eqc-models 0.14.0__tar.gz → 0.14.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (190) hide show
  1. {eqc_models-0.14.0 → eqc_models-0.14.2}/PKG-INFO +2 -2
  2. eqc_models-0.14.2/docs/source/dependencies.rst +17 -0
  3. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/algorithms/penaltymultiplier.py +0 -1
  4. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/assignment/resource.py +1 -1
  5. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/base/results.py +18 -16
  6. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/ml/classifierqboost.py +5 -4
  7. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/solvers/__init__.py +1 -1
  8. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/solvers/mip.py +4 -4
  9. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models.egg-info/PKG-INFO +2 -2
  10. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models.egg-info/requires.txt +1 -1
  11. {eqc_models-0.14.0 → eqc_models-0.14.2}/pyproject.toml +1 -1
  12. eqc_models-0.14.0/docs/source/dependencies.rst +0 -14
  13. {eqc_models-0.14.0 → eqc_models-0.14.2}/.gitignore +0 -0
  14. {eqc_models-0.14.0 → eqc_models-0.14.2}/.gitlab-ci.yml +0 -0
  15. {eqc_models-0.14.0 → eqc_models-0.14.2}/LICENSE.txt +0 -0
  16. {eqc_models-0.14.0 → eqc_models-0.14.2}/MANIFEST.in +0 -0
  17. {eqc_models-0.14.0 → eqc_models-0.14.2}/README.md +0 -0
  18. {eqc_models-0.14.0 → eqc_models-0.14.2}/compile_extensions.py +0 -0
  19. {eqc_models-0.14.0 → eqc_models-0.14.2}/docs/Makefile +0 -0
  20. {eqc_models-0.14.0 → eqc_models-0.14.2}/docs/build/html/_static/basic.css +0 -0
  21. {eqc_models-0.14.0 → eqc_models-0.14.2}/docs/build/html/_static/css/badge_only.css +0 -0
  22. {eqc_models-0.14.0 → eqc_models-0.14.2}/docs/build/html/_static/css/theme.css +0 -0
  23. {eqc_models-0.14.0 → eqc_models-0.14.2}/docs/build/html/_static/custom.css +0 -0
  24. {eqc_models-0.14.0 → eqc_models-0.14.2}/docs/build/html/_static/file.png +0 -0
  25. {eqc_models-0.14.0 → eqc_models-0.14.2}/docs/build/html/_static/minus.png +0 -0
  26. {eqc_models-0.14.0 → eqc_models-0.14.2}/docs/build/html/_static/plus.png +0 -0
  27. {eqc_models-0.14.0 → eqc_models-0.14.2}/docs/build/html/_static/pygments.css +0 -0
  28. {eqc_models-0.14.0 → eqc_models-0.14.2}/docs/build/html/_static/white_logo.png +0 -0
  29. {eqc_models-0.14.0 → eqc_models-0.14.2}/docs/make.bat +0 -0
  30. {eqc_models-0.14.0 → eqc_models-0.14.2}/docs/source/_static/custom.css +0 -0
  31. {eqc_models-0.14.0 → eqc_models-0.14.2}/docs/source/_static/white_logo.png +0 -0
  32. {eqc_models-0.14.0 → eqc_models-0.14.2}/docs/source/conf.py +0 -0
  33. {eqc_models-0.14.0 → eqc_models-0.14.2}/docs/source/eqc_models.rst +0 -0
  34. {eqc_models-0.14.0 → eqc_models-0.14.2}/docs/source/index.rst +0 -0
  35. {eqc_models-0.14.0 → eqc_models-0.14.2}/docs/source/modules.rst +0 -0
  36. {eqc_models-0.14.0 → eqc_models-0.14.2}/docs/source/usage.rst +0 -0
  37. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/__init__.py +0 -0
  38. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/algorithms/__init__.py +0 -0
  39. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/algorithms/base.py +0 -0
  40. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/allocation/__init__.py +0 -0
  41. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/allocation/allocation.py +0 -0
  42. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/allocation/portbase.py +0 -0
  43. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/allocation/portmomentum.py +0 -0
  44. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/assignment/__init__.py +0 -0
  45. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/assignment/qap.py +0 -0
  46. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/assignment/setpartition.py +0 -0
  47. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/base/__init__.py +0 -0
  48. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/base/base.py +0 -0
  49. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/base/binaries.py +0 -0
  50. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/base/constraints.py +0 -0
  51. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/base/operators.py +0 -0
  52. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/base/polyeval.pyx +0 -0
  53. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/base/polynomial.py +0 -0
  54. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/base/quadratic.py +0 -0
  55. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/combinatorics/__init__.py +0 -0
  56. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/combinatorics/setcover.py +0 -0
  57. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/combinatorics/setpartition.py +0 -0
  58. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/decoding.py +0 -0
  59. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/graph/__init__.py +0 -0
