eegdash 0.4.0.dev150__tar.gz → 0.4.0.dev162__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of eegdash might be problematic. Click here for more details.

Files changed (82) hide show
  1. {eegdash-0.4.0.dev150/eegdash.egg-info → eegdash-0.4.0.dev162}/PKG-INFO +1 -1
  2. eegdash-0.4.0.dev162/docs/source/_templates/autosummary/module.rst +65 -0
  3. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/docs/source/api/api_core.rst +1 -1
  4. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/docs/source/conf.py +35 -3
  5. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/docs/source/dataset_summary/bubble.rst +4 -0
  6. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/docs/source/dataset_summary/kde.rst +4 -0
  7. eegdash-0.4.0.dev162/docs/source/dataset_summary/sankey.rst +20 -0
  8. eegdash-0.4.0.dev162/docs/source/dataset_summary/table.rst +27 -0
  9. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/docs/source/dataset_summary.rst +10 -6
  10. eegdash-0.4.0.dev162/docs/source/index.rst +86 -0
  11. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/docs/source/user_guide.rst +21 -16
  12. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/__init__.py +1 -1
  13. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/api.py +180 -86
  14. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/bids_eeg_metadata.py +139 -39
  15. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/const.py +25 -0
  16. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/data_utils.py +239 -173
  17. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/dataset/dataset.py +35 -13
  18. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/dataset/dataset_summary.csv +1 -1
  19. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/dataset/registry.py +69 -4
  20. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/downloader.py +95 -9
  21. eegdash-0.4.0.dev162/eegdash/features/datasets.py +677 -0
  22. eegdash-0.4.0.dev162/eegdash/features/decorators.py +136 -0
  23. eegdash-0.4.0.dev162/eegdash/features/extractors.py +355 -0
  24. eegdash-0.4.0.dev162/eegdash/features/inspect.py +121 -0
  25. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/features/serialization.py +45 -19
  26. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/features/utils.py +75 -8
  27. eegdash-0.4.0.dev162/eegdash/hbn/preprocessing.py +105 -0
  28. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/hbn/windows.py +145 -32
  29. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/logging.py +19 -0
  30. eegdash-0.4.0.dev162/eegdash/mongodb.py +97 -0
  31. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/paths.py +14 -5
  32. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/utils.py +16 -1
  33. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162/eegdash.egg-info}/PKG-INFO +1 -1
  34. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash.egg-info/SOURCES.txt +2 -0
  35. eegdash-0.4.0.dev150/docs/source/dataset_summary/table.rst +0 -174
  36. eegdash-0.4.0.dev150/docs/source/index.rst +0 -60
  37. eegdash-0.4.0.dev150/eegdash/features/datasets.py +0 -493
  38. eegdash-0.4.0.dev150/eegdash/features/decorators.py +0 -51
  39. eegdash-0.4.0.dev150/eegdash/features/extractors.py +0 -209
  40. eegdash-0.4.0.dev150/eegdash/features/inspect.py +0 -48
  41. eegdash-0.4.0.dev150/eegdash/hbn/preprocessing.py +0 -72
  42. eegdash-0.4.0.dev150/eegdash/mongodb.py +0 -80
  43. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/LICENSE +0 -0
  44. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/MANIFEST.in +0 -0
  45. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/README.md +0 -0
  46. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/docs/Makefile +0 -0
  47. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/docs/source/api/api.rst +0 -0
  48. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/docs/source/api/api_features.rst +0 -0
  49. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/docs/source/install/install.rst +0 -0
  50. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/docs/source/install/install_pip.rst +0 -0
  51. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/docs/source/install/install_source.rst +0 -0
  52. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/docs/source/sg_execution_times.rst +0 -0
  53. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/dataset/__init__.py +0 -0
  54. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/features/__init__.py +0 -0
  55. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/features/feature_bank/__init__.py +0 -0
