eodag 3.10.0__tar.gz → 3.10.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- eodag-3.10.1/.github/workflows/package.yml +57 -0
- {eodag-3.10.0 → eodag-3.10.1}/.github/workflows/test.yml +5 -5
- {eodag-3.10.0 → eodag-3.10.1}/CHANGES.rst +67 -0
- {eodag-3.10.0 → eodag-3.10.1}/CONTRIBUTING.rst +1 -1
- eodag-3.10.1/Dockerfile +41 -0
- {eodag-3.10.0/eodag.egg-info → eodag-3.10.1}/PKG-INFO +14 -3
- {eodag-3.10.0 → eodag-3.10.1}/README.rst +10 -1
- {eodag-3.10.0 → eodag-3.10.1}/charts/eodag-server/Chart.yaml +2 -2
- {eodag-3.10.0 → eodag-3.10.1}/docs/_static/product_types_information.csv +5 -2
- {eodag-3.10.0 → eodag-3.10.1}/docs/cli_user_guide.rst +9 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/stac_rest.rst +1 -1
- {eodag-3.10.0 → eodag-3.10.1}/eodag/api/core.py +8 -2
- {eodag-3.10.0 → eodag-3.10.1}/eodag/api/product/_product.py +9 -13
- {eodag-3.10.0 → eodag-3.10.1}/eodag/api/product/metadata_mapping.py +7 -4
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/crunch/filter_latest_intersect.py +1 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/crunch/filter_overlap.py +3 -7
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/download/aws.py +1 -1
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/search/build_search_result.py +41 -14
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/search/cop_marine.py +6 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/resources/product_types.yml +81 -36
- {eodag-3.10.0 → eodag-3.10.1}/eodag/resources/providers.yml +39 -32
- {eodag-3.10.0 → eodag-3.10.1}/eodag/types/queryables.py +1 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/utils/__init__.py +44 -2
- {eodag-3.10.0 → eodag-3.10.1}/eodag/utils/dates.py +12 -0
- {eodag-3.10.0 → eodag-3.10.1/eodag.egg-info}/PKG-INFO +14 -3
- {eodag-3.10.0 → eodag-3.10.1}/eodag.egg-info/SOURCES.txt +2 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag.egg-info/requires.txt +2 -1
- {eodag-3.10.0 → eodag-3.10.1}/pyproject.toml +2 -4
- {eodag-3.10.0 → eodag-3.10.1}/setup.cfg +3 -1
- {eodag-3.10.0 → eodag-3.10.1}/tox.ini +3 -2
- {eodag-3.10.0 → eodag-3.10.1}/.dockerignore +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/.editorconfig +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/.gitattributes +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/.github/ISSUE_TEMPLATE/bug_report.md +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/.github/ISSUE_TEMPLATE/feature_request.md +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/.github/pull_request_template.md +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/.github/workflows/changelog.yml +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/.github/workflows/deploy.yml +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/.github/workflows/fetch.yml +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/.github/workflows/github-pages.yml +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/.github/workflows/lint-pr-title.yml +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/.github/workflows/publish.yml +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/.gitignore +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/.pre-commit-config.yaml +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/BREAKING_CHANGES.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/CODE_OF_CONDUCT.md +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/LICENSE +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/MANIFEST.in +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/NOTICE +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/charts/eodag-server/Chart.lock +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/charts/eodag-server/README.md +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/charts/eodag-server/templates/NOTES.txt +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/charts/eodag-server/templates/_helpers.tpl +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/charts/eodag-server/templates/configmap.yaml +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/charts/eodag-server/templates/deployment.yaml +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/charts/eodag-server/templates/extra-list.yaml +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/charts/eodag-server/templates/hpa.yaml +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/charts/eodag-server/templates/ingress.yaml +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/charts/eodag-server/templates/pv.yaml +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/charts/eodag-server/templates/pvc.yaml +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/charts/eodag-server/templates/secret.yaml +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/charts/eodag-server/templates/service.yaml +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/charts/eodag-server/templates/serviceaccount.yaml +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/charts/eodag-server/values.yaml +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docker/run-stac-server.sh +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docker/stac-browser.dockerfile +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docker/stac-server.dockerfile +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docker-compose.yml +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/Makefile +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/_static/custom.css +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/_static/download_methods.png +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/_static/eodag_advanced_calls_graph.svg +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/_static/eodag_bycs.png +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/_static/eodag_fetch_product_types.png +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/_static/eodag_logo_160.png +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/_static/eodag_logo_160r.png +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/_static/eodag_main_calls_graph.svg +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/_static/eodag_overview.png +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/_static/eodag_stac_server.png +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/_static/favicon-32x32.png +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/_static/params_mapping_extra.csv +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/_static/params_mapping_offline_infos.json +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/_static/params_mapping_opensearch.csv +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/_static/progress_1.png +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/_static/progress_1_none.png +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/_static/progress_2.png +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/_static/progress_2_none.png +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/_static/stac_browser_example.png +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/_static/stac_browser_example_600.png +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/add_product_type.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/add_provider.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/api_reference/assets.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/api_reference/call_graphs.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/api_reference/core.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/api_reference/eoproduct.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/api_reference/exceptions.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/api_reference/index.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/api_reference/searchresult.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/api_reference/types.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/api_reference/utils.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/api_user_guide.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/breaking_changes.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/changelog.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/conf.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/contribute.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/drivers.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/ecosystem.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/getting_started_guide/configure.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/getting_started_guide/features_overview.ipynb +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/getting_started_guide/index.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/getting_started_guide/install.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/getting_started_guide/overview.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/getting_started_guide/product_storage_status.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/getting_started_guide/product_types.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/index.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/make.bat +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/api_user_guide/1_providers_products_available.ipynb +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/api_user_guide/2_configuration.ipynb +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/api_user_guide/3_search.ipynb +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/api_user_guide/4_queryables.ipynb +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/api_user_guide/5_serialize_deserialize.ipynb +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/api_user_guide/6_crunch.ipynb +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/api_user_guide/7_download.ipynb +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/api_user_guide/8_post_process.ipynb +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/api_user_guide/data/crunch_search_results.geojson +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/api_user_guide/data/download_search_results.geojson +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/intro_notebooks.ipynb +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/tutos/auxdata/Gulf_of_Trieste_seamask_UTM33.cpg +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/tutos/auxdata/Gulf_of_Trieste_seamask_UTM33.dbf +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/tutos/auxdata/Gulf_of_Trieste_seamask_UTM33.prj +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/tutos/auxdata/Gulf_of_Trieste_seamask_UTM33.qix +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/tutos/auxdata/Gulf_of_Trieste_seamask_UTM33.qpj +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/tutos/auxdata/Gulf_of_Trieste_seamask_UTM33.shp +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/tutos/auxdata/Gulf_of_Trieste_seamask_UTM33.shx +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/tutos/auxdata/sentinel2_tiling_grid_centroids.zip +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/tutos/tuto_burnt_areas_snappy.ipynb +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/tutos/tuto_cds.ipynb +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/tutos/tuto_cop_dem.ipynb +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/tutos/tuto_dedt_lumi_roi.ipynb +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/tutos/tuto_ecmwf.ipynb +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/tutos/tuto_fedeo_ceda.ipynb +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/tutos/tuto_meteoblue.ipynb +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/tutos/tuto_search_location_tile.ipynb +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/tutos/tuto_ship_detection.ipynb +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/tutos/tuto_stac_client.ipynb +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/notebooks/tutos/tuto_wekeo.ipynb +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/params_mapping.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/plugins.