embedkit 0.1.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,223 @@
1
+ # Development files
2
+ tmp/
3
+
4
+
5
+ # Byte-compiled / optimized / DLL files
6
+ __pycache__/
7
+ *.py[cod]
8
+ *$py.class
9
+
10
+ # C extensions
11
+ *.so
12
+
13
+ # Distribution / packaging
14
+ .Python
15
+ build/
16
+ develop-eggs/
17
+ dist/
18
+ downloads/
19
+ eggs/
20
+ .eggs/
21
+ lib/
22
+ lib64/
23
+ parts/
24
+ sdist/
25
+ var/
26
+ wheels/
27
+ share/python-wheels/
28
+ *.egg-info/
29
+ .installed.cfg
30
+ *.egg
31
+ MANIFEST
32
+
33
+ # PyInstaller
34
+ # Usually these files are written by a python script from a template
35
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
36
+ *.manifest
37
+ *.spec
38
+
39
+ # Installer logs
40
+ pip-log.txt
41
+ pip-delete-this-directory.txt
42
+
43
+ # Unit test / coverage reports
44
+ htmlcov/
45
+ .tox/
46
+ .nox/
47
+ .coverage
48
+ .coverage.*
49
+ .cache
50
+ nosetests.xml
51
+ coverage.xml
52
+ *.cover
53
+ *.py,cover
54
+ .hypothesis/
55
+ .pytest_cache/
56
+ cover/
57
+
58
+ # Translations
59
+ *.mo
60
+ *.pot
61
+
62
+ # Django stuff:
63
+ *.log
64
+ local_settings.py
65
+ db.sqlite3
66
+ db.sqlite3-journal
67
+
68
+ # Flask stuff:
69
+ instance/
70
+ .webassets-cache
71
+
72
+ # Scrapy stuff:
73
+ .scrapy
74
+
75
+ # Sphinx documentation
76
+ docs/_build/
77
+
78
+ # PyBuilder
79
+ .pybuilder/
80
+ target/
81
+
82
+ # Jupyter Notebook
83
+ .ipynb_checkpoints
84
+
85
+ # IPython
86
+ profile_default/
87
+ ipython_config.py
88
+
89
+ # pyenv
90
+ # For a library or package, you might want to ignore these files since the code is
91
+ # intended to run in multiple environments; otherwise, check them in:
92
+ # .python-version
93
+
94
+ # pipenv
95
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
96
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
97
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
98
+ # install all needed dependencies.
99
+ #Pipfile.lock
100
+
101
+ # UV
102
+ # Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
103
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
104
+ # commonly ignored for libraries.
105
+ #uv.lock
106
+
107
+ # poetry
108
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
109
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
110
+ # commonly ignored for libraries.
111
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
112
+ #poetry.lock
113
+
114
+ # pdm
115
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
116
+ #pdm.lock
117
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
118
+ # in version control.
119
+ # https://pdm.fming.dev/latest/usage/project/#working-with-version-control
120
+ .pdm.toml
121
+ .pdm-python
122
+ .pdm-build/
123
+
124
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
125
+ __pypackages__/
126
+
127
+ # Celery stuff
128
+ celerybeat-schedule
129
+ celerybeat.pid
130
+
131
+ # SageMath parsed files
132
+ *.sage.py
133
+
134
+ # Environments
135
+ .env
136
+ .venv
137
+ env/
138
+ venv/
139
+ ENV/
140
+ env.bak/
141
+ venv.bak/
142
+
143
+ # Spyder project settings
144
+ .spyderproject
145
+ .spyproject
146
+
147
+ # Rope project settings
148
+ .ropeproject
149
+
150
+ # mkdocs documentation
151
+ /site
152
+
153
+ # mypy
154
+ .mypy_cache/
155
+ .dmypy.json
156
+ dmypy.json
157
+
158
+ # Pyre type checker
159
+ .pyre/
160
+
161
+ # pytype static type analyzer
162
+ .pytype/
163
+
164
+ # Cython debug symbols
165
+ cython_debug/
166
+
167
+ # PyCharm
168
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
169
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
170
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
171
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
172
+ #.idea/
173
+
174
+ # Abstra
175
+ # Abstra is an AI-powered process automation framework.