  60. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/graph/base.py +0 -0
  61. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/graph/hypergraph.py +0 -0
  62. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/graph/maxcut.py +0 -0
  63. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/graph/maxkcut.py +0 -0
  64. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/graph/partition.py +0 -0
  65. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/graph/rcshortestpath.py +0 -0
  66. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/graph/shortestpath.py +0 -0
  67. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/ml/__init__.py +0 -0
  68. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/ml/classifierbase.py +0 -0
  69. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/ml/classifierqsvm.py +0 -0
  70. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/ml/clustering.py +0 -0
  71. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/ml/clusteringbase.py +0 -0
  72. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/ml/cvqboost_hamiltonian.pyx +0 -0
  73. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/ml/cvqboost_hamiltonian_c_func.c +0 -0
  74. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/ml/cvqboost_hamiltonian_c_func.h +0 -0
  75. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/ml/decomposition.py +0 -0
  76. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/ml/forecast.py +0 -0
  77. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/ml/forecastbase.py +0 -0
  78. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/ml/regressor.py +0 -0
  79. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/ml/regressorbase.py +0 -0
  80. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/ml/reservoir.py +0 -0
  81. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/process/base.py +0 -0
  82. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/process/mpc.py +0 -0
  83. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/sequence/__init__.py +0 -0
  84. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/sequence/tsp.py +0 -0
  85. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/solvers/eqcdirect.py +0 -0
  86. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/solvers/qciclient.py +0 -0
  87. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/solvers/responselog.py +0 -0
  88. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/utilities/__init__.py +0 -0
  89. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/utilities/fileio.py +0 -0
  90. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/utilities/general.py +0 -0
  91. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/utilities/polynomial.py +0 -0
  92. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models/utilities/qplib.py +0 -0
  93. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models.egg-info/SOURCES.txt +0 -0
  94. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models.egg-info/dependency_links.txt +0 -0
  95. {eqc_models-0.14.0 → eqc_models-0.14.2}/eqc_models.egg-info/top_level.txt +0 -0
  96. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/binary_job_example.py +0 -0
  97. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/binary_w_continuous_solver_example.py +0 -0
  98. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/c6h6_graph_clustering.py +0 -0
  99. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/clustering.py +0 -0
  100. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/continuous_job_example.py +0 -0
  101. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/convert_to_json_problem.py +0 -0
  102. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/crew_assignment_example.py +0 -0
  103. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/graph_clustering.py +0 -0
  104. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/graph_partitioning.py +0 -0
  105. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/hamiltonian_to_polynomial.py +0 -0
  106. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/hypergraph.py +0 -0
  107. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/integer_job_example.py +0 -0
  108. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/karate_graph_clustering.py +0 -0
  109. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/lin_reg_dirac3.py +0 -0
  110. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/mackey_glass_cell_production_series.csv +0 -0
  111. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/mip_example.py +0 -0
  112. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/pca_iris_dirac3.py +0 -0
  113. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/port_opt_dirac3.py +0 -0
  114. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/qboost_iris_dirac3.py +0 -0