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/plugins_reference/api.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/plugins_reference/auth.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/plugins_reference/crunch.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/plugins_reference/download.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/plugins_reference/search.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/providers.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/docs/tutos.rst +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/__init__.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/api/__init__.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/api/product/__init__.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/api/product/_assets.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/api/product/drivers/__init__.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/api/product/drivers/base.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/api/product/drivers/generic.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/api/product/drivers/sentinel1.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/api/product/drivers/sentinel2.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/api/search_result.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/cli.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/config.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/crunch.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/__init__.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/apis/__init__.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/apis/base.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/apis/ecmwf.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/apis/usgs.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/authentication/__init__.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/authentication/aws_auth.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/authentication/base.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/authentication/generic.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/authentication/header.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/authentication/keycloak.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/authentication/oauth.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/authentication/openid_connect.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/authentication/qsauth.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/authentication/sas_auth.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/authentication/token.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/authentication/token_exchange.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/base.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/crunch/__init__.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/crunch/base.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/crunch/filter_date.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/crunch/filter_latest_tpl_name.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/crunch/filter_property.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/download/__init__.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/download/base.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/download/creodias_s3.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/download/http.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/download/s3rest.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/manager.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/search/__init__.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/search/base.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/search/creodias_s3.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/search/csw.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/search/data_request_search.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/search/qssearch.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/search/stac_list_assets.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/plugins/search/static_stac_search.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/py.typed +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/resources/ext_collections.json +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/resources/ext_product_types.json +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/resources/locations_conf_template.yml +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/resources/shp/ne_110m_admin_0_map_units.VERSION.txt +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/resources/shp/ne_110m_admin_0_map_units.cpg +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/resources/shp/ne_110m_admin_0_map_units.dbf +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/resources/shp/ne_110m_admin_0_map_units.prj +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/resources/shp/ne_110m_admin_0_map_units.shp +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/resources/shp/ne_110m_admin_0_map_units.shx +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/resources/stac.yml +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/resources/stac_api.yml +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/resources/stac_provider.yml +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/resources/user_conf_template.yml +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/rest/__init__.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/rest/cache.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/rest/config.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/rest/constants.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/rest/core.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/rest/errors.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/rest/server.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/rest/server.wsgi +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/rest/stac.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/rest/templates/README +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/rest/types/__init__.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/rest/types/collections_search.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/rest/types/eodag_search.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/rest/types/queryables.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/rest/types/stac_search.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/rest/utils/__init__.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/rest/utils/cql_evaluate.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/rest/utils/rfc3339.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/types/__init__.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/types/bbox.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/types/download_args.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/types/search_args.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/utils/cache.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/utils/env.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/utils/exceptions.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/utils/free_text_search.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/utils/import_system.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/utils/logging.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/utils/notebook.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/utils/repr.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/utils/requests.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/utils/s3.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag/utils/stac_reader.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag.egg-info/dependency_links.txt +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag.egg-info/entry_points.txt +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/eodag.egg-info/top_level.txt +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/get_pypi_latest_version.sh +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/pytest.ini +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/readthedocs.yml +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/requirements-dev.txt +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/requirements-docs.txt +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/requirements-tutorials.txt +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/requirements.txt +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/setup.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/utils/params_mapping_to_csv.py +0 -0
- {eodag-3.10.0 → eodag-3.10.1}/utils/product_types_information_to_csv.py +0 -0
|
@@ -0,0 +1,57 @@
|
|
|
1
|
+
name: Build and publish a container image
|
|
2
|
+
|
|
3
|
+
on:
|
|
4
|
+
push:
|
|
5
|
+
branches: ['master']
|
|
6
|
+
tags: ['v*']
|
|
7
|
+
workflow_dispatch:
|
|
8
|
+
repository_dispatch:
|
|
9
|
+
types: [release]
|
|
10
|
+
|
|
11
|
+
env:
|
|
12
|
+
REGISTRY: ghcr.io
|
|
13
|
+
IMAGE_NAME: ${{ github.repository }}
|
|
14
|
+
|
|
15
|
+
jobs:
|
|
16
|
+
build-and-push-image:
|
|
17
|
+
runs-on: ubuntu-latest
|
|
18
|
+
permissions:
|
|
19
|
+
contents: read
|
|
20
|
+
packages: write
|
|
21
|
+
id-token: write
|
|
22
|
+
|
|
23
|
+
steps:
|
|
24
|
+
- name: Checkout repository
|
|
25
|
+
uses: actions/checkout@v6
|
|
26
|
+
|
|
27
|
+
- name: Set up Docker Buildx
|
|
28
|
+
uses: docker/setup-buildx-action@v3
|
|
29
|
+
|
|
30
|
+
- name: Log in to the container registry
|
|
31
|
+
uses: docker/login-action@v3
|
|
32
|
+
with:
|
|
33
|
+
registry: ${{ env.REGISTRY }}
|
|
34
|
+
username: ${{ github.actor }}
|
|
35
|
+
password: ${{ secrets.GITHUB_TOKEN }}
|
|
36
|
+
|
|
37
|
+
- name: Extract container metadata
|
|
38
|
+
id: meta
|
|
39
|
+
uses: docker/metadata-action@v5
|
|
40
|
+
with:
|
|
41
|
+
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
|
|
42
|
+
labels: |
|
|
43
|
+
org.opencontainers.image.title=eodag
|
|
44
|
+
org.opencontainers.image.description=Earth Observation Data Access Gateway
|
|
45
|
+
org.opencontainers.image.url=https://github.com/{{ github.repository }}
|
|
46
|
+
org.opencontainers.image.source=https://github.com/{{ github.repository }}.git
|
|
47
|
+
org.opencontainers.image.licenses=Apache-2.0
|
|
48
|
+
org.opencontainers.image.authors=CS GROUP - France (CSSI) <eodag@csgroup.space>
|
|
49
|
+
|
|
50
|
+
- name: Build and push container image
|
|
51
|
+
id: push
|
|
52
|
+
uses: docker/build-push-action@v6
|
|
53
|
+
with:
|
|
54
|
+
context: .
|
|
55
|
+
push: true
|
|
56
|
+
tags: ${{ steps.meta.outputs.tags }}
|
|
57
|
+
labels: ${{ steps.meta.outputs.labels }}
|
|
@@ -2,9 +2,9 @@ name: Run Tests
|
|
|
2
2
|
|
|
3
3
|
on:
|
|
4
4
|
push:
|
|
5
|
-
branches: [master, develop]
|
|
5
|
+
branches: [master, develop, v3.10.x]
|
|
6
6
|
pull_request:
|
|
7
|
-
branches: [master, develop]
|
|
7
|
+
branches: [master, develop, v3.10.x]
|
|
8
8
|
schedule:
|
|
9
9
|
- cron: "0 7 * * 1"
|
|
10
10
|
workflow_dispatch:
|
|
@@ -33,7 +33,7 @@ jobs:
|
|
|
33
33
|
runs-on: ${{ matrix.os }}
|
|
34
34
|
strategy:
|
|
35
35
|
matrix:
|
|
36
|
-
python-version: [3.9, "3.
|
|
36
|
+
python-version: [3.9, "3.14"]
|
|
37
37
|
os: [ubuntu-latest, windows-latest]
|
|
38
38
|
steps:
|
|
39
39
|
- name: Checkout the repo
|
|
@@ -80,7 +80,7 @@ jobs:
|
|
|
80
80
|
uses: insightsengineering/coverage-action@v2
|
|
81
81
|
with:
|
|
82
82
|
# Path to the Cobertura XML report.
|
|
83
|
-
path: artifacts/unit-test-results-python3.
|
|
83
|
+
path: artifacts/unit-test-results-python3.14-ubuntu-latest/coverage.xml
|
|
84
84
|
# Minimum total coverage, if you want to the
|
|
85
85
|
# workflow to enforce it as a standard.
|
|
86
86
|
# This has no effect if the `fail` arg is set to `false`.
|
|
@@ -112,7 +112,7 @@ jobs:
|
|
|
112
112
|
uses: insightsengineering/coverage-action@v2
|
|
113
113
|
with:
|
|
114
114
|
# Path to the Cobertura XML report.
|
|
115
|
-
path: artifacts/unit-test-results-python3.