  56. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/features/feature_bank/complexity.py +0 -0
  57. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/features/feature_bank/connectivity.py +0 -0
  58. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/features/feature_bank/csp.py +0 -0
  59. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/features/feature_bank/dimensionality.py +0 -0
  60. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/features/feature_bank/signal.py +0 -0
  61. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/features/feature_bank/spectral.py +0 -0
  62. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/features/feature_bank/utils.py +0 -0
  63. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash/hbn/__init__.py +0 -0
  64. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash.egg-info/dependency_links.txt +0 -0
  65. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash.egg-info/requires.txt +0 -0
  66. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/eegdash.egg-info/top_level.txt +0 -0
  67. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/pyproject.toml +0 -0
  68. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/setup.cfg +0 -0
  69. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/tests/test_api.py +0 -0
  70. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/tests/test_bids_dependencies.py +0 -0
  71. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/tests/test_cache_folder_suffix.py +0 -0
  72. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/tests/test_challenge_kwargs.py +0 -0
  73. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/tests/test_correctness.py +0 -0
  74. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/tests/test_dataset.py +0 -0
  75. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/tests/test_dataset_registration.py +0 -0
  76. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/tests/test_downloader.py +0 -0
  77. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/tests/test_eegdash.py +0 -0
  78. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/tests/test_init.py +0 -0
  79. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/tests/test_minirelease.py +0 -0
  80. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/tests/test_mongo_connection.py +0 -0
  81. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/tests/test_offline.py +0 -0
  82. {eegdash-0.4.0.dev150 → eegdash-0.4.0.dev162}/tests/test_query.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: eegdash
3
- Version: 0.4.0.dev150
3
+ Version: 0.4.0.dev162
4
4
  Summary: EEG data for machine learning
5
5
  Author-email: Young Truong <dt.young112@gmail.com>, Arnaud Delorme <adelorme@gmail.com>, Aviv Dotan <avivd220@gmail.com>, Oren Shriki <oren70@gmail.com>, Bruno Aristimunha <b.aristimunha@gmail.com>
6
6
  License-Expression: GPL-3.0-only
@@ -0,0 +1,65 @@
1
+ {{ fullname | escape | underline}}
2
+
3
+ .. automodule:: {{ fullname }}
4
+ :members:
5
+ :undoc-members:
6
+ :show-inheritance:
7
+ :member-order: bysource
8
+
9
+ {% block attributes %}
10
+ {%- if attributes %}
11
+ .. rubric:: {{ _('Module Attributes') }}
12
+
13
+ .. autosummary::
14
+ {% for item in attributes %}
15
+ {{ item }}
16
+ {%- endfor %}
17
+ {% endif %}
18
+ {%- endblock %}
19
+
20
+ {%- block functions %}
21
+ {%- if functions %}
22
+ .. rubric:: {{ _('Functions') }}
23
+
24
+ .. autosummary::
25
+ {% for item in functions %}
26
+ {{ item }}
27
+ {%- endfor %}
28
+ {% endif %}
29
+ {%- endblock %}
30
+
31
+ {%- block classes %}
32
+ {%- if classes %}
33
+ .. rubric:: {{ _('Classes') }}
34
+
35
+ .. autosummary::
36
+ {% for item in classes %}
37
+ {{ item }}
38
+ {%- endfor %}
39
+ {% endif %}
40
+ {%- endblock %}
41
+
42
+ {%- block exceptions %}
43
+ {%- if exceptions %}
44
+ .. rubric:: {{ _('Exceptions') }}
45
+
46
+ .. autosummary::
47
+ {% for item in exceptions %}
48
+ {{ item }}
49
+ {%- endfor %}
50
+ {% endif %}
51
+ {%- endblock %}
52
+
53
+ {%- block modules %}
54
+ {%- if modules %}
55
+ .. rubric:: Modules
56
+
57
+ .. autosummary::
58
+ :toctree:
59
+ :recursive:
60
+ {% for item in modules %}
61
+ {{ item }}
62
+ {%- endfor %}
63
+ {% endif %}
64
+ {%- endblock %}
65
+
@@ -76,4 +76,4 @@ API Reference
76
76
  hbn
77
77
  mongodb
78
78
  paths
79
- utils
79
+ utils
@@ -12,13 +12,15 @@ from sphinx.util import logging
12
12
  from sphinx_gallery.sorting import ExplicitOrder, FileNameSortKey
13
13
  from tabulate import tabulate
14
14
 
