,25 +0,0 @@
1
- Metadata-Version: 2.2
2
- Name: eqcctpro
3
- Version: 0.3
4
- Requires-Dist: numpy==1.26.4
5
- Requires-Dist: pandas==2.2.3
6
- Requires-Dist: matplotlib==3.10.0
7
- Requires-Dist: obspy==1.4.1
8
- Requires-Dist: progress==1.6
9
- Requires-Dist: psutil==6.1.1
10
- Requires-Dist: ray==2.42.1
11
- Requires-Dist: schedule==1.2.2
12
- Requires-Dist: sdnotify==0.3.2
13
- Requires-Dist: tensorflow==2.15.1
14
- Requires-Dist: tensorflow-estimator==2.15.0
15
- Requires-Dist: tensorflow-io-gcs-filesystem==0.37.1
16
- Requires-Dist: tensorboard==2.15.2
17
- Requires-Dist: tensorboard-data-server==0.7.2
18
- Requires-Dist: silence-tensorflow==1.2.3
19
- Requires-Dist: scipy==1.15.1
20
- Requires-Dist: protobuf==4.25.6
21
- Requires-Dist: grpcio==1.70.0
22
- Requires-Dist: absl-py==2.1.0
23
- Requires-Dist: h5py==3.12.1
24
- Requires-Dist: pynvml==12.0.0
25
- Dynamic: requires-dist
File without changes
File without changes
File without changes