|
|
115
|
+
path: artifacts/unit-test-results-python3.14-windows-latest/coverage.xml
|
|
116
116
|
# Minimum total coverage, if you want to the
|
|
117
117
|
# workflow to enforce it as a standard.
|
|
118
118
|
# This has no effect if the `fail` arg is set to `false`.
|
|
@@ -2,6 +2,73 @@
|
|
|
2
2
|
Release history
|
|
3
3
|
===============
|
|
4
4
|
|
|
5
|
+
.. _changelog-unreleased:
|
|
6
|
+
|
|
7
|
+
v3.10.1 (2025-12-11)
|
|
8
|
+
====================
|
|
9
|
+
|
|
10
|
+
Bug Fixes
|
|
11
|
+
---------
|
|
12
|
+
|
|
13
|
+
* **core**: Queryables alias usage (`#1893`_, `fd00403`_)
|
|
14
|
+
|
|
15
|
+
* **core**: Skip None EOProduct.properties (`9264e54`_)
|
|
16
|
+
|
|
17
|
+
* **plugins**: Add temporal resolution to ecmwf properties (`6c82a1e`_)
|
|
18
|
+
|
|
19
|
+
* **plugins**: Cop_marine search by id (`a10d509`_)
|
|
20
|
+
|
|
21
|
+
* **plugins**: Dates formatting and missing param in ECMWFSearch queryables (`b36db01`_)
|
|
22
|
+
|
|
23
|
+
* **plugins**: Ecmwf geometries support (`8a14151`_)
|
|
24
|
+
|
|
25
|
+
* **providers**: Geodes max_items_per_page down to 80 (`0bb913b`_)
|
|
26
|
+
|
|
27
|
+
* **providers**: Renamed THEIA collections on geodes (`cba02fc`_)
|
|
28
|
+
|
|
29
|
+
Build System
|
|
30
|
+
------------
|
|
31
|
+
|
|
32
|
+
* Add docker image (`52e6088`_)
|
|
33
|
+
|
|
34
|
+
* Add python3.14 support (`57b7260`_)
|
|
35
|
+
|
|
36
|
+
Chores
|
|
37
|
+
------
|
|
38
|
+
|
|
39
|
+
* Allow pydantic >= 2.12.0 by buiding docs with python3.13 (`6be0eb7`_)
|
|
40
|
+
|
|
41
|
+
Documentation
|
|
42
|
+
-------------
|
|
43
|
+
|
|
44
|
+
* Docker image (`352607c`_)
|
|
45
|
+
|
|
46
|
+
Refactoring
|
|
47
|
+
-----------
|
|
48
|
+
|
|
49
|
+
* **collections**: CLMS and MetOp updates (`8808c5f`_)
|
|
50
|
+
|
|
51
|
+
* **core**: Whole world as default product geometry and shapely stubs (`c49e26d`_)
|
|
52
|
+
|
|
53
|
+
* **plugins**: Boto3 ServiceResource type check (`6b78dae`_)
|
|
54
|
+
|
|
55
|
+
.. _#1893: https://github.com/CS-SI/eodag/pull/1893
|
|
56
|
+
.. _0bb913b: https://github.com/CS-SI/eodag/commit/0bb913b7582fee5dad1d1d22961906e336f81719
|
|
57
|
+
.. _352607c: https://github.com/CS-SI/eodag/commit/352607cc751a7dd45d6bd905a8f92723f00ae5bd
|
|
58
|
+
.. _52e6088: https://github.com/CS-SI/eodag/commit/52e60885e72608f9b215f4f8a5b4f4ae177e8f87
|
|
59
|
+
.. _57b7260: https://github.com/CS-SI/eodag/commit/57b72600d5cd9b99427a758ad058dac3a298f26e
|
|
60
|
+
.. _6b78dae: https://github.com/CS-SI/eodag/commit/6b78dae5e76847887ca2823d36507845e557db6a
|
|
61
|
+
.. _6be0eb7: https://github.com/CS-SI/eodag/commit/6be0eb713df1aac8382f1f359335560ac413272c
|
|
62
|
+
.. _6c82a1e: https://github.com/CS-SI/eodag/commit/6c82a1ea0c46057145ff1662ba43403eff69fbca
|
|
63
|
+
.. _8808c5f: https://github.com/CS-SI/eodag/commit/8808c5fd603a838c1f7be0f2c710a85babb3f7d7
|
|
64
|
+
.. _8a14151: https://github.com/CS-SI/eodag/commit/8a14151a4c1b320191bd9ba963201520512988d7
|
|
65
|
+
.. _9264e54: https://github.com/CS-SI/eodag/commit/9264e54f5765af356d14c129a2718ee91c1adf00
|
|
66
|
+
.. _a10d509: https://github.com/CS-SI/eodag/commit/a10d509baeca36d0602bbd22c62bb06fbc13d79c
|
|
67
|
+
.. _b36db01: https://github.com/CS-SI/eodag/commit/b36db0109d4b9969835a63787a867cd0702e05c8
|
|
68
|
+
.. _c49e26d: https://github.com/CS-SI/eodag/commit/c49e26d71d5b8e8f4408be07f63cf3d2dd414a90
|
|
69
|
+
.. _cba02fc: https://github.com/CS-SI/eodag/commit/cba02fc453f435d617f24161d6d716095071f2b9
|
|
70
|
+
.. _fd00403: https://github.com/CS-SI/eodag/commit/fd004035d1415421bfb55356e9dad4ead83734ba
|
|
71
|
+
|
|
5
72
|
|
|
6
73
|
v3.10.0 (2025-10-20)
|
|
7
74
|
====================
|
|
@@ -75,7 +75,7 @@ To run the entire tests (units, integration and end-to-end):
|
|
|
75
75
|
you, please `install <https://pandoc.org/installing.html>`_ pandoc and try
|
|
76
76
|
again.
|
|
77
77
|
|
|
78
|
-
* eodag is tested against python versions 3.9, 3.10, 3.11, 3.12 and 3.
|
|
78
|
+
* eodag is tested against python versions 3.9, 3.10, 3.11, 3.12, 3.13 and 3.14. Ensure you have
|
|
79
79
|
these versions installed before you run tox. You can use
|
|
80
80
|
`pyenv <https://github.com/pyenv/pyenv>`_ to manage many different versions
|
|
81
81
|
of python
|
eodag-3.10.1/Dockerfile
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
# Copyright 2025, CS GROUP - France, https://www.csgroup.eu/
|
|
2
|
+
#
|
|
3
|
+
# This file is part of EODAG project
|
|
4
|
+
# https://www.github.com/CS-SI/EODAG
|
|
5
|
+
#
|
|
6
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
7
|
+
# you may not use this file except in compliance with the License.
|
|
8
|
+
# You may obtain a copy of the License at
|
|
9
|
+
#
|
|
10
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
11
|
+
#
|
|
12
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
13
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
14
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
15
|
+
# See the License for the specific language governing permissions and
|
|
16
|
+
# limitations under the License.
|
|
17
|
+
|
|
18
|
+
FROM python:alpine3.13
|
|
19
|
+
|
|
20
|
+
LABEL author="CS GROUP - France"
|
|
21
|
+
|
|
22
|
+
WORKDIR /app
|
|
23
|
+
|
|
24
|
+
COPY eodag/ eodag/
|
|
25
|
+
COPY setup.cfg pyproject.toml README.rst LICENSE MANIFEST.in ./
|
|
26
|
+
|
|
27
|
+
# build-base is required to enable logging
|
|
28
|
+
RUN apk add --no-cache build-base && \
|
|
29
|
+
pip install --no-cache-dir ".[all-providers]" && \
|
|
30
|
+
apk del build-base
|
|
31
|
+
|
|
32
|
+
# Create a non-root user to run the application
|
|
33
|
+
RUN addgroup -g 1000 eodag && \
|
|
34
|
+
adduser -u 1000 -G eodag \
|
|
35
|
+
-h /home/eodag \
|
|
36
|
+
-s /bin/sh \
|
|
37
|
+
-D eodag
|
|
38
|
+
USER eodag
|
|
39
|
+
|
|
40
|
+
ENTRYPOINT ["eodag"]
|
|
41
|
+
CMD ["--help"]
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: eodag
|
|
3
|
-
Version: 3.10.
|
|
3
|
+
Version: 3.10.1
|
|
4
4
|
Summary: Earth Observation Data Access Gateway
|
|
5
5
|
Home-page: https://github.com/CS-SI/eodag
|
|
6
6
|
Author: CS GROUP - France
|
|
@@ -23,6 +23,7 @@ Classifier: Programming Language :: Python :: 3.10
|
|
|
23
23
|
Classifier: Programming Language :: Python :: 3.11
|
|
24
24
|
Classifier: Programming Language :: Python :: 3.12
|
|
25
25
|
Classifier: Programming Language :: Python :: 3.13
|
|
26
|
+
Classifier: Programming Language :: Python :: 3.14
|
|
26
27
|
Classifier: Programming Language :: Python :: Implementation :: CPython
|
|
27
28
|
Classifier: Topic :: Internet :: WWW/HTTP :: Indexing/Search
|
|
28
29
|
Classifier: Topic :: Scientific/Engineering :: GIS
|
|
@@ -40,7 +41,7 @@ Requires-Dist: importlib_metadata>=5.0
|
|
|
40
41
|
Requires-Dist: jsonpath-ng
|
|
41
42
|
Requires-Dist: lxml
|
|
42
43
|
Requires-Dist: orjson
|
|
43
|
-
Requires-Dist: pydantic!=2.10.0
|
|
44
|
+
Requires-Dist: pydantic!=2.10.0,>=2.1.0
|
|
44
45
|
Requires-Dist: pydantic_core
|
|
45
46
|
Requires-Dist: PyJWT[crypto]>=2.5.0
|
|
46
47
|
Requires-Dist: pyproj>=2.1.0
|
|
@@ -115,6 +116,7 @@ Requires-Dist: types-requests; extra == "stubs"
|
|
|
115
116
|
Requires-Dist: types-python-dateutil; extra == "stubs"
|
|
116
117
|
Requires-Dist: types-PyYAML; extra == "stubs"
|
|
117
118
|
Requires-Dist: types-setuptools; extra == "stubs"
|
|
119
|
+
Requires-Dist: types-shapely; extra == "stubs"
|
|
118
120
|
Requires-Dist: types-tqdm; extra == "stubs"
|
|
119
121
|
Requires-Dist: types-urllib3; extra == "stubs"
|
|
120
122
|
Provides-Extra: docs
|
|
@@ -317,7 +319,7 @@ An eodag instance can be exposed through a STAC compliant REST api from the comm
|
|
|
317
319
|
|
|
318
320
|
.. code-block:: bash
|
|
319
321
|
|
|
320
|
-
docker run -p 5000:5000 --rm csspace/eodag-server:3.10.
|
|
322
|
+
docker run -p 5000:5000 --rm csspace/eodag-server:3.10.1
|
|
321
323
|
|
|
322
324
|
You can also browse over your STAC API server using `STAC Browser <https://github.com/radiantearth/stac-browser>`_.
|
|
323
325
|
Simply run:
|
|
@@ -377,6 +379,15 @@ Start playing with the CLI:
|
|
|
377
379
|
|
|
378
380
|
- To print log messages, add ``-v`` to eodag master command. e.g. ``eodag -v list``. The more ``v`` given (up to 3), the more verbose the tool is. For a full verbose output, do for example: ``eodag -vvv list``
|
|
379
381
|
|
|
382
|
+
Docker image
|
|
383
|
+
------------
|
|
384
|
+
|
|
385
|
+
A Docker image is available via the `GitHub Container Registry <https://github.com/CS-SI/eodag/pkgs/container/eodag>`_:
|
|
386
|
+
|
|
387
|
+
.. code-block:: bash
|
|
388
|
+
|
|
389
|
+
docker pull ghcr.io/cs-si/eodag:v3.10.x
|
|
390
|
+
|
|
380
391
|
Contribute
|
|
381
392
|
==========
|
|
382
393
|
|
|
@@ -185,7 +185,7 @@ An eodag instance can be exposed through a STAC compliant REST api from the comm
|
|
|
185
185
|
|
|
186
186
|
.. code-block:: bash
|
|
187
187
|
|
|
188
|
-
docker run -p 5000:5000 --rm csspace/eodag-server:3.10.
|
|
188
|
+
docker run -p 5000:5000 --rm csspace/eodag-server:3.10.1
|
|
189
189
|
|
|
190
190
|
You can also browse over your STAC API server using `STAC Browser <https://github.com/radiantearth/stac-browser>`_.
|
|
191
191
|
Simply run:
|
|
@@ -245,6 +245,15 @@ Start playing with the CLI:
|
|
|
245
245
|
|
|
246
246
|
- To print log messages, add ``-v`` to eodag master command. e.g. ``eodag -v list``. The more ``v`` given (up to 3), the more verbose the tool is. For a full verbose output, do for example: ``eodag -vvv list``
|
|
247
247
|
|
|
248
|
+
Docker image
|
|
249
|
+
------------
|
|
250
|
+
|
|
251
|
+
A Docker image is available via the `GitHub Container Registry <https://github.com/CS-SI/eodag/pkgs/container/eodag>`_:
|
|
252
|
+
|
|
253
|
+
.. code-block:: bash
|
|
254
|
+
|
|
255
|
+
docker pull ghcr.io/cs-si/eodag:v3.10.x
|
|
256
|
+
|
|
248
257
|
Contribute
|
|
249
258
|
==========
|
|
250
259
|
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
apiVersion: v2
|
|
2
|
-
appVersion: 3.10.
|
|
2
|
+
appVersion: 3.10.1
|
|
3
3
|
dependencies:
|
|
4
4
|
- name: common
|
|
5
5
|
repository: oci://registry-1.docker.io/bitnamicharts
|
|
@@ -15,4 +15,4 @@ name: eodag-server
|
|
|
15
15
|
sources:
|
|
16
16
|
- https://github.com/CS-SI/eodag
|
|
17
17
|
type: application
|
|
18
|
-
version: 3.10.
|
|
18
|
+
version: 3.10.1
|
|
@@ -22,6 +22,10 @@ CLMS_GLO_GDMP_333M,"Gross dry matter Productivity (GDMP) is an indication of the
|
|
|
22
22
|
CLMS_GLO_LAI_333M,"LAI was defined by CEOS as half the developed area of the convex hull wrapping the green canopy elements per unit horizontal ground. This definition allows accounting for elements which are not flat such as needles or stems. LAI is strongly non linearly related to reflectance. Therefore, its estimation from remote sensing observations will be scale dependant over heterogeneous landscapes. When observing a canopy made of different layers of vegetation, it is therefore mandatory to consider all the green layers. This is particularly important for forest canopies where the understory may represent a very significant contribution to the total canopy LAI. The derived LAI corresponds therefore to the total green LAI, including the contribution of the green elements of the understory. The product at 333m resolution is provided in Near Real Time and consolidated in the next six periods. ","OLCI,PROBA-V",Sentinel-3,,,"Land,Leaf-area-index,LAI,OLCI,PROBA-V,Sentinel-3",,other,Global 10-daily Leaf Area Index 333m,2014-01-10T00:00:00Z,CLMS_GLO_LAI_333M,,,,,,,,,available,,,,,,,,,,,,,,,,,,available
|
|
23
23
|
CLMS_GLO_NDVI_1KM_LTS,"The Normalized Difference Vegetation Index (NDVI) is a proxy to quantify the vegetation amount. It is defined as NDVI=(NIR-Red)/(NIR+Red) where NIR corresponds to the reflectance in the near infrared band, and Red to the reflectance in the red band. The time series of dekadal (10-daily) NDVI 1km version 2 observations over the period 1999-2017 is used to calculate Long Term Statistics (LTS) for each of the 36 10-daily periods (dekads) of the year. The calculated LTS include the minimum, median, maximum, average, standard deviation and the number of observations in the covered time series period. These LTS can be used as a reference for actual NDVI observations, which allows evaluating whether vegetation conditions deviate from a 'normal' situation. ","VEGETATION,PROBA-V",SPOT,,,"Land,NDVI,LTS,SPOT,VEGETATION,PROBA-V",,other,"Normalized Difference Vegetation Index: global Long Term Statistics (raster 1km) - version 2, Apr 2019",1999-01-01T00:00:00Z,CLMS_GLO_NDVI_1KM_LTS,,,,,,,,,available,,,,,,,,,,,,,,,,,,available
|
|
24
24
|
CLMS_GLO_NDVI_333M,"The Normalized Difference Vegetation Index (NDVI) is a proxy to quantify the vegetation amount. It is defined as NDVI=(NIR-Red)/(NIR+Red) where NIR corresponds to the reflectance in the near infrared band, and Red to the reflectance in the red band. It is closely related to FAPAR and is little scale dependant. ",PROBA-V,,,,"Land,NDVI,PROBA-V",,other,Global 10-daily Normalized Difference Vegetation Index 333M,2014-01-01T00:00:00Z,CLMS_GLO_NDVI_333M,,,,,,,,,available,,,,,,,,,,,,,,,,,,available
|
|
25
|
+
CLMS_HRVPP_ST,"The Seasonal Trajectories product is a filtered time series of Plant Phenology Index (PPI), with regular time step, part of the Copernicus Land Monitoring Service (CLMS) HR-VPP product suite. Plant Phenology Index (PPI) is a physically based vegetation index that is optimized for monitoring vegetation phenology and has a linear relationship with green leaf area index. The Seasonal Trajectories (ST) products are derived from a function fitting of the time series of the PPI vegetation index and hence provide a filtered PPI time series, with regular 10-day time step, together with related quality information (QFLAG). The PPI Seasonal Trajectories are derived from the PPI vegetation index and hence based on Copernicus Sentinel-2 satellite observations. The ST products are made available as a set of raster files with 10m and 100m resolution, in ETRS89/LAEA projection corresponding to the High Resolution Layers tiling grid, for those tiles that cover the EEA38 countries and the United Kingdom, and for the period from 2017 until today, with yearly updates. These Seasonal Trajectories are part of the pan-European High Resolution Vegetation Phenology and Productivity (HR-VPP) component of the Copernicus Land Monitoring Service (CLMS). ",,Sentinel-2,"S2A,S2B,S2C",,"Land,Plant-phenology-index,Phenology,Vegetation,Sentinel-2,S2A,S2B,S2C",,other,"Seasonal Trajectories, 10-daily, ST projection",,CLMS_HRVPP_ST,,,,,,,,,,,,,,,,,,,,,,,,,,,available
|
|
26
|
+
CLMS_HRVPP_ST_LAEA,"The Seasonal Trajectories product is a filtered time series of Plant Phenology Index (PPI), with regular time step, part of the Copernicus Land Monitoring Service (CLMS) HR-VPP product suite. Plant Phenology Index (PPI) is a physically based vegetation index that is optimized for monitoring vegetation phenology and has a linear relationship with green leaf area index. The Seasonal Trajectories (ST) products are derived from a function fitting of the time series of the PPI vegetation index and hence provide a filtered PPI time series, with regular 10-day time step, together with related quality information (QFLAG). The PPI Seasonal Trajectories are derived from the PPI vegetation index and hence based on Copernicus Sentinel-2 satellite observations. The ST products are made available as a set of raster files with 10m and 100m resolution, in ETRS89/LAEA projection corresponding to the High Resolution Layers tiling grid, for those tiles that cover the EEA38 countries and the United Kingdom, and for the period from 2017 until today, with yearly updates. These Seasonal Trajectories are part of the pan-European High Resolution Vegetation Phenology and Productivity (HR-VPP) component of the Copernicus Land Monitoring Service (CLMS). ",,Sentinel-2,"S2A,S2B,S2C",,"Land,Plant-phenology-index,Phenology,Vegetation,Sentinel-2,S2A,S2B,S2C",,other,"Seasonal Trajectories, 10-daily, LAEA projection",,CLMS_HRVPP_ST_LAEA,,,,,,,,,,,,,,,,,,,,,,,,,,,available