15
+ sys.path.insert(0, os.path.abspath(".."))
16
+
15
17
  import eegdash
16
18
 
17
19
  # -- Project information -----------------------------------------------------
18
20
 
19
21
  project = "EEG Dash"
20
22
  copyright = f"2025–{datetime.now(tz=timezone.utc).year}, {project} Developers"
21
- author = "Arnaud Delorme"
23
+ author = "Bruno Aristimunha and Arnaud Delorme"
22
24
  release = eegdash.__version__
23
25
  version = ".".join(release.split(".")[:2])
24
26
 
@@ -44,6 +46,7 @@ extensions = [
44
46
  "sphinx_sitemap",
45
47
  "sphinx_copybutton",
46
48
  "sphinx.ext.graphviz",
49
+ "sphinx_time_estimation",
47
50
  ]
48
51
 
49
52
  templates_path = ["_templates"]
@@ -103,8 +106,8 @@ html_theme_options = {
103
106
  "navbar_end": ["theme-switcher", "navbar-icon-links"],
104
107
  "footer_start": ["copyright"],
105
108
  "logo": {
106
- "image_light": "_static/eegdash_long.png",
107
- "image_dark": "_static/eegdash_long.png",
109
+ "image_light": "_static/eegdash_long_white.svg",
110
+ "image_dark": "_static/eegdash_long_dark.svg",
108
111
  "alt_text": "EEG Dash Logo",
109
112
  },
110
113
  "external_links": [
@@ -293,6 +296,14 @@ EEGDash currently exposes **{dataset_count} OpenNeuro EEG datasets** that are
293
296
  registered dynamically from mongo database. The table below summarises
294
297
  the distribution by experimental type as tracked in the summary file.
295
298
 
299
+ Base Dataset API
300
+ ----------------
301
+
302
+ .. toctree::
303
+ :maxdepth: 1
304
+
305
+ eegdash.dataset.EEGChallengeDataset
306
+
296
307
  .. list-table:: Dataset counts by experimental type
297
308
  :widths: 60 20
298
309
  :header-rows: 1
@@ -314,6 +325,22 @@ All Datasets
314
325
  """
315
326
 
316
327
 
328
+ BASE_DATASET_TEMPLATE = """{notice}.. _api_eegdash_challenge_dataset:
329
+
330
+ .. currentmodule:: eegdash.dataset
331
+
332
+ EEGChallengeDataset
333
+ ===================
334
+
335
+ .. autoclass:: eegdash.dataset.EEGChallengeDataset
336
+ :members:
337
+ :undoc-members:
338
+ :show-inheritance:
339
+ :member-order: bysource
340
+
341
+ """
342
+
343
+
317
344
  def _write_if_changed(path: Path, content: str) -> bool:
318
345
  """Write ``content`` to ``path`` if it differs from the current file."""
319
346
  existing = path.read_text(encoding="utf-8") if path.exists() else None
@@ -540,6 +567,11 @@ def _generate_dataset_docs(app) -> None:
540
567
  if _write_if_changed(index_path, index_content):
541
568
  LOGGER.info("[dataset-docs] Updated %s", index_path.relative_to(app.srcdir))
542
569
 
570
+ base_content = BASE_DATASET_TEMPLATE.format(notice=AUTOGEN_NOTICE)
571
+ base_path = dataset_dir / "eegdash.dataset.EEGChallengeDataset.rst"
572
+ if _write_if_changed(base_path, base_content):
573
+ LOGGER.info("[dataset-docs] Updated %s", base_path.relative_to(app.srcdir))
574
+
543
575
  generated_paths: set[Path] = set()
544
576
  for name in dataset_names:
545
577
  title = f"eegdash.dataset.{name}"
@@ -1,3 +1,7 @@
1
+ .. title:: Dataset landscape
2
+
3
+ .. rubric:: Dataset landscape
4
+
1
5
  .. raw:: html
2
6
 
3
7
  <figure class="eegdash-figure" style="margin: 0 0 1.25rem 0;">
@@ -1,3 +1,7 @@
1
+ .. title:: Participant Distribution by Modality
2
+
3
+ .. rubric:: Distribution of Sample Sizes Varies by Experimental Modality
4
+
1
5
  .. raw:: html
2
6
 
3
7
  <figure class="eegdash-figure" style="margin: 0 0 1.25rem 0;">
@@ -0,0 +1,20 @@
1
+ .. title:: Dataset flow
2
+
3
+ .. rubric:: Sankey diagrams of EEGDash Datasets by Population, Modality, and Cognitive Domain
4
+
5
+ .. raw:: html
6
+
7
+ <figure class="eegdash-figure" style="margin: 0 0 1.25rem 0;">
8
+
9
+ .. raw:: html
10
+ :file: ../_static/dataset_generated/dataset_sankey.html
11
+
12
+ .. raw:: html
13
+
14
+ <figcaption class="eegdash-caption">
15
+ Figure: Dataset flow across population, modality, and cognitive domain.
16
+ Link thickness is proportional to the total number of subjects, and the tooltip
17
+ reports both subject and dataset counts. Hover and click legend entries to
18
+ explore specific segments.
19
+ </figcaption>
20
+ </figure>
@@ -0,0 +1,27 @@
1
+ .. title:: EEG Datasets Table
2
+
3
+ .. rubric:: EEG Datasets Table
4
+
5
+ The data in EEG-DaSh originates from a collaboration involving 25 laboratories, encompassing 27,053 participants. This extensive collection includes M-EEG data, which is a combination of EEG and MEG signals. The data is sourced from various studies conducted by these labs,
6
+ involving both healthy subjects and clinical populations with conditions such as ADHD, depression, schizophrenia, dementia, autism, and psychosis. Additionally, data spans different mental states like sleep, meditation, and cognitive tasks.
7
+
8
+ In addition, EEG-DaSh will incorporate a subset of the data converted from `NEMAR <https://nemar.org/>`__, which includes 330 MEEG BIDS-formatted datasets, further expanding the archive with well-curated, standardized neuroelectromagnetic data.
9
+
10
+ .. raw:: html
11
+
12
+ <figure class="eegdash-figure" style="margin: 0 0 1.25rem 0;">
13
+
14
+ .. raw:: html
15
+ :file: ../_static/dataset_generated/dataset_summary_table.html
16
+
17
+ .. raw:: html
18
+
19
+ <figcaption class="eegdash-caption">
20
+ Table: Sortable catalogue of EEG‑DaSh datasets. Use the “Filters” button to open column filters;
21
+ click a column header to jump directly to a filter pane. The Total row is pinned at the bottom.
22
+ * means that we use the median value across multiple recordings in the dataset, and empty cells
23
+ when the metainformation is not extracted yet.
24
+ </figcaption>
25
+ </figure>
26
+
27
+ Pathology, modality, and dataset type now surface as consistent color-coded tags so you can scan the table at a glance.
@@ -10,13 +10,11 @@
10
10
 
11
11
  .. rst-class:: dataset-summary-article
12
12
 
13
- Datasets
14
- =========
13
+ Datasets Catalog
14
+ ================
15
15
 
16
16
  To leverage recent and ongoing advancements in large-scale computational methods and to ensure the preservation of scientific data generated from publicly funded research, the EEG-DaSh data archive will create a data-sharing resource for MEEG (EEG, MEG) data contributed by collaborators for machine learning (ML) and deep learning (DL) applications.
17
17
 
18
- The archive is currently still in :bdg-danger:`beta testing` mode, so be kind.
19
-
20
18
  .. raw:: html
21
19
 
22
20
  <script src="https://cdn.plot.ly/plotly-3.1.0.min.js"></script>
@@ -27,10 +25,16 @@ The archive is currently still in :bdg-danger:`beta testing` mode, so be kind.
27
25
 