176
+ # Ignore directories containing user credentials, local state, and settings.
177
+ # Learn more at https://abstra.io/docs
178
+ .abstra/
179
+
180
+ # Visual Studio Code
181
+ # Visual Studio Code specific template is maintained in a separate VisualStudioCode.gitignore
182
+ # that can be found at https://github.com/github/gitignore/blob/main/Global/VisualStudioCode.gitignore
183
+ # and can be added to the global gitignore or merged into this file. However, if you prefer,
184
+ # you could uncomment the following to ignore the enitre vscode folder
185
+ # .vscode/
186
+
187
+ # Ruff stuff:
188
+ .ruff_cache/
189
+
190
+ # PyPI configuration file
191
+ .pypirc
192
+
193
+ # Cursor
194
+ # Cursor is an AI-powered code editor. `.cursorignore` specifies files/directories to
195
+ # exclude from AI features like autocomplete and code analysis. Recommended for sensitive data
196
+ # refer to https://docs.cursor.com/context/ignore-files
197
+ .cursorignore
198
+ .cursorindexingignore
199
+ # General
200
+ .DS_Store
201
+ .AppleDouble
202
+ .LSOverride
203
+ Icon[
204
+ ]
205
+
206
+ # Thumbnails
207
+ ._*
208
+
209
+ # Files that might appear in the root of a volume
210
+ .DocumentRevisions-V100
211
+ .fseventsd
212
+ .Spotlight-V100
213
+ .TemporaryItems
214
+ .Trashes
215
+ .VolumeIcon.icns
216
+ .com.apple.timemachine.donotpresent
217
+
218
+ # Directories potentially created on remote AFP share
219
+ .AppleDB
220
+ .AppleDesktop
221
+ Network Trash Folder
222
+ Temporary Items
223
+ .apdisk
@@ -0,0 +1 @@
1
+ 3.10
embedkit-0.1.0/LICENSE ADDED
@@ -0,0 +1,9 @@
1
+ MIT License
2
+
3
+ Copyright © 2025 JP Hwang
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
6
+
7
+ The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
8
+
9
+ THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
@@ -0,0 +1,59 @@
1
+ Metadata-Version: 2.4
2
+ Name: embedkit
3
+ Version: 0.1.0
4
+ Summary: A simple toolkit for generating vector embeddings across multiple providers and models
5
+ Author-email: JP Hwang <me@jphwang.com>
6
+ License: MIT
7
+ License-File: LICENSE
8
+ Keywords: ai,cohere,colpali,embeddings,machine-learning,vector
9
+ Classifier: Development Status :: 4 - Beta
10
+ Classifier: Intended Audience :: Developers
11
+ Classifier: License :: OSI Approved :: MIT License
12
+ Classifier: Programming Language :: Python :: 3
13
+ Classifier: Programming Language :: Python :: 3.10
14
+ Classifier: Programming Language :: Python :: 3.11
15
+ Classifier: Programming Language :: Python :: 3.12
16
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
17
+ Classifier: Topic :: Software Development :: Libraries :: Python Modules
18
+ Requires-Python: >=3.10
19
+ Requires-Dist: accelerate>=1.7.0
20
+ Requires-Dist: cohere>=5.15.0
21
+ Requires-Dist: colpali-engine<0.4.0,>=0.3.0
22
+ Requires-Dist: pdf2image>=1.17.0
23
+ Requires-Dist: pillow>=11.2.1
24
+ Requires-Dist: torch<=2.5
25
+ Requires-Dist: transformers
26
+ Description-Content-Type: text/markdown
27
+
28
+ # EmbedKit
29
+
30
+ A Python library for generating embeddings from text, images, and PDFs using various models (e.g. from Cohere, ColPali).