  115. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/qboost_iris_dirac3_weak_cls.py +0 -0
  116. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/qplib_benchmark_config.py +0 -0
  117. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/qplib_reader.py +0 -0
  118. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/qplib_runner.py +0 -0
  119. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/qsvm_dual_iris_dirac3.py +0 -0
  120. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/qsvm_iris_dirac3.py +0 -0
  121. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/reservoir_forecast.py +0 -0
  122. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/results_example.py +0 -0
  123. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/rundoctests.py +0 -0
  124. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/test_shortestpath.py +0 -0
  125. {eqc_models-0.14.0 → eqc_models-0.14.2}/scripts/utils.py +0 -0
  126. {eqc_models-0.14.0 → eqc_models-0.14.2}/setup.cfg +0 -0
  127. {eqc_models-0.14.0 → eqc_models-0.14.2}/test/doctest_base.py +0 -0
  128. {eqc_models-0.14.0 → eqc_models-0.14.2}/test/testallocationmodel.py +0 -0
  129. {eqc_models-0.14.0 → eqc_models-0.14.2}/test/testconstraint.py +0 -0
  130. {eqc_models-0.14.0 → eqc_models-0.14.2}/test/testcvqboost.py +0 -0
  131. {eqc_models-0.14.0 → eqc_models-0.14.2}/test/testeqcdirectsolver.py +0 -0
  132. {eqc_models-0.14.0 → eqc_models-0.14.2}/test/testgraphpartitionmodel.py +0 -0
  133. {eqc_models-0.14.0 → eqc_models-0.14.2}/test/testhypergraphmodel.py +0 -0
  134. {eqc_models-0.14.0 → eqc_models-0.14.2}/test/testmaxcutmodel.py +0 -0
  135. {eqc_models-0.14.0 → eqc_models-0.14.2}/test/testpolynomialmodel.py +0 -0
  136. {eqc_models-0.14.0 → eqc_models-0.14.2}/test/testqapmodel.py +0 -0
  137. {eqc_models-0.14.0 → eqc_models-0.14.2}/test/testqciclientsolver.py +0 -0
  138. {eqc_models-0.14.0 → eqc_models-0.14.2}/test/testquadraticmodel.py +0 -0
  139. {eqc_models-0.14.0 → eqc_models-0.14.2}/test/testsetcovermodel.py +0 -0
  140. {eqc_models-0.14.0 → eqc_models-0.14.2}/test/testsetpartitionmodel.py +0 -0
  141. {eqc_models-0.14.0 → eqc_models-0.14.2}/test/testshortestpath.py +0 -0
  142. {eqc_models-0.14.0 → eqc_models-0.14.2}/test/testtsp.py +0 -0
  143. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/README.txt +0 -0
  144. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/run_tests.py +0 -0
  145. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/c6h6_graph_clustering/c6h6_graph_clustering.py +0 -0
  146. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/clustering/clustering.py +0 -0
  147. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/clustering/data/X.npy +0 -0
  148. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/cvqboost_iris/cvqboost_iris.py +0 -0
  149. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/cvqboost_iris/data/X_test.npy +0 -0
  150. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/cvqboost_iris/data/X_train.npy +0 -0
  151. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/cvqboost_iris/data/y_test.npy +0 -0
  152. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/cvqboost_iris/data/y_train.npy +0 -0
  153. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/karate_graph_clustering/karate_graph_clustering.py +0 -0
  154. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/pca_iris/pca_iris.py +0 -0
  155. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/protein_design_1MJC/data/C_1MJC.npy +0 -0
  156. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/protein_design_1MJC/data/J_1MJC.npy +0 -0
  157. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/protein_design_1MJC/protein_design_1MJC.py +0 -0
  158. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/protein_design_1NXB/data/C_1NXB.npy +0 -0
  159. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/protein_design_1NXB/data/J_1NXB.npy +0 -0
  160. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/protein_design_1NXB/protein_design_1NXB.py +0 -0
  161. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/protein_design_1POH/data/C_1POH.npy +0 -0
  162. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/protein_design_1POH/data/J_1POH.npy +0 -0
  163. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/protein_design_1POH/protein_design_1POH.py +0 -0
  164. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/qsvm_dual_iris/data/X_test.npy +0 -0
  165. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/qsvm_dual_iris/data/X_train.npy +0 -0
  166. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/qsvm_dual_iris/data/y_test.npy +0 -0
  167. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/qsvm_dual_iris/data/y_train.npy +0 -0
  168. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/qsvm_dual_iris/qsvm_dual_iris.py +0 -0