28
26
  .. include:: dataset_summary/table.rst
29
27
 
30
- .. tab-item:: Participant KDE
28
+ .. tab-item:: Participant Distribution
31
29
 
32
30
  .. include:: dataset_summary/kde.rst
33
31
 
34
- .. tab-item:: Landscape
32
+ .. tab-item:: Dataset Flow
33
+
34
+ .. include:: dataset_summary/sankey.rst
35
+
36
+ .. tab-item:: Scatter of Sample Size vs. Recording Duration
35
37
 
36
38
  .. include:: dataset_summary/bubble.rst
39
+
40
+ The archive is currently still in :bdg-danger:`beta testing` mode, so be kind.
@@ -0,0 +1,86 @@
1
+ :html_theme.sidebar_secondary.remove: true
2
+
3
+ EEGDASH Homepage
4
+ =================
5
+
6
+ .. title:: EEG Dash
7
+
8
+
9
+ EEG Dash Homepage
10
+ ==================
11
+
12
+ .. raw:: html
13
+
14
+ <style type="text/css">h1 {display:none;}</style>
15
+
16
+ .. raw:: html
17
+
18
+ <h1 class="eegdash-hero__title">EEG Dash</h1>
19
+
20
+
21
+ .. image:: _static/logos/eegdash.svg
22
+ :alt: EEG Dash Logo
23
+ :class: logo mainlogo only-dark
24
+ :align: center
25
+ :scale: 50%
26
+
27
+ .. image:: _static/logos/eegdash.svg
28
+ :alt: EEG Dash Logo
29
+ :class: logo mainlogo only-light
30
+ :align: center
31
+ :scale: 50%
32
+
33
+ .. rst-class:: h4 text-center font-weight-light my-4
34
+
35
+ The EEG-DaSh data archive is a data-sharing resource for MEEG (EEG, MEG) data, enabling
36
+ large-scale computational advancements to preserve and share scientific data from publicly funded
37
+ research for machine learning and deep learning applications.
38
+
39
+ .. rst-class:: text-center
40
+
41
+ The "DaSh" in EEG-DaSh stands for **Data Share**.
42
+
43
+ The EEG-DaSh data archive is a collaborative effort led by the University of California, San Diego (UCSD) and Ben-Gurion University of the Negev (BGU) and partially funded by the National Science Foundation (NSF). All are welcome to contribute to the https://github.com/sccn/EEGDash project.
44
+
45
+ The archive is currently still in :bdg-danger:`beta testing` mode, so be kind.
46
+
47
+ .. raw:: html
48
+
49
+ <h2 style="text-align: center;">Institutions</h2>
50
+
51
+
52
+ .. image:: _static/logos/ucsd_white.svg
53
+ :alt: UCSD
54
+ :class: logo mainlogo only-dark flex-logo
55
+ :width: 45%
56
+ :align: left
57
+
58
+
59
+ .. image:: _static/logos/ucsd_dark.svg
60
+ :alt: UCSD
61
+ :class: logo mainlogo only-light flex-logo
62
+ :align: left
63
+ :width: 45%
64
+
65
+
66
+ .. image:: _static/logos/bgu_dark.svg
67
+ :alt: Ben-Gurion University of the Negev (BGU)
68
+ :class: logo mainlogo only-dark flex-logo
69
+ :align: right
70
+ :width: 40%
71
+
72
+ .. image:: _static/logos/bgu_white.svg
73
+ :alt: Ben-Gurion University of the Negev (BGU)
74
+ :class: logo mainlogo only-light flex-logo
75
+ :align: right
76
+ :width: 40%
77
+
78
+
79
+ .. toctree::
80
+ :hidden:
81
+
82
+ Installing <install/install>
83
+ User Guide <user_guide>
84
+ API <api/api>
85
+ Dataset Catalog <dataset_summary>
86
+ Examples <generated/auto_examples/index>
@@ -1,16 +1,21 @@
1
1
  .. _user_guide:
2
2
 
3
+ :html_theme.sidebar_secondary.remove: true
4
+
5
+ .. currentmodule:: eegdash.api
6
+
7
+
3
8
  User Guide
4
9
  ==========
5
10
 
6
- This guide provides a comprehensive overview of the ``eegdash`` library, focusing on its core data access object, ``EEGDashDataset``. You will learn how to use this object to find, access, and manage EEG data for your research and analysis tasks.
11
+ This guide provides a comprehensive overview of the :mod:`eegdash` library, focusing on its core data access object, :class:`~eegdash.api.EEGDashDataset`. You will learn how to use this object to find, access, and manage EEG data for your research and analysis tasks.
7
12
 
8
13
  The EEGDash Object
9
14
  ------------------
10
15
 
11
- While :class:`~eegdash.EEGDashDataset` is the main tool for loading data for machine learning, the :class:`~eegdash.EEGDash` object provides a lower-level interface for directly interacting with the metadata database. It is useful for exploring the available data, performing complex queries, or managing metadata records.
16
+ While :class:`~eegdash.api.EEGDashDataset` is the main tool for loading data for machine learning, the :class:`~eegdash.api.EEGDash` object provides a lower-level interface for directly interacting with the metadata database. It is useful for exploring the available data, performing complex queries, or managing metadata records.
12
17
 
13
- Initializing ``EEGDash``
18
+ Initializing EEGDash
14
19
  ~~~~~~~~~~~~~~~~~~~~~~~~
15
20
 
16
21
  You can create a client to connect to the public database like this:
@@ -38,25 +43,25 @@ The ``find()`` method allows you to query the database for records matching spec
38
43
  records_advanced = eegdash.find(query)
39
44
  print(f"Found {len(records_advanced)} records with advanced query.")
40
45
 
41
- ``EEGDash`` vs. ``EEGDashDataset``
46
+ EEGDash vs. EEGDashDataset
42
47
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
43
48
 
44
49
  It's important to understand the distinction between these two objects:
45
50
 
46
- - **EEGDash**: Use this for querying and managing metadata. It returns a list of dictionaries, where each dictionary is a record from the database.
47
- - **EEGDashDataset**: Use this when you need to load EEG data for analysis or machine learning. It returns a PyTorch-compatible dataset object where each item can load the actual EEG signal.
51
+ - :class:`~eegdash.api.EEGDash`: Use this for querying and managing metadata. It returns a list of dictionaries, where each dictionary is a record from the database.
52
+ - :class:`~eegdash.api.EEGDashDataset`: Use this when you need to load EEG data for analysis or machine learning. It returns a PyTorch-compatible dataset object where each item can load the actual EEG signal.
48
53
 
49
- In general, you will use ``EEGDashDataset`` for most of your data loading needs.
54
+ In general, you will use :class:`~eegdash.api.EEGDashDataset` for most of your data loading needs.
50
55
 
51
56
  The EEGDashDataset Object
52
57
  -------------------------
53
58
 
54
- The :class:`~eegdash.EEGDashDataset` is the primary entry point for working with EEG recordings in ``eegdash``. It acts as a high-level interface that allows you to query a metadata database and load corresponding EEG data, either from a remote source or from a local cache.
59
+ The :class:`~eegdash.api.EEGDashDataset` is the primary entry point for working with EEG recordings in :mod:`eegdash`. It acts as a high-level interface that allows you to query a metadata database and load corresponding EEG data, either from a remote source or from a local cache.
55
60
 
56
- Initializing ``EEGDashDataset``
61
+ Initializing EEGDashDataset
57
62
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
58
63
 
59
- To get started, you need to create an instance of ``EEGDashDataset``. The two most important parameters are ``cache_dir`` and ``dataset``.
64
+ To get started, you need to create an instance of :class:`~eegdash.api.EEGDashDataset`. The two most important parameters are ``cache_dir`` and ``dataset``.
60
65
 
61
66
  - ``cache_dir``: This is the local directory where ``eegdash`` will store downloaded data.
62
67
  - ``dataset``: The identifier of the dataset you want to work with (e.g., ``"ds002718"``).
@@ -80,7 +85,7 @@ This will create a dataset object containing all recordings from ``ds002718``. T
80
85
  Querying for Specific Data
81
86
  --------------------------
82
87
 
83
- ``EEGDashDataset`` offers powerful filtering capabilities, allowing you to select a subset of recordings based on various criteria. You can filter by task, subject, session, or run.
88
+ :class:`~eegdash.api.EEGDashDataset` offers powerful filtering capabilities, allowing you to select a subset of recordings based on various criteria. You can filter by task, subject, session, or run.
84
89
 
85
90
  Filtering by Task
86
91
  ~~~~~~~~~~~~~~~~~
@@ -162,11 +167,11 @@ For more complex queries, you can pass a MongoDB-style query dictionary directly
162
167
  Working with Local Data (Offline Mode)
163
168
  --------------------------------------
164
169
 
165
- ``eegdash`` also supports working with local data that you have already downloaded or manage separately. By setting ``download=False``, you can instruct ``EEGDashDataset`` to use local BIDS-compliant data instead of accessing the database or remote storage.
170
+ :mod:`eegdash` also supports working with local data that you have already downloaded or manage separately. By setting ``download=False``, you can instruct :class:`~eegdash.api.EEGDashDataset` to use local BIDS-compliant data instead of accessing the database or remote storage.
166
171
 
167
172
  To use this feature, your data must be organized in a BIDS-like structure within your ``cache_dir``. For example, if your ``cache_dir`` is ``./eeg_data`` and your dataset is ``ds002718``, the files should be located at ``./eeg_data/ds002718/``.
168
173
 
169
- Here is how to use ``EEGDashDataset`` in offline mode:
174
+ Here is how to use :class:`~eegdash.api.EEGDashDataset` in offline mode:
170
175
 
171
176
  .. code-block:: python
172
177
 
@@ -179,12 +184,12 @@ Here is how to use ``EEGDashDataset`` in offline mode:
179
184
 
180
185
  print(f"Found {len(local_dataset)} local recordings.")
181
186
 
182
- When ``download=False``, ``eegdash`` will scan the specified directory for EEG files and construct the dataset from the local file system. This is useful for environments without internet access or when you want to work with your own curated datasets.
187
+ When ``download=False``, :mod:`eegdash` will scan the specified directory for EEG files and construct the dataset from the local file system. This is useful for environments without internet access or when you want to work with your own curated datasets.
183
188
 
184
189
  Accessing Data from the Dataset
185
190
  -------------------------------
186
191
 
187
- Once you have your ``EEGDashDataset`` object, you can access individual recordings as if it were a list. Each item in the dataset is an ``EEGDashBaseDataset`` object, which contains the metadata and methods to load the actual EEG data.
192
+ Once you have your :class:`~eegdash.api.EEGDashDataset` object, you can access individual recordings as if it were a list. Each item in the dataset is an :class:`~eegdash.data_utils.EEGDashBaseDataset` object, which contains the metadata and methods to load the actual EEG data.
188
193
 
189
194
  .. code-block:: python
190
195
 
@@ -199,4 +204,4 @@ Once you have your ``EEGDashDataset`` object, you can access individual recordin
199
204
  print(f"Sampling frequency: {raw.info['sfreq']} Hz")
200
205
  print(f"Number of channels: {len(raw.ch_names)}")
201
206
 
202
- This provides a powerful and flexible way to integrate ``eegdash`` into your data analysis pipelines, whether you are working with remote or local data.
207
+ This provides a powerful and flexible way to integrate ``eegdash`` into your data analysis pipelines, whether you are working with remote or local data.
@@ -18,4 +18,4 @@ _init_mongo_client()
18
18
 
19
19
  __all__ = ["EEGDash", "EEGDashDataset", "EEGChallengeDataset", "preprocessing"]
20
20
 
21
- __version__ = "0.4.0.dev150"
21
+ __version__ = "0.4.0.dev162"