31
+
32
+ ## Usage
33
+
34
+ See [main.py](main.py) for examples.
35
+
36
+ ```python
37
+ from embedkit import EmbedKit
38
+ from embedkit.models import Model
39
+
40
+ # Instantiate a kit
41
+ # Using ColPali
42
+ kit = EmbedKit.colpali(model=Model.ColPali.V1_3)
43
+
44
+ # Using Cohere
45
+ kit = EmbedKit.cohere(
46
+ model=Model.Cohere.EMBED_V4_0,
47
+ api_key="your_api_key",
48
+ text_input_type=CohereInputType.SEARCH_DOCUMENT,
49
+ )
50
+
51
+ # Then - the embedding API is consistent
52
+ embeddings = kit.embed_text("Hello world") or kit.embed_text(["Hello world", "Hello world"])
53
+ embeddings = kit.embed_image("path/to/image.png") or kit.embed_image(["path/to/image1.png", "path/to/image2.png"])
54
+ embeddings = kit.embed_pdf("path/to/pdf.pdf") # Single PDF only
55
+ ```
56
+
57
+ ## License
58
+
59
+ MIT
@@ -0,0 +1,32 @@
1
+ # EmbedKit
2
+
3
+ A Python library for generating embeddings from text, images, and PDFs using various models (e.g. from Cohere, ColPali).
4
+
5
+ ## Usage
6
+
7
+ See [main.py](main.py) for examples.
8
+
9
+ ```python
10
+ from embedkit import EmbedKit
11
+ from embedkit.models import Model
12
+
13
+ # Instantiate a kit
14
+ # Using ColPali
15
+ kit = EmbedKit.colpali(model=Model.ColPali.V1_3)
16
+
17
+ # Using Cohere
18
+ kit = EmbedKit.cohere(
19
+ model=Model.Cohere.EMBED_V4_0,
20
+ api_key="your_api_key",
21
+ text_input_type=CohereInputType.SEARCH_DOCUMENT,
22
+ )
23
+
24
+ # Then - the embedding API is consistent
25
+ embeddings = kit.embed_text("Hello world") or kit.embed_text(["Hello world", "Hello world"])
26
+ embeddings = kit.embed_image("path/to/image.png") or kit.embed_image(["path/to/image1.png", "path/to/image2.png"])
27
+ embeddings = kit.embed_pdf("path/to/pdf.pdf") # Single PDF only
28
+ ```
29
+
30
+ ## License
31
+
32
+ MIT
embedkit-0.1.0/main.py ADDED
@@ -0,0 +1,78 @@
1
+ # ./main.py
2
+ from embedkit import EmbedKit
3
+ from embedkit.models import Model
4
+ from embedkit.providers.cohere import CohereInputType
5
+ from pathlib import Path
6
+ import os
7
+
8
+
9
+ def get_online_image(url: str) -> Path:
10
+ """Download an image from a URL and return its local path."""
11
+ import requests
12
+ from tempfile import NamedTemporaryFile
13
+
14
+ # Add User-Agent header to comply with Wikipedia's policy
15
+ headers = {"User-Agent": "EmbedKit-Example/1.0"}
16
+
17
+ response = requests.get(url, headers=headers)
18
+ response.raise_for_status()
19
+
20
+ temp_file = NamedTemporaryFile(delete=False, suffix=".png")
21
+ temp_file.write(response.content)
22
+ temp_file.close()
23
+
24
+ return Path(temp_file.name)
25
+
26
+
27
+ def get_sample_image() -> Path:
28
+ """Get a sample image for testing."""