  169. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/qsvm_primal_iris/data/X_test.npy +0 -0
  170. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/qsvm_primal_iris/data/X_train.npy +0 -0
  171. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/qsvm_primal_iris/data/y_test.npy +0 -0
  172. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/qsvm_primal_iris/data/y_train.npy +0 -0
  173. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/qsvm_primal_iris/qsvm_primal_iris.py +0 -0
  174. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/synthetic_cls_100/data/C_8000000_100.npy +0 -0
  175. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/synthetic_cls_100/data/J_8000000_100.npy +0 -0
  176. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/synthetic_cls_100/synthetic_cls_100.py +0 -0
  177. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/synthetic_cls_300/data/C_8000000_300.npy +0 -0
  178. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/synthetic_cls_300/data/J_8000000_300.npy +0 -0
  179. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/synthetic_cls_300/synthetic_cls_300.py +0 -0
  180. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/synthetic_cls_500/data/C_8000000_500.npy +0 -0
  181. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/synthetic_cls_500/data/J_8000000_500.npy +0 -0
  182. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/synthetic_cls_500/synthetic_cls_500.py +0 -0
  183. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/synthetic_cls_700/data/C_8000000_700.npy +0 -0
  184. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/synthetic_cls_700/data/J_8000000_700.npy +0 -0
  185. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/synthetic_cls_700/synthetic_cls_700.py +0 -0
  186. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/synthetic_cls_900/data/C_8000000_900.npy +0 -0
  187. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/synthetic_cls_900/data/J_8000000_900.npy +0 -0
  188. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_cases/synthetic_cls_900/synthetic_cls_900.py +0 -0
  189. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_suite_config.json +0 -0
  190. {eqc_models-0.14.0 → eqc_models-0.14.2}/test_suite/test_utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: eqc-models
3
- Version: 0.14.0
3
+ Version: 0.14.2
4
4
  Summary: Optimization and ML modeling package targeting EQC devices
5
5
  Author-email: "Quantum Computing Inc." <support@quantumcomputinginc.com>
6
6
  Project-URL: Homepage, https://quantumcomputinginc.com
@@ -16,7 +16,7 @@ Requires-Dist: networkx<3,>=2.6.3
16
16
  Requires-Dist: pandas<3,>=2.1.0
17
17
  Requires-Dist: scikit-learn<2,>=1.2.1
18
18
  Requires-Dist: lightgbm<5,>=4.6.0
19
- Requires-Dist: xgboost<2,>=1.7.4
19
+ Requires-Dist: xgboost<4,>=1.7.4
20
20
  Requires-Dist: qci-client<6,>=5
21
21
  Provides-Extra: dev
22
22
  Requires-Dist: pytest<8,>=7.1.0; extra == "dev"
@@ -0,0 +1,17 @@
1
+ Dependencies
2
+ =============
3
+
4
+ Requires Python: >=3.9, <3.14
5
+
6
+ Packages
7
+ --------
8
+
9
+ - ``emucore-direct ==1.0.7; python_version <'3.11'``
10
+ - ``eqc-direct ==2.0.2; python_version <'3.11'``
11
+ - ``numpy >=1.22.1, <2``
12
+ - ``networkx >=2.6.3, <3``
13
+ - ``pandas >=2.1.0, <3``
14
+ - ``scikit-learn >=1.2.1, <2``
15
+ - ``lightgbm >= 4.6.0, <5``
16
+ - ``xgboost >= 1.7.4, <2``
17
+ - ``qci-client>=5, <6``
@@ -25,7 +25,6 @@ class PenaltyMultiplierAlgorithm(Algorithm):
25
25
  upper_bound : float
26
26
  Upper bound value for the objective function, this need not be a least upper bound,
27
27
  but the tighter the value, the more efficient the search
28
-
29
28
  solutions : List
30
29
  The solutions found during the algorithm run
31
30
  alphas : List
@@ -9,9 +9,9 @@ class ResourceAssignmentModel(InequalitiesMixin, ConstrainedQuadraticModel):
9
9
 
10
10
  Parameters
11
11
  ------------
12
-
13
12
  resources : List
14
13
  tasks : List
14
+
15
15
 
16
16
  >>> # name is not a required attribute of the resources or tasks
17
17
  >>> crews = [{"name": "Maintenance Crew 1", "skills": ["A", "F"], "capacity": 5, "cost": 4},
@@ -153,14 +153,19 @@ class SolutionResults:
153
153
  solutions = np.array(new_solutions)
154
154
  if hasattr(model, "evaluateObjective"):
155
155
  objectives = np.zeros((solutions.shape[0],), dtype=np.float32)
156
- for i in range(solutions.shape[0]):
157
- try:
158
- objective = model.evaluateObjective(solutions[i])
159
- except NotImplementedError:
160
- warnings.warn(f"Cannot set objective value in results for {model.__class__}")
161
- objectives = None
162
- break
163
- objectives[i] = objective
156
+ try:
157
+ objectives[:] = model.evaluateObjective(solutions)
158
+ except NotImplementedError:
159
+ warnings.warn(f"Cannot evaluate objective value in results for {model.__class__}. Method not implemented.")