|
|
27
|
+
CLMS_HRVPP_VPP,"Vegetation Phenology and Productivity (VPP) comprise 13 parameters up to 2 seasons that characterize the vegetation growth cycle. It is part of the Copernicus Land Monitoring Service (CLMS) HR-VPP product suite. A set of 13 Vegetation Phenology and Productivity parameters are derived, for up to two growing seasons. These parameters include the start, end and length of the growing season, the dates when the vegetation index reaches its minimum and maximum values, the maximum value itself and its distance to the minimum (amplitude), the slopes of the green-up and green-down periods and the seasonal and total productivity. The Vegetation and Productivity parameters are extracted from the filtered PPI time-series, the HR-VPP Seasonal Trajectories, and hence based on Copernicus Sentinel-2 satellite observations. The VPP parameters are made available as a set of raster files with 10m and 100m resolution, in ETRS89/LAEA projection corresponding to the High Resolution Layers tiling grid, for those tiles that cover the EEA38 countries and the United Kingdom and for the period from 2017 until today, with yearly updates. This VPP product is part of the pan-European High Resolution Vegetation Phenology and Productivity (HR-VPP) component of the Copernicus Land Monitoring Service (CLMS). ",,Sentinel-2,"S2A,S2B,S2C",,"Land,Plant-phenology-index,Phenology,Vegetation,Sentinel-2,S2A,S2B,S2C",,other,"Vegetation Phenology and Productivity, yearly, UTM projection",,CLMS_HRVPP_VPP,,,,,,,,,,,,,,,,,,,,,,,,,,,available
|
|
28
|
+
CLMS_HRVPP_VPP_LAEA,"Vegetation Phenology and Productivity (VPP) comprise 13 parameters up to 2 seasons that characterize the vegetation growth cycle. It is part of the Copernicus Land Monitoring Service (CLMS) HR-VPP product suite. A set of 13 Vegetation Phenology and Productivity parameters are derived, for up to two growing seasons. These parameters include the start, end and length of the growing season, the dates when the vegetation index reaches its minimum and maximum values, the maximum value itself and its distance to the minimum (amplitude), the slopes of the green-up and green-down periods and the seasonal and total productivity. The Vegetation and Productivity parameters are extracted from the filtered PPI time-series, the HR-VPP Seasonal Trajectories, and hence based on Copernicus Sentinel-2 satellite observations. The VPP parameters are made available as a set of raster files with 10m and 100m resolution, in ETRS89/LAEA projection corresponding to the High Resolution Layers tiling grid, for those tiles that cover the EEA38 countries and the United Kingdom and for the period from 2017 until today, with yearly updates. This VPP product is part of the pan-European High Resolution Vegetation Phenology and Productivity (HR-VPP) component of the Copernicus Land Monitoring Service (CLMS). ",,Sentinel-2,"S2A,S2B,S2C",,"Land,Plant-phenology-index,Phenology,Vegetation,Sentinel-2,S2A,S2B,S2C",,other,"Vegetation Phenology and Productivity, yearly, LAEA projection",,CLMS_HRVPP_VPP_LAEA,,,,,,,,,,,,,,,,,,,,,,,,,,,available
|
|
25
29
|
CMIP6_CLIMATE_PROJECTIONS,"This catalogue entry provides daily and monthly global climate projections data from a large number of experiments, models and time periods computed in the framework of the sixth phase of the Coupled Model Intercomparison Project (CMIP6). CMIP6 data underpins the Intergovernmental Panel on Climate Change 6th Assessment Report. The use of these data is mostly aimed at:\n\naddressing outstanding scientific questions that arose as part of the IPCC reporting process; improving the understanding of the climate system; providing estimates of future climate change and related uncertainties; providing input data for the adaptation to the climate change; examining climate predictability and exploring the ability of models to predict climate on decadal time scales; evaluating how realistic the different models are in simulating the recent past.\n\nThe term ""experiments"" refers to the three main categories of CMIP6 simulations:\n\nHistorical experiments which cover the period where modern climate observations exist. These experiments show how the GCMs performs for the past climate and can be used as a reference period for comparison with scenario runs for the future. The period covered is typically 1850-2014. Climate projection experiments following the combined pathways of Shared Socioeconomic Pathway (SSP) and Representative Concentration Pathway (RCP). The SSP scenarios provide different pathways of the future climate forcing. The period covered is typically 2015-2100.\n\nThis catalogue entry provides both two- and three-dimensional data, along with an option to apply spatial and/or temporal subsetting to data requests. This is a new feature of the global climate projection dataset, which relies on compute processes run simultaneously in the ESGF nodes, where the data are originally located. The data are produced by the participating institutes of the CMIP6 project. ",CMIP6,CMIP6,CMIP6,,"ECMWF,CDS,C3S,CMIP6,historical,projection,global",,other,CMIP6 climate projections,1850-01-01T00:00:00Z,CMIP6_CLIMATE_PROJECTIONS,,,available,,,,,,,,,,,,,,,,,,,,,,,,
|
|
26
30
|
COP_DEM_GLO30_DGED,"Defence Gridded Elevation Data (DGED, 32 Bit floating point) formatted Copernicus DEM GLO-30 data. The Copernicus Digital Elevation Model is a Digital Surface Model (DSM) that represents the surface of the Earth including buildings, infrastructure and vegetation. The Copernicus DEM is provided in 3 different instances: EEA-10, GLO-30 and GLO-90. GLO-30 provides worldwide coverage at 30 meters.Data were acquired through the TanDEM-X mission between 2011 and 2015. The datasets were made available for use in 2019 and will be maintained until 2026. ",,TerraSAR,,,"TerraSAR,TanDEM-X,DEM,surface,GLO-30,DSM,GDGED",ALTIMETRIC,other,Copernicus DEM GLO-30 DGED,2010-06-21T00:00:00Z,COP_DEM_GLO30_DGED,,,,,,,available,available,available,,available,,,,,,,,,,,,,,,,available
|
|
27
31
|
COP_DEM_GLO30_DTED,"Digital Terrain Elevation Data (DTED, 16 Bit signed integer) formatted Copernicus DEM GLO-30 data. The Copernicus Digital Elevation Model is a Digital Surface Model (DSM) that represents the surface of the Earth including buildings, infrastructure and vegetation. The Copernicus DEM is provided in 3 different instances: EEA-10, GLO-30 and GLO-90. GLO-30 provides worldwide coverage at 30 meters.Data were acquired through the TanDEM-X mission between 2011 and 2015. The datasets were made available for use in 2019 and will be maintained until 2026. ",,TerraSAR,,,"TerraSAR,TanDEM-X,DEM,surface,GLO-30,DSM,DTED",ALTIMETRIC,other,Copernicus DEM GLO-30 DTED,2010-06-21T00:00:00Z,COP_DEM_GLO30_DTED,,,,,,,available,available,available,,,,,,,,,,,,,,,,,,available
|
|
@@ -29,7 +33,6 @@ COP_DEM_GLO90_DGED,"Defence Gridded Elevation Data (DGED, 32 Bit floating point)
|
|
|
29
33
|
COP_DEM_GLO90_DTED,"Digital Terrain Elevation Data (DTED, 16 Bit signed integer) formatted Copernicus DEM GLO-90 data. The Copernicus Digital Elevation Model is a Digital Surface Model (DSM) that represents the surface of the Earth including buildings, infrastructure and vegetation. The Copernicus DEM is provided in 3 different instances: EEA-10, GLO-30 and GLO-90. GLO-90 provides worldwide coverage at 90 meters.Data were acquired through the TanDEM-X mission between 2011 and 2015. The datasets were made available for use in 2019 and will be maintained until 2026. ",,TerraSAR,,,"TerraSAR,TanDEM-X,DEM,surface,GLO-90,DSM,DTED",ALTIMETRIC,other,Copernicus DEM GLO-90 DTED,2010-06-21T00:00:00Z,COP_DEM_GLO90_DTED,,,,,,,available,available,available,,,,,,,,,,,,,,,,,,available
|
|
30
34
|
DT_CLIMATE_ADAPTATION,"The Digital Twin on Climate Change Adaptation support the analysis and testing of scenarios. This in turn will support sustainable development and climate adaptation and mitigation policy-making at multi-decadal timescales, at regional and national levels. ",,Digital Twin,DT,,"DT,DE,LUMI,Destination-Earth,Digital-Twin,Climate,Change,Adaptation",ATMOSPHERIC,other,Climate Change Adaptation Digital Twin (DT),2020-01-01T00:00:00Z,DT_CLIMATE_ADAPTATION,,,,,,,,,available,available,,,,,,,,,,,,,,,,,
|
|
31
35
|
DT_EXTREMES,The Digital Twin on Weather-Induced and Geophysical Extremes provides capabilities for the assessment and prediction of environmental extremes in support of risk assessment and management. ,,Digital Twin,DT,,"DT,DE,LUMI,Destination-Earth,Digital-Twin,Weather,Geophysical,Extremes",ATMOSPHERIC,other,Weather and Geophysical Extremes Digital Twin (DT),2024-04-04T00:00:00Z,DT_EXTREMES,,,,,,,,,available,available,,,,,,,,,,,,,,,,,
|
|
32
|
-
EEA_DAILY_VI,"Vegetation Indices (VI) comprises four daily vegetation indices (PPI, NDVI, LAI and FAPAR) and quality information, that are part of the Copernicus Land Monitoring Service (CLMS) HR-VPP product suite. The 10m resolution, daily updated Plant Phenology Index (PPI), Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) are derived from Copernicus Sentinel-2 satellite observations. They are provided together with a related quality indicator (QFLAG2) that flags clouds, shadows, snow, open water and other areas where the VI retrieval is less reliable. These Vegetation Indices are made available as a set of raster files with 10 x 10m resolution, in UTM/WGS84 projection corresponding to the Sentinel-2 tiling grid, for those tiles that cover the EEA38 countries and the United Kingdom and for the period from 2017 until today, with daily updates. The Vegetation Indices are part of the pan-European High Resolution Vegetation Phenology and Productivity (HR-VPP) component of the Copernicus Land Monitoring Service (CLMS). ",,Sentinel-2,"S2A,S2B,S2C",,"Land,Plant-phenology-index,Phenology,Vegetation,Sentinel-2,S2A,S2B,S2C",RADAR,other,"Vegetation Indices, daily, UTM projection",,EEA_DAILY_VI,,,,,,,,,available,,,,,,,,,,,,,,,,,,available
|
|
33
36
|
EEA_HRL_TCF,Tree Cover Fraction (TCF) is defined as the percentage of ground covered by tree canopy when viewed from above. It is a biophysical variable that characterizes the land surface and is important for many applications in environmental and climate studies. TCF is derived from Sentinel-2 imagery at 20m resolution using a machine learning approach. The TCF product is part of the pan-European High Resolution Vegetation Phenology and Productivity (HR-VPP) component of the Copernicus Land Monitoring Service (CLMS). ,,Sentinel-2,"S2A,S2B,S2C",,"Land,Tree-cover-fraction,TCF,Sentinel-2,S2A,S2B,S2C",RADAR,other,"Tree Cover Fraction, UTM projection",2017-01-01T00:00:00Z,EEA_HRL_TCF,,,,,,,,,,,,,,,,,,,,,,,,,,,available
|
|
34
37
|
EFAS_FORECAST,"This dataset provides gridded modelled hydrological time series forced with medium-range meteorological forecasts. The data is a consistent representation of the most important hydrological variables across the European Flood Awareness System (EFAS) domain. The temporal resolution is sub-daily high-resolution and ensemble forecasts of:\n\nRiver discharge\nSoil moisture for three soil layers\nSnow water equivalent\n\nIt also provides static data on soil depth for the three soil layers. Soil moisture and river discharge data are accompanied by ancillary files for interpretation (see related variables and links in the documentation).\nThis data set was produced by forcing the LISFLOOD hydrological model at a 5x5km resolution with meteorological forecasts. The forecasts are initialised twice daily at 00 and 12 UTC with time steps of 6 or 24 hours and lead times between 5 and 15 days depending on the forcing numerical weather prediction model. The forcing meteorological data are high-resolution and ensemble forecasts from the European Centre of Medium-range Weather Forecasts (ECMWF) with 51 ensemble members, high-resolution forecasts from the Deutsches Wetter Dienst (DWD) and the ensemble forecasts from the COSMO Local Ensemble Prediction System (COSMO-LEPS) with 20 ensemble members. The hydrological forecasts are available from 2018-10-10 up until present with a 30-day delay. The real-time data is only available to EFAS partners.\nCompanion datasets, also available through the CDS, are historical simulations which can be used to derive the hydrological climatology and for verification; reforecasts for research, local skill assessment and post-processing; and seasonal forecasts and reforecasts for users looking for longer leadtime forecasts. For users looking for global hydrological data, we refer to the Global Flood Awareness System (GloFAS) forecasts and historical simulations. All these datasets are part of the operational flood forecasting within the Copernicus Emergency Management Service (CEMS).\n\nVariables in the dataset/application are:\nRiver discharge in the last 24 hours, River discharge in the last 6 hours, Snow depth water equivalent, Soil depth, Volumetric soil moisture\n\nVariables in the dataset/application are:\nOrography, Upstream area ",,CEMS,CEMS,,"ECMWF,CEMS,EFAS,forecast,river,discharge",ATMOSPHERIC,other,River discharge and related forecasted data by the European Flood Awareness System,2018-10-11T00:00:00Z,EFAS_FORECAST,,,,,available,,,,available,,,,,,,,,,,,,,,,,,
|
|
35
38
|
EFAS_HISTORICAL,"This dataset provides gridded modelled daily hydrological time series forced with meteorological observations. The data set is a consistent representation of the most important hydrological variables across the European Flood Awareness System (EFAS) domain. The temporal resolution is up to 30 years modelled time series of:\n\nRiver discharge\nSoil moisture for three soil layers\nSnow water equivalent\n\nIt also provides static data on soil depth for the three soil layers. Soil moisture and river discharge data are accompanied by ancillary files for interpretation (see related variables and links in the documentation).\nThis dataset was produced by forcing the LISFLOOD hydrological model with gridded observational data of precipitation and temperature at a 5x5 km resolution across the EFAS domain. The most recent version\nuses a 6-hourly time step, whereas older versions uses a 24-hour time step. It is available from 1991-01-01 up until near-real time, with a delay of 6 days. The real-time data is only available to EFAS partners.\nCompanion datasets, also available through the CDS, are forecasts for users who are looking medium-range forecasts, reforecasts for research, local skill assessment and post-processing, and seasonal forecasts and reforecasts for users looking for long-term forecasts. For users looking for global hydrological data, we refer to the Global Flood Awareness System (GloFAS) forecasts and historical simulations. All these datasets are part of the operational flood forecasting within the Copernicus Emergency Management Service (CEMS).\n\nVariables in the dataset/application are:\nRiver discharge in the last 24 hours, River discharge in the last 6 hours, Snow depth water equivalent, Soil depth, Volumetric soil moisture\n\nVariables in the dataset/application are:\nOrography, Upstream area ",,CEMS,CEMS,,"ECMWF,CEMS,EFAS,historical,river,discharge",ATMOSPHERIC,other,River discharge and related historical data from the European Flood Awareness System,1991-01-01T06:00:00Z,EFAS_HISTORICAL,,,,,available,,,,available,,,,,,,,,,,,,,,,,,
|
|
@@ -67,7 +70,7 @@ GSW_OCCURRENCE,The Global Surface Water Occurrence shows where surface water occ
|
|
|
67
70
|
GSW_RECURRENCE,The Global Surface Water Recurrence provides information concerning the inter-annual behaviour of water surfaces and captures the frequency with which water returns from year to year. ,,GSW,GSW,,"PEKEL, Global Surface Water, Recurrence, Landsat",HYDROLOGICAL,proprietary,Global Surface Water Recurrence 1984-2021,1984-01-01T00:00:00Z,GSW_RECURRENCE,,,,,,,,,available,,,,,,,,,,,,,,,,,,
|
|
68
71
|
GSW_SEASONALITY,The Global Surface Water Seasonality map provides information concerning the intra-annual behaviour of water surfaces for a single year (2021) and shows permanent and seasonal water and the number of months water was present. ,,GSW,GSW,,"PEKEL, Global Surface Water, Seasonality, Landsat",HYDROLOGICAL,proprietary,Global Surface Water Seasonality 2014-2020,2014-01-01T00:00:00Z,GSW_SEASONALITY,,,,,,,,,available,,,,,,,,,,,,,,,,,,
|
|
69
72
|
GSW_TRANSITIONS,"The Global Surface Water Transitions map provides information on the change in surface water seasonality between the first and last years (between 1984 and 2021) and captures changes between the three classes of not water, seasonal water and permanent water. ",,GSW,GSW,,"PEKEL, Global Surface Water, Transitions, Landsat",HYDROLOGICAL,proprietary,Global Surface Water Transitions 1984-2021,1984-01-01T00:00:00Z,GSW_TRANSITIONS,,,,,,,,,available,,,,,,,,,,,,,,,,,,
|
|
70
|
-
HIRS_FDR_1_MULTI,"This is Release
|
|
73
|
+
HIRS_FDR_1_MULTI,"This is Release 2 of the Fundamental Data Record (FDR) brightness temperatures from the High Resolution Infrared Radiation Sounder (HIRS) on board NOAA and Metop satellites. The data record covers more than 40 years from 29 October 1978 to 31 December 2022. Release 2 provides recalibrated Level 1c brightness temperatures based on the V4.0 calibration method developed by Cao et al. (2007). This method was implemented into the NWP-SAF software ATOVS and AVHRR processing Package (AAPP). This software was consistently used to recalibrate and reprocess data from all HIRS instruments on board TIROS-N, NOAA-06 to NOAA-19, Metop-A, and Metop-B. Input HIRS data were collected from NOAA/CLASS and ECMWF archives and merged to produce a longer time series of some of the satellites. ",HIRS,"Metop,TIROS,NOAA","Metop,TIROS,NOAA",L1C,"HIRS,L1C,HIRS,TIROS,Metop,NOAA,Sounder,FDR",Sounder,other,HIRS Level 1C Fundamental Data Record Release 2 - Multimission - Global,1978-10-29T00:00:00Z,HIRS_FDR_1_MULTI,,,,,,,,,,,,,,available,,,,,,,,,,,,,
|
|
71
74
|
ISIMIP_CLIMATE_FORCING_ISIMIP3B,"The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) provides a framework for the collation of a consistent set of climate impact data across sectors and scales. It also provides a unique opportunity for considering interactions between climate change impacts across sectors through consistent scenarios.\n\nThe ISIMIP3b part of the third simulation round is dedicated to a quantification of climate-related risks at different levels of global warming and socio-economic change. ISIMIP3b group I simulations are based on historical climate change as simulated in CMIP6 combined with observed historical socio-economic forcing. ISIMIP3b group II simulations are based on climate change according to the CMIP6 future projections combined with socio-economic forcings fixed at 2015 levels. ISIMIP3b group III simulations additionally account for future changes in socio-economic forcing.\n\nThis collection contains bias-adjusted atmospheric climate input data, atmospheric composition input data as well as ocean and lightning input data. ",,ISIMIP,ISIMIP,,"ISIMIP, CLIMATE-FORCING, ISIMIP3b, atmospheric, climate, HRMC",,other,ISIMIP3b climate input data,1601-01-01T00:00:00Z,ISIMIP_CLIMATE_FORCING_ISIMIP3B,,,,,,,,,available,,,,,,,,,,,,,,,,,,
|
|
72
75
|
ISIMIP_SOCIO_ECONOMIC_FORCING_ISIMIP3B,"The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) provides a framework for the collation of a consistent set of climate impact data across sectors and scales. It also provides a unique opportunity for considering interactions between climate change impacts across sectors through consistent scenarios.\n\nThe ISIMIP3b part of the third simulation round is dedicated to a quantification of climate-related risks at different levels of global warming and socio-economic change. ISIMIP3b group I simulations are based on historical climate change as simulated in CMIP6 combined with observed historical socio-economic forcing. ISIMIP3b group II simulations are based on climate change according to the CMIP6 future projections combined with socio-economic forcings fixed at 2015 levels. ISIMIP3b group III simulations additionally account for future changes in socio-economic forcing. This collection contains fishing, lake fraction, land use, land transition, water abstraction and wood harvesting input data as well as information about crops and fertilizers ",,ISIMIP,ISIMIP,,"ISIMIP, SOCIO-ECONOMIC-FORCING, ISIMIP3b, socioeconomic",,other,ISIMIP3b socio-economic input data,1601-01-01T00:00:00Z,ISIMIP_SOCIO_ECONOMIC_FORCING_ISIMIP3B,,,,,,,,,available,,,,,,,,,,,,,,,,,,
|
|
73
76
|
L8_OLI_TIRS_C1L1,Landsat 8 Operational Land Imager and Thermal Infrared Sensor Collection 1 Level-1 products. Details at https://landsat.usgs.gov/sites/default/files/documents/LSDS-1656_Landsat_Level-1_Product_Collection_Definition.pdf ,"OLI,TIRS",LANDSAT8,L8,L1,"OLI,TIRS,LANDSAT,LANDSAT8,L8,L1,C1,COLLECTION1",OPTICAL,other,Landsat 8 Level-1,2013-02-11T00:00:00Z,L8_OLI_TIRS_C1L1,available,,,,,,,,,,,available,,,,,,,,,,,,,,,
|
|
@@ -157,6 +157,15 @@ Please note that if you did not customize EODAG with new providers settings, thi
|
|
|
157
157
|
For more information on the product types discovery mechanism, please see
|
|
158
158
|
`Python API User Guide / Providers and products / Product types discovery <notebooks/api_user_guide/2_providers_products_available.html#Product-types-discovery>`_.
|
|
159
159
|
|
|
160
|
+
Docker image
|
|
161
|
+
------------
|
|
162
|
+
|
|
163
|
+
A Docker image is available via the `GitHub Container Registry <https://github.com/CS-SI/eodag/pkgs/container/eodag>`_:
|
|
164
|
+
|
|
165
|
+
.. code-block:: bash
|
|
166
|
+
|
|
167
|
+
docker pull ghcr.io/cs-si/eodag:v3.10.x
|
|
168
|
+
|
|
160
169
|
Server mode
|
|
161
170
|
-----------
|
|
162
171
|
|
|
@@ -99,7 +99,7 @@ available on `https://hub.docker.com/r/csspace/eodag-server <https://hub.docker.
|
|
|
99
99
|
|
|
100
100
|
.. code-block:: bash
|
|
101
101
|
|
|
102
|
-
$ docker run -p 5000:5000 --rm csspace/eodag-server:3.10.
|
|
102
|
+
$ docker run -p 5000:5000 --rm csspace/eodag-server:3.10.1
|
|
103
103
|
|
|
104
104
|
Example
|
|
105
105
|
-------
|
|
@@ -56,7 +56,7 @@ from eodag.plugins.search import PreparedSearch
|
|
|
56
56
|
from eodag.plugins.search.build_search_result import MeteoblueSearch
|
|
57
57
|
from eodag.plugins.search.qssearch import PostJsonSearch
|
|
58
58
|
from eodag.types import model_fields_to_annotated
|
|
59
|
-
from eodag.types.queryables import CommonQueryables, QueryablesDict
|
|
59
|
+
from eodag.types.queryables import CommonQueryables, Queryables, QueryablesDict
|
|
60
60
|
from eodag.utils import (
|
|
61
61
|
DEFAULT_DOWNLOAD_TIMEOUT,
|
|
62
62
|
DEFAULT_DOWNLOAD_WAIT,
|
|
@@ -2318,8 +2318,14 @@ class EODataAccessGateway:
|
|
|
2318
2318
|
plugin.provider,
|
|
2319
2319
|
)
|
|
2320
2320
|
|
|
2321
|
+
# use queryables aliases
|
|
2322
|
+
kwargs_alias = {**kwargs}
|
|
2323
|
+
for search_param, field_info in Queryables.model_fields.items():
|
|
2324
|
+
if search_param in kwargs and field_info.alias:
|
|
2325
|
+
kwargs_alias[field_info.alias] = kwargs_alias.pop(search_param)
|
|
2326
|
+
|
|
2321
2327
|
plugin_queryables = plugin.list_queryables(
|
|
2322
|
-
|
|
2328
|
+
kwargs_alias,
|
|
2323
2329
|
available_product_types,
|
|
2324
2330
|
product_type_configs,
|
|
2325
2331
|
product_type,
|
|
@@ -48,6 +48,7 @@ from eodag.api.product.metadata_mapping import (
|
|
|
48
48
|
from eodag.utils import (
|
|
49
49
|
DEFAULT_DOWNLOAD_TIMEOUT,
|
|
50
50
|
DEFAULT_DOWNLOAD_WAIT,
|
|
51
|
+
DEFAULT_SHAPELY_GEOMETRY,
|
|
51
52
|
DEFAULT_STREAM_REQUESTS_TIMEOUT,
|
|
52
53
|
USER_AGENT,
|
|
53
54
|
ProgressCallback,
|
|
@@ -67,12 +68,6 @@ if TYPE_CHECKING:
|
|
|
67
68
|
from eodag.types.download_args import DownloadConf
|
|
68
69
|
from eodag.utils import Unpack
|
|
69
70
|
|
|
70
|
-
try:
|
|
71
|
-
from shapely.errors import GEOSException
|
|
72
|
-
except ImportError:
|
|
73
|
-
# shapely < 2.0 compatibility
|
|
74
|
-
from shapely.errors import TopologicalError as GEOSException
|
|
75
|
-
|
|
76
71
|
|
|
77
72
|
logger = logging.getLogger("eodag.product")
|
|
78
73
|
|
|
@@ -136,6 +131,7 @@ class EOProduct:
|
|
|
136
131
|
if key != "geometry"
|
|
137
132
|
and value != NOT_MAPPED
|
|
138
133
|
and NOT_AVAILABLE not in str(value)
|
|
134
|
+
and value is not None
|
|
139
135
|
}
|
|
140
136
|
if "geometry" not in properties or (
|
|
141
137
|
(
|
|
@@ -144,17 +140,17 @@ class EOProduct:
|
|
|
144
140
|
)
|
|
145
141
|
and "defaultGeometry" not in properties
|
|
146
142
|
):
|
|
147
|
-
|
|
148
|
-
f"No geometry available to build EOProduct(id={properties.get('id')}, provider={provider})"
|
|
149
|
-
)
|
|
143
|
+
product_geometry = DEFAULT_SHAPELY_GEOMETRY
|
|
150
144
|
elif not properties["geometry"] or properties["geometry"] == NOT_AVAILABLE:
|
|
151
145
|
product_geometry = properties.pop("defaultGeometry", DEFAULT_GEOMETRY)
|
|
152
146
|
else:
|
|
153
147
|
product_geometry = properties["geometry"]
|
|
154
148
|
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
149
|
+
geometry_obj = get_geometry_from_various(geometry=product_geometry)
|
|
150
|
+
# whole world as default geometry
|
|
151
|
+
if geometry_obj is None:
|
|
152
|
+
geometry_obj = DEFAULT_SHAPELY_GEOMETRY
|
|
153
|
+
self.geometry = self.search_intersection = geometry_obj
|
|
158
154
|
|
|
159
155
|
self.search_kwargs = kwargs
|
|
160
156
|
if self.search_kwargs.get("geometry") is not None:
|
|
@@ -163,7 +159,7 @@ class EOProduct:
|
|
|
163
159
|
)
|
|
164
160
|
try:
|
|
165
161
|
self.search_intersection = self.geometry.intersection(searched_geom)
|
|
166
|
-
except
|
|
162
|
+
except ShapelyError:
|
|
167
163
|
logger.warning(
|
|
168
164
|
"Unable to intersect the requested extent: %s with the product "
|
|
169
165
|
"geometry: %s",
|
|
@@ -42,6 +42,7 @@ from shapely.ops import transform
|
|
|
42
42
|
from eodag.types.queryables import Queryables
|
|
43
43
|
from eodag.utils import (
|
|
44
44
|
DEFAULT_PROJ,
|
|
45
|
+
DEFAULT_SHAPELY_GEOMETRY,
|
|
45
46
|
_deprecated,
|
|
46
47
|
deepcopy,
|
|
47
48
|
dict_items_recursive_apply,
|
|
@@ -340,14 +341,16 @@ def format_metadata(search_param: str, *args: Any, **kwargs: Any) -> str:
|
|
|
340
341
|
@staticmethod
|
|
341
342
|
def convert_to_bounds(input_geom_unformatted: Any) -> list[float]:
|
|
342
343
|
input_geom = get_geometry_from_various(geometry=input_geom_unformatted)
|
|
344
|
+
if input_geom is None:
|
|
345
|
+
input_geom = DEFAULT_SHAPELY_GEOMETRY
|
|
343
346
|
if isinstance(input_geom, MultiPolygon):
|
|
344
347
|
geoms = [geom for geom in input_geom.geoms]
|
|
345
348
|
# sort with larger one at first (stac-browser only plots first one)
|
|
346
349
|
geoms.sort(key=lambda x: x.area, reverse=True)
|
|
347
|
-
min_lon = 180
|
|
348
|
-
min_lat = 90
|
|
349
|
-
max_lon = -180
|
|
350
|
-
max_lat = -90
|
|
350
|
+
min_lon = 180.0
|
|
351
|
+
min_lat = 90.0
|
|
352
|
+
max_lon = -180.0
|
|
353
|
+
max_lat = -90.0
|
|
351
354
|
for geom in geoms:
|
|
352
355
|
min_lon = min(min_lon, geom.bounds[0])
|
|
353
356
|
min_lat = min(min_lat, geom.bounds[1])
|
|
@@ -70,6 +70,7 @@ class FilterLatestIntersect(Crunch):
|
|
|
70
70
|
# Warning: May crash if startTimeFromAscendingNode is not in the appropriate format
|
|
71
71
|
products.sort(key=self.sort_product_by_start_date, reverse=True)
|
|
72
72
|
filtered: list[EOProduct] = []
|
|
73
|
+
search_extent: BaseGeometry
|
|
73
74
|
add_to_filtered = filtered.append
|
|
74
75
|
footprint: Union[dict[str, Any], BaseGeometry, Any] = search_params.get(
|
|
75
76
|
"geometry"
|
|
@@ -20,15 +20,11 @@ from __future__ import annotations
|
|
|
20
20
|
import logging
|
|
21
21
|
from typing import TYPE_CHECKING, Any
|
|
22
22
|
|
|
23
|
+
from shapely.errors import ShapelyError
|
|
24
|
+
|
|
23
25
|
from eodag.plugins.crunch.base import Crunch
|
|
24
26
|
from eodag.utils import get_geometry_from_various
|
|
25
27
|
|
|
26
|
-
try:
|
|
27
|
-
from shapely.errors import GEOSException
|
|
28
|
-
except ImportError:
|
|
29
|
-
# shapely < 2.0 compatibility
|
|
30
|
-
from shapely.errors import TopologicalError as GEOSException
|
|
31
|
-
|
|
32
28
|
if TYPE_CHECKING:
|
|
33
29
|
from eodag.api.product import EOProduct
|
|
34
30
|
|
|
@@ -108,7 +104,7 @@ class FilterOverlap(Crunch):
|
|
|
108
104
|
product_geometry = product.geometry.buffer(0)
|
|
109
105
|
try:
|
|
110
106
|
intersection = search_geom.intersection(product_geometry)
|
|
111
|
-
except
|
|
107
|
+
except ShapelyError:
|
|
112
108
|
logger.debug(
|
|
113
109
|
"Product geometry still invalid. Overlap test restricted to containment"
|
|
114
110
|
)
|
|
@@ -716,7 +716,7 @@ class AwsDownload(Download):
|
|
|
716
716
|
ignore_assets,
|
|
717
717
|
product,
|
|
718
718
|
)
|
|
719
|
-
if auth and isinstance(auth, boto3.
|
|
719
|
+
if auth and isinstance(auth, boto3.resource("s3").__class__):
|
|
720
720
|
s3_resource = auth
|
|
721
721
|
else:
|
|
722
722
|
s3_resource = boto3.resource(
|