29
+ url = "https://upload.wikimedia.org/wikipedia/commons/b/b8/English_Wikipedia_HomePage_2001-12-20.png"
30
+ return get_online_image(url)
31
+
32
+
33
+ sample_image = get_sample_image()
34
+
35
+ sample_pdf = Path("tests/fixtures/2407.01449v6_p1.pdf")
36
+
37
+ kit = EmbedKit.colpali(model=Model.ColPali.V1_3)
38
+
39
+ embeddings = kit.embed_text("Hello world")
40
+ assert embeddings.shape[0] == 1
41
+ assert len(embeddings.shape) == 3
42
+
43
+ embeddings = kit.embed_image(sample_image)
44
+ assert embeddings.shape[0] == 1
45
+ assert len(embeddings.shape) == 3
46
+
47
+ embeddings = kit.embed_pdf(sample_pdf)
48
+ assert embeddings.shape[0] == 1
49
+ assert len(embeddings.shape) == 3
50
+
51
+
52
+ kit = EmbedKit.cohere(
53
+ model=Model.Cohere.EMBED_V4_0,
54
+ api_key=os.getenv("COHERE_API_KEY"),
55
+ text_input_type=CohereInputType.SEARCH_QUERY,
56
+ )
57
+
58
+ embeddings = kit.embed_text("Hello world")
59
+ assert embeddings.shape[0] == 1
60
+ assert len(embeddings.shape) == 2
61
+
62
+ kit = EmbedKit.cohere(
63
+ model=Model.Cohere.EMBED_V4_0,
64
+ api_key=os.getenv("COHERE_API_KEY"),
65
+ text_input_type=CohereInputType.SEARCH_DOCUMENT,
66
+ )
67
+
68
+ embeddings = kit.embed_text("Hello world")
69
+ assert embeddings.shape[0] == 1
70
+ assert len(embeddings.shape) == 2
71
+
72
+ embeddings = kit.embed_image(sample_image)
73
+ assert embeddings.shape[0] == 1
74
+ assert len(embeddings.shape) == 2
75
+
76
+ embeddings = kit.embed_pdf(sample_pdf)
77
+ assert embeddings.shape[0] == 1
78
+ assert len(embeddings.shape) == 2
@@ -0,0 +1,55 @@
1
+ [project]
2
+ name = "embedkit"
3
+ version = "0.1.0"
4
+ description = "A simple toolkit for generating vector embeddings across multiple providers and models"
5
+ readme = "README.md"
6
+ requires-python = ">=3.10"
7
+ dependencies = [
8
+ "accelerate>=1.7.0",
9
+ "cohere>=5.15.0",
10
+ "colpali-engine>=0.3.0,<0.4.0",
11
+ "pdf2image>=1.17.0",
12
+ "pillow>=11.2.1",
13
+ "torch<=2.5",
14
+ "transformers",
15
+ ]
16
+ authors = [
17
+ {name = "JP Hwang", email = "me@jphwang.com"},
18
+ ]
19
+ license = {text = "MIT"}
20
+ classifiers = [
21
+ "Development Status :: 4 - Beta",
22
+ "Intended Audience :: Developers",
23
+ "License :: OSI Approved :: MIT License",
24
+ "Programming Language :: Python :: 3",
25
+ "Programming Language :: Python :: 3.10",
26
+ "Programming Language :: Python :: 3.11",
27
+ "Programming Language :: Python :: 3.12",
28
+ "Topic :: Scientific/Engineering :: Artificial Intelligence",
29
+ "Topic :: Software Development :: Libraries :: Python Modules",
30
+ ]
31
+ keywords = ["embeddings", "vector", "ai", "machine-learning", "cohere", "colpali"]
32
+
33
+ [build-system]
34
+ requires = ["hatchling"]
35
+ build-backend = "hatchling.build"
36
+
37
+ [tool.hatch.build.targets.wheel]
38
+ packages = ["src/embedkit"]
39
+
40
+ [tool.pytest.ini_options]
41
+ testpaths = ["tests"]
42
+ python_files = ["test_*.py"]
43
+ addopts = "-v --cov=embedkit --cov-report=term-missing"
44
+ filterwarnings = [
45
+ "ignore::DeprecationWarning",
46
+ "ignore::UserWarning",
47
+ ]
48
+
49
+ [tool.uv]
50
+ dev-dependencies = [
51
+ "build>=1.2.2.post1",
52
+ "pytest>=8.0.0",
53
+ "pytest-cov>=4.1.0",
54
+ "twine>=6.1.0",
55
+ ]
@@ -0,0 +1,117 @@
1
+ # ./src/embedkit/__init__.py
2
+ """
3
+ EmbedKit: A unified toolkit for generating vector embeddings.
4
+ """
5
+
6
+ from typing import Union, List, Optional
7
+ from pathlib import Path
8
+ import numpy as np
9
+
10
+ from .models import Model
11
+ from .base import EmbeddingError, EmbeddingResult
12
+ from .providers import ColPaliProvider, CohereProvider
13
+ from .providers.cohere import CohereInputType
14
+
15
+
16
+ class EmbedKit:
17
+ """Main interface for generating embeddings."""
18
+
19
+ def __init__(self, provider_instance):
20
+ """
21
+ Initialize EmbedKit with a provider instance.
22
+
23
+ Args:
24
+ provider_instance: An initialized provider (use class methods to create)
25
+ """
26
+ self._provider = provider_instance
27
+
28
+ @classmethod
29
+ def colpali(cls, model: Model = Model.ColPali.V1_3, device: Optional[str] = None):
30
+ """
31
+ Create EmbedKit instance with ColPali provider.
32
+
33
+ Args:
34
+ model: ColPali model enum
35
+ device: Device to run on ('cuda', 'mps', 'cpu', or None for auto-detect)
36
+ """
37
+ if model == Model.ColPali.V1_3:
38
+ model_name = "vidore/colpali-v1.3"
39
+ else:
40
+ raise ValueError(f"Unsupported model: {model}")
41
+
42
+
43
+ provider = ColPaliProvider(model_name=model_name, device=device)
44
+ return cls(provider)
45
+
46
+ @classmethod
47
+ def cohere(
48
+ cls,
49
+ api_key: str,
50
+ model: Model = Model.Cohere.EMBED_V4_0,
51
+ text_input_type: CohereInputType = CohereInputType.SEARCH_DOCUMENT,
52
+ ):
53
+ """
54
+ Create EmbedKit instance with Cohere provider.
55
+
56
+ Args:
57
+ api_key: Cohere API key
58
+ model: Cohere model enum
59
+ input_type: Type of input for embedding (search_document or search_query)
60
+ """
61
+ if not api_key:
62
+ raise ValueError("API key is required")
63
+
64
+ if model == Model.Cohere.EMBED_V4_0:
65
+ model_name = "embed-v4.0"
66
+ else:
67
+ raise ValueError(f"Unsupported model: {model}")
68
+
69
+ provider = CohereProvider(
70
+ api_key=api_key, model_name=model_name, text_input_type=text_input_type
71
+ )
72
+ return cls(provider)
73
+
74
+ # Future class methods:
75
+ # @classmethod
76
+ # def openai(cls, api_key: str, model_name: str = "text-embedding-3-large"):
77
+ # """Create EmbedKit instance with OpenAI provider."""
78
+ # provider = OpenAIProvider(api_key=api_key, model_name=model_name)
79
+ # return cls(provider)
80
+ #
81
+ # @classmethod
82
+ # def huggingface(cls, model_name: str = "all-MiniLM-L6-v2", device: Optional[str] = None):
83
+ # """Create EmbedKit instance with HuggingFace provider."""
84
+ # provider = HuggingFaceProvider(model_name=model_name, device=device)
85
+ # return cls(provider)
86
+
87
+ def embed_text(self, texts: Union[str, List[str]], **kwargs) -> EmbeddingResult:
88
+ """Generate document text embeddings using the configured provider.