160
+ objectives = None
161
+ # for i in range(solutions.shape[0]):
162
+ # try:
163
+ # objective = model.evaluateObjective(solutions[i])
164
+ # except NotImplementedError:
165
+ # warnings.warn(f"Cannot set objective value in results for {model.__class__}")
166
+ # objectives = None
167
+ # break
168
+ # objectives[i] = objective
164
169
  else:
165
170
  objectives = None
166
171
  if hasattr(model, "evaluatePenalties"):
@@ -217,14 +222,11 @@ class SolutionResults:
217
222
  device_type = info_dict["device_type"]
218
223
  if hasattr(model, "evaluateObjective"):
219
224
  objectives = np.zeros((solutions.shape[0],), dtype=np.float32)
220
- for i in range(solutions.shape[0]):
221
- try:
222
- objective = model.evaluateObjective(solutions[i])
223
- except NotImplementedError:
224
- warnings.warn(f"Cannot set objective value in results for {model.__class__}")
225
- objectives = None
226
- break
227
- objectives[i] = objective
225
+ try:
226
+ objectives[:] = model.evaluateObjective(solutions)
227
+ except NotImplementedError:
228
+ warnings.warn(f"Cannot evaluate objective value in results for {model.__class__}. Method not implemented.")
229
+ objectives = None
228
230
  else:
229
231
  objectives = None
230
232
  if hasattr(model, "evaluatePenalties"):
@@ -235,7 +235,9 @@ class QBoostClassifier(ClassifierBase):
235
235
  self.classes_ = None
236
236
 
237
237
  def topNPairs(self, X, n):
238
- assert n < X.shape[1]*(X.shape[1]-1)
238
+
239
+ assert n <= int(X.shape[1] * (X.shape[1] - 3) /2)
240
+
239
241
  cov = np.corrcoef(X, rowvar=False)
240
242
  abscov = np.abs(cov)
241
243
  flatcov = []
@@ -275,7 +277,7 @@ class QBoostClassifier(ClassifierBase):
275
277
 
276
278
  """
277
279
  if self.weak_cls_pair_count is None:
278
- weak_cls_pair_count = n_dims * (n_dims - 1)
280
+ weak_cls_pair_count = int(n_dims * (n_dims - 3) / 2)
279
281
  else:
280
282
  weak_cls_pair_count = self.weak_cls_pair_count
281
283
  pairs = self.topNPairs(X, weak_cls_pair_count)
@@ -284,8 +286,7 @@ class QBoostClassifier(ClassifierBase):
284
286
  X[:, [i, j]],
285
287
  y,
286
288
  self.weak_cls_type,
287
- self.weak_max_depth,
288
- self.weak_min_samples_split,
289
+ self.weak_cls_params,
289
290
  )
290
291
  weak_classifier.train()
291
292
  self.ind_list.append([i, j])
@@ -12,5 +12,5 @@ class Dirac3MIPDirectSolver(MIPMixin, Dirac3DirectSolver):
12
12
 
13
13
  __all__ = ["Dirac3DirectSolver", "Dirac1CloudSolver", "Dirac3CloudSolver",
14
14
  "EqcDirectSolver", "QciClientSolver", "Dirac3IntegerCloudSolver",
15
- "Dirac3ContinuousCloudSolver", "MILPMixin",
15
+ "Dirac3ContinuousCloudSolver", "MIPMixin",
16
16
  "Dirac3MIPCloudSolver", "Dirac3MIPDirectSolver"]
