enzymetk 0.0.1__tar.gz → 0.0.6__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (51) hide show
  1. {enzymetk-0.0.1 → enzymetk-0.0.6}/PKG-INFO +61 -24
  2. {enzymetk-0.0.1 → enzymetk-0.0.6}/README.md +57 -16
  3. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/__init__.py +1 -24
  4. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/annotateEC_CLEAN_step.py +2 -2
  5. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/annotateEC_CREEP_step.py +1 -1
  6. enzymetk-0.0.6/enzymetk/dock_boltz_step.py +46 -0
  7. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/dock_chai_step.py +5 -3
  8. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/dock_vina_step.py +49 -16
  9. enzymetk-0.0.6/enzymetk/embedprotein_esm3_step.py +71 -0
  10. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/embedprotein_esm_step.py +5 -4
  11. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/inpaint_ligandMPNN_step.py +3 -2
  12. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/predict_catalyticsite_run.py +1 -1
  13. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/predict_catalyticsite_step.py +20 -12
  14. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/sequence_search_blast.py +33 -4
  15. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/similarity_foldseek_step.py +26 -6
  16. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/similarity_reaction_step.py +12 -8
  17. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/similarity_substrate_step.py +8 -2
  18. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/step.py +5 -3
  19. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk.egg-info/PKG-INFO +61 -24
  20. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk.egg-info/SOURCES.txt +2 -0
  21. enzymetk-0.0.6/enzymetk.egg-info/requires.txt +6 -0
  22. {enzymetk-0.0.1 → enzymetk-0.0.6}/setup.py +3 -7
  23. enzymetk-0.0.1/enzymetk.egg-info/requires.txt +0 -11
  24. {enzymetk-0.0.1 → enzymetk-0.0.6}/LICENSE +0 -0
  25. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/annotateEC_proteinfer_step.py +0 -0
  26. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/embedchem_chemberta_step.py +0 -0
  27. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/embedchem_rxnfp_run.py +0 -0
  28. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/embedchem_rxnfp_step.py +0 -0
  29. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/embedchem_selformer_run.py +0 -0
  30. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/embedchem_selformer_step.py +0 -0
  31. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/embedchem_unimol_step.py +0 -0
  32. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/esm-extract.py +0 -0
  33. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/filter_sequence_step.py +0 -0
  34. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/filter_structure_step.py +0 -0
  35. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/generate_msa_step.py +0 -0
  36. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/generate_oligopool_step.py +0 -0
  37. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/generate_tree_step.py +0 -0
  38. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/main.py +0 -0
  39. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/metagenomics_porechop_trim_reads_step.py +0 -0
  40. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/metagenomics_prokka_annotate_genes.py +0 -0
  41. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/pipeline.py +0 -0
  42. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/predict_activity_step.py +0 -0
  43. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/reducedim_pca_run.py +0 -0
  44. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/reducedim_vae_run.py +0 -0
  45. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/reducedim_vae_step.py +0 -0
  46. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/save_step.py +0 -0
  47. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk/similarity_mmseqs_step.py +0 -0
  48. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk.egg-info/dependency_links.txt +0 -0
  49. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk.egg-info/entry_points.txt +0 -0
  50. {enzymetk-0.0.1 → enzymetk-0.0.6}/enzymetk.egg-info/top_level.txt +0 -0
  51. {enzymetk-0.0.1 → enzymetk-0.0.6}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.2
1
+ Metadata-Version: 2.4
2
2
  Name: enzymetk
3
- Version: 0.0.1
3
+ Version: 0.0.6
4
4
  Home-page: https://github.com/arianemora/enzyme-tk/
5
5
  Author: Ariane Mora
6
6
  Author-email: ariane.n.mora@gmail.com
@@ -18,17 +18,12 @@ Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
18
18
  Requires-Python: >=3.8
19
19
  Description-Content-Type: text/markdown
20
20
  License-File: LICENSE
21
- Requires-Dist: fair-esm
22
21
  Requires-Dist: scikit-learn
23
22
  Requires-Dist: numpy
24
23
  Requires-Dist: seaborn
25
24
  Requires-Dist: sciutil
26
- Requires-Dist: pandas==2.1.4
25
+ Requires-Dist: pandas
27
26
  Requires-Dist: biopython
28
- Requires-Dist: sentence_transformers
29
- Requires-Dist: pubchempy
30
- Requires-Dist: pyfaidx
31
- Requires-Dist: spacy
32
27
  Dynamic: author
33
28
  Dynamic: author-email
34
29
  Dynamic: classifier
@@ -37,6 +32,7 @@ Dynamic: description-content-type
37
32
  Dynamic: home-page
38
33
  Dynamic: keywords
39
34
  Dynamic: license
35
+ Dynamic: license-file
40
36
  Dynamic: project-url
41
37
  Dynamic: requires-dist
42
38
  Dynamic: requires-python
@@ -45,26 +41,36 @@ Dynamic: requires-python
45
41
 
46
42
  Enzyme-tk is a collection of tools for enzyme engineering, setup as interoperable modules that act on dataframes. These modules are designed to be imported into pipelines for specific function. For this reason, `steps` as each module is called (e.g. finding similar proteins with `BLAST` would be considered a step) are designed to be as light as possible. An example of a pipeline is the [annotate-e](https://github.com/ArianeMora/annotate-e) ` pipeline, this acts to annotate a fasta with an ensemble of methods (each is designated as an Enzyme-tk step).
47
43
 
44
+
45
+ **If you have any issues installing, let me know - this has been tested only on Linux/Ubuntu. Please post an issue!**
46
+
48
47
  ## Installation
49
48
 
49
+ ## Install base package to import modules
50
+
50
51
  ```bash
51
- source enzymetk/conda_envs/install_all.sh
52
+ pip install enzymetk
52
53
  ```
53
54
 
54
- ## Install subsets of enzyme-tk
55
+ ### Install only the specific requirements you need (recomended)
55
56
 
57
+ For this clone the repo and then install the requirements for the specific modules you use
56
58
  ```bash
57
59
  git clone git@github.com:ArianeMora/enzyme-tk.git
58
- python setup.py sdist bdist_wheel
59
- pip install dist/enzymetk-0.0.1.tar.gz
60
+ cd enzymetk/conda_envs/ # would recommend looking at thes
61
+ # e.g. to install all from within that folder you would do
62
+ source install_all.sh
60
63
  ```
61
64
 
62
65
  ## Usage
63
66
 
64
67
  If you have any issues at all just email me using my caltech email: `amora at caltech . edu`
65
68
 
69
+ This is a work-in progress! e.g. some tools (e.g. proteInfer and CLEAN) require extra data to be downloaded in order to run (like model weights.) I'm working on integrating these atm, buzz me if you need this!
70
+
66
71
  Here are some of the tools that have been implemented to be chained together as a pipeline:
67
72
 
73
+ [boltz2](https://github.com/jwohlwend/boltz)
68
74
  [mmseqs2](https://github.com/soedinglab/mmseqs2)
69
75
  [foldseek](https://github.com/steineggerlab/foldseek)
70
76
  [diamond](https://github.com/bbuchfink/diamond)
@@ -83,6 +89,7 @@ Here are some of the tools that have been implemented to be chained together as
83
89
  [fasttree](https://morgannprice.github.io/fasttree/)
84
90
  [Porechop](https://github.com/rrwick/Porechop)
85
91
  [prokka](https://github.com/tseemann/prokka)
92
+
86
93
  ## Things to note
87
94
 
88
95
  All the tools use the conda env of `enzymetk` by default.
@@ -114,6 +121,8 @@ The steps are the main building blocks of the pipeline. They are responsible for
114
121
 
115
122
  BLAST is a tool for searching a database of sequences for similar sequences. Here you can either pass a database that you have already created or pass the sequences as part of your dataframe and pass the label column (this needs to have two values: reference and query) reference refers to sequences that you want to search against and query refers to sequences that you want to search for.
116
123
 
124
+ Note you need to have installed the BLAST environment.
125
+
117
126
  ```python
118
127
  id_col = 'Entry'
119
128
  seq_col = 'Sequence'
@@ -142,6 +151,34 @@ df = pd.DataFrame(rows, columns=[id_col, seq_col])
142
151
  print(df)
143
152
  df << (ActiveSitePred(id_col, seq_col, squidly_dir, num_threads) >> Save('tmp/squidly_as_pred.pkl'))
144
153
 
154
+ ```
155
+ ### Boltz2
156
+
157
+ Boltz2 is a model for predicting structures. Note you need docko installed as I run via that.
158
+
159
+ Below is an example using boltz with 4 threads, and uses a cofactor (intermediate in this case). Just set to be None for a single substrate version.
160
+ ```
161
+ import sys
162
+ from enzymetk.dock_boltz_step import Boltz
163
+ from enzymetk.save_step import Save
164
+ import pandas as pd
165
+ import os
166
+ os.environ['MKL_THREADING_LAYER'] = 'GNU'
167
+
168
+ output_dir = 'tmp/'
169
+ num_threads = 4
170
+ id_col = 'Entry'
171
+ seq_col = 'Sequence'
172
+ substrate_col = 'Substrate'
173
+ intermediate_col = 'Intermediate'
174
+
175
+ rows = [['P0DP23_boltz_8999', 'MALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAA', 'CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC', 'CC1=C(C2=CC3=C(C(=C([N-]3)C=C4C(=C(C(=N4)C=C5C(=C(C(=N5)C=C1[N-]2)C)C=C)C)C=C)C)CCC(=O)[O-])CCC(=O)[O-].[Fe]'],
176
+ ['P0DP24_boltz_p1', 'MALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAA', 'CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC', 'CC1=C(C2=CC3=C(C(=C([N-]3)C=C4C(=C(C(=N4)C=C5C(=C(C(=N5)C=C1[N-]2)C)C=C)C)C=C)C)CCC(=O)[O-])CCC(=O)[O-].[Fe]'],
177
+ ['P0DP23_boltz_p2', 'MALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAA', 'CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC', 'CC1=C(C2=CC3=C(C(=C([N-]3)C=C4C(=C(C(=N4)C=C5C(=C(C(=N5)C=C1[N-]2)C)C=C)C)C=C)C)CCC(=O)[O-])CCC(=O)[O-].[Fe]'],
178
+ ['P0DP24_boltz_p3', 'MALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAA', 'CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC', 'CC1=C(C2=CC3=C(C(=C([N-]3)C=C4C(=C(C(=N4)C=C5C(=C(C(=N5)C=C1[N-]2)C)C=C)C)C=C)C)CCC(=O)[O-])CCC(=O)[O-].[Fe]'],
179
+ ['P0DP24_boltz_p4', 'MALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAA', 'CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC', 'CC1=C(C2=CC3=C(C(=C([N-]3)C=C4C(=C(C(=N4)C=C5C(=C(C(=N5)C=C1[N-]2)C)C=C)C)C=C)C)CCC(=O)[O-])CCC(=O)[O-].[Fe]']]
180
+ df = pd.DataFrame(rows, columns=[id_col, seq_col, substrate_col, intermediate_col])
181
+ df << (Boltz(id_col, seq_col, substrate_col, intermediate_col, f'{output_dir}', num_threads) >> Save(f'{output_dir}test.pkl'))
145
182
  ```
146
183
 
147
184
  ### Chai
@@ -169,8 +206,8 @@ df << (Chai(id_col, seq_col, substrate_col, f'{output_dir}', num_threads) >> Sav
169
206
  ChemBERTa2 encodes reactions and SMILES strings into a vector space. Note this requires the base environment, i.e. `enzymetk` conda env.
170
207
 
171
208
  ```python
172
- from steps.embedchem_chemberta_step import ChemBERT
173
- from steps.save_step import Save
209
+ from enzymetk.embedchem_chemberta_step import ChemBERT
210
+ from enzymetk.save_step import Save
174
211
 
175
212
  output_dir = 'tmp/'
176
213
  num_threads = 1
@@ -180,7 +217,7 @@ substrate_col = 'Substrate'
180
217
  rows = [['P0DP23', 'MALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAA', 'CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC'],
181
218
  ['P0DP24', 'MALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAA', 'CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC']]
182
219
  df = pd.DataFrame(rows, columns=[id_col, seq_col, substrate_col])
183
- df << (ChemBERT(id_col, substrate_col, num_threads) >> Save(f'{output_dir}chemberta.pkl'))
220
+ new_df = (df << (ChemBERT(id_col, substrate_col, num_threads) >> Save(f'{output_dir}chemberta.pkl')))
184
221
  ```
185
222
 
186
223
  ### CLEAN
@@ -206,11 +243,11 @@ df << (CLEAN(id_col, seq_col, clean_dir, num_threads=num_threads) >> Save(f'clea
206
243
  ```
207
244
  ### ClustalOmega
208
245
 
209
- ClustalOmega is a tool for aligning a set of sequences. This gets installed to the system (expecting a linux machine) and added to the bash path.
246
+ ClustalOmega is a tool for aligning a set of sequences. This gets installed to the system (expecting a linux machine) and added to the bash path. You need to have installed it first (check out the `conda_envs` directory in enzymetk.)
210
247
 
211
248
  ```python
212
- from steps.generate_msa_step import ClustalOmega
213
- from steps.save_step import Save
249
+ from enzymetk.generate_msa_step import ClustalOmega
250
+ from enzymetk.save_step import Save
214
251
  import pandas as pd
215
252
 
216
253
  id_col = 'Entry'
@@ -230,8 +267,8 @@ df << (ClustalOmega(id_col, seq_col) >> Save('tmp/clustalomega_test.pkl'))
230
267
  CREEP is a tool for predicting the EC number of a reaction. At the moment it only supports reactions to EC however we are extending this to other modalities.
231
268
 
232
269
  ```python
233
- from steps.annotateEC_CREEP_step import CREEP
234
- from steps.save_step import Save
270
+ from enzymetk.annotateEC_CREEP_step import CREEP
271
+ from enzymetk.save_step import Save
235
272
  import pandas as pd
236
273
 
237
274
  # CREEP expects you to have downloaded the data from the zotero page and put it in the data/CREEP folder
@@ -252,8 +289,8 @@ df << (CREEP(id_col, reaction_col, CREEP_cache_dir='/disk1/share/software/CREEP/
252
289
  EmbedESM is a tool for embedding a set of sequences using ESM2.
253
290
 
254
291
  ```python
255
- from steps.embedprotein_esm_step import EmbedESM
256
- from steps.save_step import Save
292
+ from enzymetk.embedprotein_esm_step import EmbedESM
293
+ from enzymetk.save_step import Save
257
294
  import pandas as pd
258
295
 
259
296
  id_col = 'Entry'
@@ -280,8 +317,8 @@ If you pass a database, you need to pass the path to the database.
280
317
  The columns expect a path to a pdb file i.e. the output from the `Chai` step.
281
318
 
282
319
  ```python
283
- from steps.similarity_foldseek_step import FoldSeek
284
- from steps.save_step import Save
320
+ from enzymetk.similarity_foldseek_step import FoldSeek
321
+ from enzymetk.save_step import Save
285
322
  import pandas as pd
286
323
 
287
324
  # id_col: str, seq_col: str, proteinfer_dir: str,
@@ -2,26 +2,36 @@
2
2
 
3
3
  Enzyme-tk is a collection of tools for enzyme engineering, setup as interoperable modules that act on dataframes. These modules are designed to be imported into pipelines for specific function. For this reason, `steps` as each module is called (e.g. finding similar proteins with `BLAST` would be considered a step) are designed to be as light as possible. An example of a pipeline is the [annotate-e](https://github.com/ArianeMora/annotate-e) ` pipeline, this acts to annotate a fasta with an ensemble of methods (each is designated as an Enzyme-tk step).
4
4
 
5
+
6
+ **If you have any issues installing, let me know - this has been tested only on Linux/Ubuntu. Please post an issue!**
7
+
5
8
  ## Installation
6
9
 
10
+ ## Install base package to import modules
11
+
7
12
  ```bash
8
- source enzymetk/conda_envs/install_all.sh
13
+ pip install enzymetk
9
14
  ```
10
15
 
11
- ## Install subsets of enzyme-tk
16
+ ### Install only the specific requirements you need (recomended)
12
17
 
18
+ For this clone the repo and then install the requirements for the specific modules you use
13
19
  ```bash
14
20
  git clone git@github.com:ArianeMora/enzyme-tk.git
15
- python setup.py sdist bdist_wheel
16
- pip install dist/enzymetk-0.0.1.tar.gz
21
+ cd enzymetk/conda_envs/ # would recommend looking at thes
22
+ # e.g. to install all from within that folder you would do
23
+ source install_all.sh
17
24
  ```
18
25
 
19
26
  ## Usage
20
27
 
21
28
  If you have any issues at all just email me using my caltech email: `amora at caltech . edu`
22
29
 
30
+ This is a work-in progress! e.g. some tools (e.g. proteInfer and CLEAN) require extra data to be downloaded in order to run (like model weights.) I'm working on integrating these atm, buzz me if you need this!
31
+
23
32
  Here are some of the tools that have been implemented to be chained together as a pipeline:
24
33
 
34
+ [boltz2](https://github.com/jwohlwend/boltz)
25
35
  [mmseqs2](https://github.com/soedinglab/mmseqs2)
26
36
  [foldseek](https://github.com/steineggerlab/foldseek)
27
37
  [diamond](https://github.com/bbuchfink/diamond)
@@ -40,6 +50,7 @@ Here are some of the tools that have been implemented to be chained together as
40
50
  [fasttree](https://morgannprice.github.io/fasttree/)
41
51
  [Porechop](https://github.com/rrwick/Porechop)
42
52
  [prokka](https://github.com/tseemann/prokka)
53
+
43
54
  ## Things to note
44
55
 
45
56
  All the tools use the conda env of `enzymetk` by default.
@@ -71,6 +82,8 @@ The steps are the main building blocks of the pipeline. They are responsible for
71
82
 
72
83
  BLAST is a tool for searching a database of sequences for similar sequences. Here you can either pass a database that you have already created or pass the sequences as part of your dataframe and pass the label column (this needs to have two values: reference and query) reference refers to sequences that you want to search against and query refers to sequences that you want to search for.
73
84
 
85
+ Note you need to have installed the BLAST environment.
86
+
74
87
  ```python
75
88
  id_col = 'Entry'
76
89
  seq_col = 'Sequence'
@@ -99,6 +112,34 @@ df = pd.DataFrame(rows, columns=[id_col, seq_col])
99
112
  print(df)
100
113
  df << (ActiveSitePred(id_col, seq_col, squidly_dir, num_threads) >> Save('tmp/squidly_as_pred.pkl'))
101
114
 
115
+ ```
116
+ ### Boltz2
117
+
118
+ Boltz2 is a model for predicting structures. Note you need docko installed as I run via that.
119
+
120
+ Below is an example using boltz with 4 threads, and uses a cofactor (intermediate in this case). Just set to be None for a single substrate version.
121
+ ```
122
+ import sys
123
+ from enzymetk.dock_boltz_step import Boltz
124
+ from enzymetk.save_step import Save
125
+ import pandas as pd
126
+ import os
127
+ os.environ['MKL_THREADING_LAYER'] = 'GNU'
128
+
129
+ output_dir = 'tmp/'
130
+ num_threads = 4
131
+ id_col = 'Entry'
132
+ seq_col = 'Sequence'
133
+ substrate_col = 'Substrate'
134
+ intermediate_col = 'Intermediate'
135
+
136
+ rows = [['P0DP23_boltz_8999', 'MALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAA', 'CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC', 'CC1=C(C2=CC3=C(C(=C([N-]3)C=C4C(=C(C(=N4)C=C5C(=C(C(=N5)C=C1[N-]2)C)C=C)C)C=C)C)CCC(=O)[O-])CCC(=O)[O-].[Fe]'],
137
+ ['P0DP24_boltz_p1', 'MALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAA', 'CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC', 'CC1=C(C2=CC3=C(C(=C([N-]3)C=C4C(=C(C(=N4)C=C5C(=C(C(=N5)C=C1[N-]2)C)C=C)C)C=C)C)CCC(=O)[O-])CCC(=O)[O-].[Fe]'],
138
+ ['P0DP23_boltz_p2', 'MALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAA', 'CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC', 'CC1=C(C2=CC3=C(C(=C([N-]3)C=C4C(=C(C(=N4)C=C5C(=C(C(=N5)C=C1[N-]2)C)C=C)C)C=C)C)CCC(=O)[O-])CCC(=O)[O-].[Fe]'],
139
+ ['P0DP24_boltz_p3', 'MALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAA', 'CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC', 'CC1=C(C2=CC3=C(C(=C([N-]3)C=C4C(=C(C(=N4)C=C5C(=C(C(=N5)C=C1[N-]2)C)C=C)C)C=C)C)CCC(=O)[O-])CCC(=O)[O-].[Fe]'],
140
+ ['P0DP24_boltz_p4', 'MALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAA', 'CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC', 'CC1=C(C2=CC3=C(C(=C([N-]3)C=C4C(=C(C(=N4)C=C5C(=C(C(=N5)C=C1[N-]2)C)C=C)C)C=C)C)CCC(=O)[O-])CCC(=O)[O-].[Fe]']]
141
+ df = pd.DataFrame(rows, columns=[id_col, seq_col, substrate_col, intermediate_col])
142
+ df << (Boltz(id_col, seq_col, substrate_col, intermediate_col, f'{output_dir}', num_threads) >> Save(f'{output_dir}test.pkl'))
102
143
  ```
103
144
 
104
145
  ### Chai
@@ -126,8 +167,8 @@ df << (Chai(id_col, seq_col, substrate_col, f'{output_dir}', num_threads) >> Sav
126
167
  ChemBERTa2 encodes reactions and SMILES strings into a vector space. Note this requires the base environment, i.e. `enzymetk` conda env.
127
168
 
128
169
  ```python
129
- from steps.embedchem_chemberta_step import ChemBERT
130
- from steps.save_step import Save
170
+ from enzymetk.embedchem_chemberta_step import ChemBERT
171
+ from enzymetk.save_step import Save
131
172
 
132
173
  output_dir = 'tmp/'
133
174
  num_threads = 1
@@ -137,7 +178,7 @@ substrate_col = 'Substrate'
137
178
  rows = [['P0DP23', 'MALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAA', 'CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC'],
138
179
  ['P0DP24', 'MALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAAMALWMRLLPLLALLALWGPDPAAA', 'CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC']]
139
180
  df = pd.DataFrame(rows, columns=[id_col, seq_col, substrate_col])
140
- df << (ChemBERT(id_col, substrate_col, num_threads) >> Save(f'{output_dir}chemberta.pkl'))
181
+ new_df = (df << (ChemBERT(id_col, substrate_col, num_threads) >> Save(f'{output_dir}chemberta.pkl')))
141
182
  ```
142
183
 
143
184
  ### CLEAN
@@ -163,11 +204,11 @@ df << (CLEAN(id_col, seq_col, clean_dir, num_threads=num_threads) >> Save(f'clea
163
204
  ```
164
205
  ### ClustalOmega
165
206
 
166
- ClustalOmega is a tool for aligning a set of sequences. This gets installed to the system (expecting a linux machine) and added to the bash path.
207
+ ClustalOmega is a tool for aligning a set of sequences. This gets installed to the system (expecting a linux machine) and added to the bash path. You need to have installed it first (check out the `conda_envs` directory in enzymetk.)
167
208
 
168
209
  ```python
169
- from steps.generate_msa_step import ClustalOmega
170
- from steps.save_step import Save
210
+ from enzymetk.generate_msa_step import ClustalOmega
211
+ from enzymetk.save_step import Save
171
212
  import pandas as pd
172
213
 
173
214
  id_col = 'Entry'
@@ -187,8 +228,8 @@ df << (ClustalOmega(id_col, seq_col) >> Save('tmp/clustalomega_test.pkl'))
187
228
  CREEP is a tool for predicting the EC number of a reaction. At the moment it only supports reactions to EC however we are extending this to other modalities.
188
229
 
189
230
  ```python
190
- from steps.annotateEC_CREEP_step import CREEP
191
- from steps.save_step import Save
231
+ from enzymetk.annotateEC_CREEP_step import CREEP
232
+ from enzymetk.save_step import Save
192
233
  import pandas as pd
193
234
 
194
235
  # CREEP expects you to have downloaded the data from the zotero page and put it in the data/CREEP folder
@@ -209,8 +250,8 @@ df << (CREEP(id_col, reaction_col, CREEP_cache_dir='/disk1/share/software/CREEP/
209
250
  EmbedESM is a tool for embedding a set of sequences using ESM2.
210
251
 
211
252
  ```python
212
- from steps.embedprotein_esm_step import EmbedESM
213
- from steps.save_step import Save
253
+ from enzymetk.embedprotein_esm_step import EmbedESM
254
+ from enzymetk.save_step import Save
214
255
  import pandas as pd
215
256
 
216
257
  id_col = 'Entry'
@@ -237,8 +278,8 @@ If you pass a database, you need to pass the path to the database.
237
278
  The columns expect a path to a pdb file i.e. the output from the `Chai` step.
238
279
 
239
280
  ```python
240
- from steps.similarity_foldseek_step import FoldSeek
241
- from steps.save_step import Save
281
+ from enzymetk.similarity_foldseek_step import FoldSeek
282
+ from enzymetk.save_step import Save
242
283
  import pandas as pd
243
284
 
244
285
  # id_col: str, seq_col: str, proteinfer_dir: str,
@@ -22,34 +22,11 @@ Date: March 2025
22
22
  __title__ = 'enzymetk'
23
23
  __description__ = 'Toolkit for enzymes and what not'
24
24
  __url__ = 'https://github.com/arianemora/enzyme-tk/'
25
- __version__ = '0.0.1'
25
+ __version__ = '0.0.6'
26
26
  __author__ = 'Ariane Mora'
27
27
  __author_email__ = 'ariane.n.mora@gmail.com'
28
28
  __license__ = 'GPL3'
29
29
 
30
- # from enzymetk.step import *
31
- # from enzymetk.generate_msa_step import ClustalOmega
32
- # from enzymetk.annotateEC_CLEAN_step import CLEAN
33
- # from enzymetk.annotateEC_proteinfer_step import ProteInfer
34
- # from enzymetk.dock_chai_step import Chai
35
- # from enzymetk.dock_vina_step import Vina
36
- # from enzymetk.embedchem_chemberta_step import ChemBERT
37
- # from enzymetk.embedchem_rxnfp_step import RxnFP
38
- # from enzymetk.embedchem_selformer_step import SelFormer
39
- # from enzymetk.embedchem_unimol_step import UniMol
40
- # from enzymetk.embedprotein_esm_step import EmbedESM
41
- # from enzymetk.generate_tree_step import FastTree
42
- # from enzymetk.inpaint_ligandMPNN_step import LigandMPNN
43
- # from enzymetk.metagenomics_porechop_trim_reads_step import PoreChop
44
- # from enzymetk.metagenomics_prokka_annotate_genes import Prokka
45
- # #from enzymetk.predict_activity_step import
46
- # from enzymetk.predict_catalyticsite_step import ActiveSitePred
47
- # from enzymetk.sequence_search_blast import BLAST
48
- # from enzymetk.similarity_foldseek_step import FoldSeek
49
- # from enzymetk.similarity_mmseqs_step import MMseqs
50
- # from enzymetk.similarity_reaction_step import ReactionDist
51
- # from enzymetk.similarity_substrate_step import SubstrateDist
52
-
53
30
 
54
31
 
55
32
 
@@ -116,7 +116,7 @@ class CLEAN(Step):
116
116
  print(output_filenames)
117
117
  for sub_df in output_filenames:
118
118
  df = pd.concat([df, sub_df])
119
- return df
119
+ return self.__filter_df(df)
120
120
  else:
121
- return self.__execute([df, tmp_dir])
121
+ return self.__filter_df(self.__execute([df, tmp_dir]))
122
122
  return df
@@ -38,7 +38,7 @@ class CREEP(Step):
38
38
  self.args_extract = args_extract
39
39
  self.args_retrieval = args_retrieval
40
40
 
41
- def __execute(self, df: pd.DataFrame, tmp_dir: str) -> pd.DataFrame:
41
+ def __execute(self, df: pd.DataFrame, tmp_dir: str):
42
42
  tmp_dir = '/disk1/ariane/vscode/degradeo/pipeline/tmp/'
43
43
  input_filename = f'{tmp_dir}/creepasjkdkajshdkja.csv'
44
44
  df.to_csv(input_filename, index=False)
@@ -0,0 +1,46 @@
1
+ from enzymetk.step import Step
2
+ import pandas as pd
3
+ from docko.boltz import run_boltz_affinity
4
+ import logging
5
+ import numpy as np
6
+ from multiprocessing.dummy import Pool as ThreadPool
7
+
8
+
9
+ logger = logging.getLogger(__name__)
10
+ logger.setLevel(logging.INFO)
11
+
12
+
13
+ class Boltz(Step):
14
+
15
+ def __init__(self, id_col: str, seq_col: str, substrate_col: str, intermediate_col: str, output_dir: str, num_threads: int):
16
+ self.id_col = id_col
17
+ self.seq_col = seq_col
18
+ self.substrate_col = substrate_col
19
+ self.intermediate_col = intermediate_col
20
+ self.output_dir = output_dir or None
21
+ self.num_threads = num_threads or 1
22
+
23
+ def __execute(self, df: pd.DataFrame) -> pd.DataFrame:
24
+ output_filenames = []
25
+
26
+ for run_id, seq, substrate, intermediate in df[[self.id_col, self.seq_col, self.substrate_col, self.intermediate_col]].values:
27
+ # Might have an issue if the things are not correctly installed in the same dicrectory
28
+ if not isinstance(substrate, str):
29
+ substrate = ''
30
+ print(run_id, seq, substrate)
31
+ run_boltz_affinity(run_id, seq, substrate, self.output_dir, intermediate)
32
+ output_filenames.append(f'{self.output_dir}/{run_id}/')
33
+ return output_filenames
34
+
35
+ def execute(self, df: pd.DataFrame) -> pd.DataFrame:
36
+ if self.output_dir:
37
+ if self.num_threads > 1:
38
+ pool = ThreadPool(self.num_threads)
39
+ df_list = np.array_split(df, self.num_threads)
40
+ results = pool.map(self.__execute, df_list)
41
+ else:
42
+ results = self.__execute(df)
43
+ df['output_dir'] = results
44
+ return df
45
+ else:
46
+ print('No output directory provided')
@@ -11,16 +11,17 @@ logger.setLevel(logging.INFO)
11
11
 
12
12
  class Chai(Step):
13
13
 
14
- def __init__(self, id_col: str, seq_col: str, substrate_col: str, output_dir: str, num_threads: int):
14
+ def __init__(self, id_col: str, seq_col: str, substrate_col: str, cofactor_col: str, output_dir: str, num_threads: int):
15
15
  self.id_col = id_col
16
16
  self.seq_col = seq_col
17
17
  self.substrate_col = substrate_col
18
+ self.cofactor_col = cofactor_col
18
19
  self.output_dir = output_dir or None
19
20
  self.num_threads = num_threads or 1
20
21
 
21
22
  def __execute(self, df: pd.DataFrame, tmp_dir: str) -> pd.DataFrame:
22
23
  output_filenames = []
23
- for run_id, seq, substrate in df[[self.id_col, self.seq_col, self.substrate_col]].values:
24
+ for run_id, seq, substrate, cofactor in df[[self.id_col, self.seq_col, self.substrate_col, self.cofactor_col]].values:
24
25
  # Might have an issue if the things are not correctly installed in the same dicrectory
25
26
  if not isinstance(substrate, str):
26
27
  substrate = ''
@@ -28,7 +29,8 @@ class Chai(Step):
28
29
  run_chai(run_id, # name
29
30
  seq, # sequence
30
31
  substrate, # ligand as smiles
31
- tmp_dir)
32
+ tmp_dir,
33
+ cofactor) # cofactor as smiles
32
34
  output_filenames.append(f'{tmp_dir}/{run_id}/')
33
35
  return output_filenames
34
36
 
@@ -4,6 +4,7 @@ from docko.docko import *
4
4
  import logging
5
5
  import numpy as np
6
6
  import os
7
+ from pathlib import Path
7
8
  from multiprocessing.dummy import Pool as ThreadPool
8
9
 
9
10
  logger = logging.getLogger(__name__)
@@ -21,34 +22,66 @@ class Vina(Step):
21
22
  self.substrate_col = substrate_col
22
23
  self.substrate_name_col = substrate_name_col
23
24
  self.active_site_col = active_site_col # Expects active site residues as a string separated by |
24
- self.output_dir = output_dir or None
25
+ self.output_dir = Path( output_dir) or None
25
26
  self.num_threads = num_threads or 1
26
27
 
27
28
  def __execute(self, df: pd.DataFrame) -> pd.DataFrame:
28
29
  output_filenames = []
29
30
  # ToDo: update to create from sequence if the path doesn't exist.
30
31
  for label, structure_path, seq, substrate_smiles, substrate_name, residues in df[[self.id_col, self.structure_col, self.sequence_col, self.substrate_col, self.substrate_name_col, self.active_site_col]].values:
31
- os.system(f'mkdir {self.output_dir}{label}')
32
+
32
33
  try:
34
+ structure_path = str(structure_path)
33
35
  residues = str(residues)
34
36
  residues = [int(r) + 1 for r in residues.split('|')]
35
- if not os.path.exists(f'{structure_path}'):
36
- # Try get the AF2 structure we expect the label to be the uniprot id
37
- get_alphafold_structure(label, f'{self.output_dir}{label}/{label}_AF2.pdb')
38
- structure_path = f'{self.output_dir}{label}/{label}_AF2.pdb'
39
- clean_one_pdb(f'{structure_path}', f'{self.output_dir}{label}/{label}.pdb')
40
- pdb_to_pdbqt_protein(f'{self.output_dir}{label}/{label}.pdb', f'{self.output_dir}{label}/{label}.pdbqt')
41
- score = dock(sequence='', protein_name=label, smiles=substrate_smiles, ligand_name=substrate_name, residues=residues,
42
- protein_dir=f'{self.output_dir}', ligand_dir=f'{self.output_dir}', output_dir=f'{self.output_dir}{label}/', pH=7.4,
43
- method='vina', size_x=10.0, size_y=10.0, size_z=10.0)
44
- output_filename = f'{self.output_dir}{label}/{label}.pdb'
45
- output_filenames.append(output_filename)
37
+
38
+ label_dir = self.output_dir / label
39
+ label_dir.mkdir(parents=True, exist_ok=True)
40
+ structure_path = Path(structure_path)
41
+
42
+ if not structure_path.exists():
43
+ # Try to download AF2 structure
44
+ get_alphafold_structure(label, label_dir / f"{label}_AF2.pdb")
45
+ structure_path = label_dir / f"{label}_AF2.pdb"
46
+
47
+ # Skip if still not found
48
+ if not structure_path.exists():
49
+ print(f"Skipping {label}: AF2 structure not found.")
50
+ output_filenames.append(None)
51
+ continue
52
+
53
+ # Proceed with docking
54
+ pdb_path = label_dir / f"{label}.pdb"
55
+ pdbqt_path = label_dir / f"{label}.pdbqt"
56
+
57
+ clean_one_pdb(str(structure_path), str(pdb_path))
58
+ pdb_to_pdbqt_protein(str(pdb_path), str(pdbqt_path))
59
+
60
+ score = dock(
61
+ sequence='',
62
+ protein_name=label,
63
+ smiles=substrate_smiles,
64
+ ligand_name=substrate_name,
65
+ residues=residues,
66
+ protein_dir=str(self.output_dir),
67
+ ligand_dir=str(self.output_dir),
68
+ output_dir=str(label_dir),
69
+ pH=7.4,
70
+ method='vina',
71
+ size_x=10.0,
72
+ size_y=10.0,
73
+ size_z=10.0
74
+ )
75
+
76
+ output_filenames.append(str(pdb_path))
77
+
46
78
  except Exception as e:
47
79
  print(f'Error docking {label}: {e}')
48
80
  output_filenames.append(None)
81
+
49
82
  return output_filenames
50
-
51
-
83
+
84
+
52
85
  def execute(self, df: pd.DataFrame) -> pd.DataFrame:
53
86
  if self.output_dir:
54
87
  if self.num_threads > 1:
@@ -60,4 +93,4 @@ class Vina(Step):
60
93
  df['output_dir'] = results
61
94
  return df
62
95
  else:
63
- print('No output directory provided')
96
+ print('No output directory provided')
@@ -0,0 +1,71 @@
1
+ # ESM 3 script
2
+ from esm.sdk.api import ESMProtein
3
+ from tempfile import TemporaryDirectory
4
+ import torch
5
+ import os
6
+ import pandas as pd
7
+ from esm.models.esm3 import ESM3
8
+ from esm.sdk.api import ESMProtein, SamplingConfig
9
+ from huggingface_hub import login
10
+ from enzymetk.step import Step
11
+ import numpy as np
12
+ from tqdm import tqdm
13
+
14
+ # CUDA setup
15
+ os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152
16
+ cuda = True
17
+ DEVICE = torch.device("cuda" if cuda else "cpu")
18
+ device = DEVICE
19
+
20
+
21
+ class EmbedESM3(Step):
22
+
23
+ def __init__(self, id_col: str, seq_col: str, extraction_method='mean', num_threads=1,
24
+ tmp_dir: str = None, env_name: str = 'enzymetk', save_tensors=False): # type: ignore
25
+ login()
26
+ self.client = ESM3.from_pretrained("esm3-open").to("cuda")
27
+ self.seq_col = seq_col
28
+ self.id_col = id_col
29
+ self.num_threads = num_threads or 1
30
+ self.extraction_method = extraction_method
31
+ self.tmp_dir = tmp_dir
32
+ self.env_name = env_name
33
+ self.save_tensors = save_tensors
34
+
35
+ def __execute(self, df: pd.DataFrame, tmp_dir: str) -> pd.DataFrame:
36
+ client = self.client
37
+ means = []
38
+ for id, seq in tqdm(df[[self.id_col, self.seq_col]].values):
39
+ protein = ESMProtein(
40
+ sequence=(
41
+ seq
42
+ )
43
+ )
44
+ protein_tensor = client.encode(protein)
45
+ output = client.forward_and_sample(
46
+ protein_tensor, SamplingConfig(return_per_residue_embeddings=True)
47
+ )
48
+ if self.save_tensors:
49
+ torch.save(output.per_residue_embedding, os.path.join(tmp_dir, f'{id}.pt'))
50
+ means.append(np.array(output.per_residue_embedding.mean(dim=0).cpu()))
51
+ df['esm3_mean'] = means
52
+ return df
53
+
54
+ def execute(self, df: pd.DataFrame) -> pd.DataFrame:
55
+ if self.tmp_dir is None:
56
+ with TemporaryDirectory() as tmp_dir:
57
+ if self.num_threads > 1:
58
+ dfs = []
59
+ df_list = np.array_split(df, self.num_threads)
60
+ for df_chunk in tqdm(df_list):
61
+ dfs.append(self.__execute(df_chunk, tmp_dir))
62
+ df = pd.DataFrame()
63
+ for tmp_df in tqdm(dfs):
64
+ df = pd.concat([df, tmp_df])
65
+ return df
66
+ else:
67
+ df = self.__execute(df, tmp_dir)
68
+ return df
69
+ else:
70
+ df = self.__execute(df, self.tmp_dir)
71
+ return df