89
+
90
+ Args:
91
+ texts: Text or list of texts to embed
92
+ **kwargs: Additional provider-specific arguments
93
+
94
+ Returns:
95
+ EmbeddingResult containing the embeddings
96
+ """
97
+ return self._provider.embed_text(texts, **kwargs)
98
+
99
+ def embed_image(
100
+ self, images: Union[Path, str, List[Union[Path, str]]]
101
+ ) -> EmbeddingResult:
102
+ """Generate image embeddings using the configured provider."""
103
+ return self._provider.embed_image(images)
104
+
105
+ def embed_pdf(self, pdf: Union[Path, str]) -> EmbeddingResult:
106
+ """Generate image embeddings from PDFsusing the configured provider. Takes a single PDF file."""
107
+ return self._provider.embed_pdf(pdf)
108
+
109
+ @property
110
+ def provider_info(self) -> str:
111
+ """Get information about the current provider."""
112
+ return f"{self._provider.__class__.__name__}"
113
+
114
+
115
+ # Main exports
116
+ __version__ = "0.1.0"
117
+ __all__ = ["EmbedKit", "Model", "EmbeddingError"]
@@ -0,0 +1,49 @@
1
+ # ./src/embedkit/base.py
2
+ """Base classes for EmbedKit."""
3
+
4
+ from abc import ABC, abstractmethod
5
+ from typing import Union, List
6
+ from pathlib import Path
7
+ import numpy as np
8
+ from dataclasses import dataclass
9
+
10
+
11
+ @dataclass
12
+ class EmbeddingResult:
13
+ embeddings: np.ndarray
14
+ model_name: str
15
+ model_provider: str
16
+ input_type: str
17
+
18
+ @property
19
+ def shape(self) -> tuple:
20
+ return self.embeddings.shape
21
+
22
+
23
+ class EmbeddingProvider(ABC):
24
+ """Abstract base class for embedding providers."""
25
+
26
+ @abstractmethod
27
+ def embed_text(self, texts: Union[str, List[str]], **kwargs) -> EmbeddingResult:
28
+ """Generate document text embeddings using the configured provider."""
29
+ pass
30
+
31
+ @abstractmethod
32
+ def embed_image(
33
+ self, images: Union[Path, str, List[Union[Path, str]]]
34
+ ) -> EmbeddingResult:
35
+ """Generate image embeddings using the configured provider."""
36
+ pass
37
+
38
+ @abstractmethod
39
+ def embed_pdf(
40
+ self, pdf: Union[Path, str]
41
+ ) -> EmbeddingResult:
42
+ """Generate image embeddings from PDFsusing the configured provider. Takes a single PDF file."""
43
+ pass
44
+
45
+
46
+ class EmbeddingError(Exception):
47
+ """Base exception for embedding-related errors."""
48
+
49
+ pass
@@ -0,0 +1,8 @@
1
+ from pathlib import Path
2
+
3
+ TEMP_DIR = Path("tmp")
4
+
5
+
6
+ def get_temp_dir() -> Path:
7
+ """Get the temporary directory."""
8
+ return TEMP_DIR
@@ -0,0 +1,12 @@
1
+ # ./src/embedkit/models.py
2
+ """Model definitions and enum for EmbedKit."""
3
+
4
+ from enum import Enum
5
+
6
+
7
+ class Model:
8
+ class ColPali(Enum):
9
+ V1_3 = "colpali-v1.3"
10
+
11
+ class Cohere(Enum):
12
+ EMBED_V4_0 = "embed-v4.0"
@@ -0,0 +1,7 @@
1
+ # ./src/embedkit/providers/__init__.py
2
+ """Embedding providers for EmbedKit."""
3
+
4
+ from .colpali import ColPaliProvider
5
+ from .cohere import CohereProvider
6
+
7
+ __all__ = ["ColPaliProvider", "CohereProvider"]