@@ -77,11 +77,11 @@ class MIPMixin:
77
77
  for i in range(len(solutions)):
78
78
  log.debug("SolutionResults solution: %s", solutions[i])
79
79
  if hasattr(model, "evaluateObjective"):
80
- new_objectives = []
80
+ new_objectives = np.zeros((len(solutions),), dtype=np.float32)
81
81
  else:
82
82
  new_objectives = None
83
83
  if hasattr(model, "evaluatePenalties"):
84
- new_penalties = []
84
+ new_penalties = np.zeros((len(solutions),), dtype=np.float32)
85
85
  else:
86
86
  new_penalties = None
87
87
  new_solutions = []
@@ -98,12 +98,12 @@ class MIPMixin:
98
98
  log.debug("%d - New solution %s", i, new_sol)
99
99
  if new_objectives is not None:
100
100
  try:
101
- new_objectives.append(model.evaluateObjective(new_sol))
101
+ new_objectives[i:i+1] = model.evaluateObjective(new_sol)
102
102
  except NotImplementedError as err:
103
103
  pass
104
104
  if new_penalties is not None:
105
105
  try:
106
- new_penalties.append(model.evaluatePenalties(new_sol))
106
+ new_penalties[i:i+1] = model.evaluatePenalties(new_sol)
107
107
  except NotImplementedError as err:
108
108
  pass
109
109
  new_solutions.append(new_sol)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: eqc-models
3
- Version: 0.14.0
3
+ Version: 0.14.2
4
4
  Summary: Optimization and ML modeling package targeting EQC devices
5
5
  Author-email: "Quantum Computing Inc." <support@quantumcomputinginc.com>
6
6
  Project-URL: Homepage, https://quantumcomputinginc.com
@@ -16,7 +16,7 @@ Requires-Dist: networkx<3,>=2.6.3
16
16
  Requires-Dist: pandas<3,>=2.1.0
17
17
  Requires-Dist: scikit-learn<2,>=1.2.1
18
18
  Requires-Dist: lightgbm<5,>=4.6.0
19
- Requires-Dist: xgboost<2,>=1.7.4
19
+ Requires-Dist: xgboost<4,>=1.7.4
20
20
  Requires-Dist: qci-client<6,>=5
21
21
  Provides-Extra: dev
22
22
  Requires-Dist: pytest<8,>=7.1.0; extra == "dev"
@@ -3,7 +3,7 @@ networkx<3,>=2.6.3
3
3
  pandas<3,>=2.1.0
4
4
  scikit-learn<2,>=1.2.1
5
5
  lightgbm<5,>=4.6.0
6
- xgboost<2,>=1.7.4
6
+ xgboost<4,>=1.7.4
7
7
  qci-client<6,>=5
8
8
 
9
9
  [:python_version < "3.11"]
@@ -29,7 +29,7 @@ dependencies = [
29
29
  "pandas >=2.1.0, <3",
30
30
  "scikit-learn >=1.2.1, <2",
31
31
  "lightgbm >= 4.6.0, <5",
32
- "xgboost >= 1.7.4, <2",
32
+ "xgboost >= 1.7.4, <4",
33
33
  "qci-client>=5, <6",
34
34
  ]
35
35
 
@@ -1,14 +0,0 @@
1
- Dependencies
2
- =============
3
-
4
- Requires Python: >=3.9, <3.11
5
-
6
- Packages
7
- --------
8
-
9
- - ``numpy>=1.22.1, <2``
10
- - ``networkx>=2.6.3, <3``
11
- - ``pandas>=2.1.0``
12
- - ``scikit-learn>=1.2.1``
13
- - ``qci-client>=4.3.0, <5``
14
- - ``emucore-direct==1.0.6``
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes