eegdash 0.3.6.dev182011805__tar.gz → 0.3.7.dev177024734__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of eegdash might be problematic. Click here for more details.

Files changed (59) hide show
  1. {eegdash-0.3.6.dev182011805/eegdash.egg-info → eegdash-0.3.7.dev177024734}/PKG-INFO +4 -1
  2. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/docs/source/conf.py +14 -0
  3. eegdash-0.3.7.dev177024734/docs/source/dataset_summary.rst +201 -0
  4. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash/__init__.py +1 -1
  5. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash/api.py +65 -59
  6. eegdash-0.3.6.dev182011805/eegdash/dataset.py → eegdash-0.3.7.dev177024734/eegdash/const.py +0 -95
  7. eegdash-0.3.7.dev177024734/eegdash/dataset.py +118 -0
  8. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash/registry.py +13 -3
  9. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734/eegdash.egg-info}/PKG-INFO +4 -1
  10. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash.egg-info/SOURCES.txt +2 -0
  11. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash.egg-info/requires.txt +3 -0
  12. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/pyproject.toml +4 -1
  13. eegdash-0.3.7.dev177024734/tests/test_database.py +0 -0
  14. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/tests/test_dataset_registration.py +3 -3
  15. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/tests/test_offline.py +6 -4
  16. eegdash-0.3.6.dev182011805/docs/source/dataset_summary.rst +0 -85
  17. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/LICENSE +0 -0
  18. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/MANIFEST.in +0 -0
  19. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/README.md +0 -0
  20. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/docs/Makefile +0 -0
  21. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/docs/source/index.rst +0 -0
  22. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/docs/source/install/install.rst +0 -0
  23. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/docs/source/install/install_pip.rst +0 -0
  24. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/docs/source/install/install_source.rst +0 -0
  25. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/docs/source/overview.rst +0 -0
  26. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash/data_config.py +0 -0
  27. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash/data_utils.py +0 -0
  28. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash/dataset_summary.csv +0 -0
  29. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash/features/__init__.py +0 -0
  30. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash/features/datasets.py +0 -0
  31. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash/features/decorators.py +0 -0
  32. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash/features/extractors.py +0 -0
  33. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash/features/feature_bank/__init__.py +0 -0
  34. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash/features/feature_bank/complexity.py +0 -0
  35. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash/features/feature_bank/connectivity.py +0 -0
  36. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash/features/feature_bank/csp.py +0 -0
  37. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash/features/feature_bank/dimensionality.py +0 -0
  38. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash/features/feature_bank/signal.py +0 -0
  39. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash/features/feature_bank/spectral.py +0 -0
  40. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash/features/feature_bank/utils.py +0 -0
  41. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash/features/inspect.py +0 -0
  42. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash/features/serialization.py +0 -0
  43. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash/features/utils.py +0 -0
  44. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash/mongodb.py +0 -0
  45. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash/preprocessing.py +0 -0
  46. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash/utils.py +0 -0
  47. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash.egg-info/dependency_links.txt +0 -0
  48. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/eegdash.egg-info/top_level.txt +0 -0
  49. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/setup.cfg +0 -0
  50. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/tests/test_api.py +0 -0
  51. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/tests/test_challenge_kwargs.py +0 -0
  52. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/tests/test_correctness.py +0 -0
  53. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/tests/test_dataset.py +0 -0
  54. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/tests/test_eegdash.py +0 -0
  55. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/tests/test_functional.py +0 -0
  56. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/tests/test_init.py +0 -0
  57. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/tests/test_minirelease.py +0 -0
  58. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/tests/test_mongo_connection.py +0 -0
  59. {eegdash-0.3.6.dev182011805 → eegdash-0.3.7.dev177024734}/tests/test_query.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: eegdash
3
- Version: 0.3.6.dev182011805
3
+ Version: 0.3.7.dev177024734
4
4
  Summary: EEG data for machine learning
5
5
  Author-email: Young Truong <dt.young112@gmail.com>, Arnaud Delorme <adelorme@gmail.com>, Aviv Dotan <avivd220@gmail.com>, Oren Shriki <oren70@gmail.com>, Bruno Aristimunha <b.aristimunha@gmail.com>
6
6
  License-Expression: GPL-3.0-only
@@ -48,6 +48,7 @@ Requires-Dist: pytest_cases; extra == "tests"
48
48
  Requires-Dist: pytest-benchmark; extra == "tests"
49
49
  Provides-Extra: dev
50
50
  Requires-Dist: pre-commit; extra == "dev"
51
+ Requires-Dist: ipykernel; extra == "dev"
51
52
  Provides-Extra: docs
52
53
  Requires-Dist: sphinx; extra == "docs"
53
54
  Requires-Dist: sphinx_design; extra == "docs"
@@ -55,10 +56,12 @@ Requires-Dist: sphinx_gallery; extra == "docs"
55
56
  Requires-Dist: sphinx_rtd_theme; extra == "docs"
56
57
  Requires-Dist: pydata-sphinx-theme; extra == "docs"
57
58
  Requires-Dist: sphinx-autobuild; extra == "docs"
59
+ Requires-Dist: sphinx-sitemap; extra == "docs"
58
60
  Requires-Dist: numpydoc; extra == "docs"
59
61
  Requires-Dist: memory_profiler; extra == "docs"
60
62
  Requires-Dist: ipython; extra == "docs"
61
63
  Requires-Dist: lightgbm; extra == "docs"
64
+ Requires-Dist: plotly; extra == "docs"
62
65
  Provides-Extra: all
63
66
  Requires-Dist: eegdash[docs]; extra == "all"
64
67
  Requires-Dist: eegdash[dev]; extra == "all"
@@ -31,6 +31,8 @@ extensions = [
31
31
  # "autoapi.extension",
32
32
  "numpydoc",
33
33
  "sphinx_gallery.gen_gallery",
34
+ # Generate sitemap.xml for search engines
35
+ "sphinx_sitemap",
34
36
  ]
35
37
 
36
38
  templates_path = ["_templates"]
@@ -45,6 +47,11 @@ html_favicon = "_static/eegdash_icon.png"
45
47
  html_title = "EEG Dash"
46
48
  html_short_title = "EEG Dash"
47
49
  html_css_files = ["custom.css"]
50
+ html_js_files = []
51
+
52
+ # Required for sphinx-sitemap: set the canonical base URL of the site
53
+ # Make sure this matches the actual published docs URL and ends with '/'
54
+ html_baseurl = "https://sccn.github.io/eegdash/"
48
55
 
49
56
  html_theme_options = {
50
57
  "icon_links_label": "External Links", # for screen reader
@@ -94,6 +101,9 @@ html_theme_options = {
94
101
 
95
102
  html_sidebars = {"api": [], "dataset_summary": [], "installation": []}
96
103
 
104
+ # Copy extra files (e.g., robots.txt) to the output root
105
+ html_extra_path = ["_extra"]
106
+
97
107
 
98
108
  # -- Extension configurations ------------------------------------------------
99
109
  autoclass_content = "both"
@@ -140,3 +150,7 @@ def setup(app):
140
150
  )
141
151
  if not os.path.exists(backreferences_dir):
142
152
  os.makedirs(backreferences_dir)
153
+
154
+
155
+ # Configure sitemap URL format (omit .html where possible)
156
+ sitemap_url_scheme = "{link}"
@@ -0,0 +1,201 @@
1
+ .. meta::
2
+ :hide_sidebar: true
3
+
4
+ :html_theme.sidebar_secondary.remove:
5
+ :html_theme.sidebar_primary.remove:
6
+
7
+ .. _data_summary:
8
+
9
+ EEGDash
10
+ ========
11
+
12
+ To leverage recent and ongoing advancements in large-scale computational methods and to ensure the preservation of scientific data generated from publicly funded research, the EEG-DaSh data archive will create a data-sharing resource for MEEG (EEG, MEG) data contributed by collaborators for machine learning (ML) and deep learning (DL) applications.
13
+
14
+ The archive is currently still in :bdg-danger:`beta testing` mode, so be kind.
15
+
16
+ .. raw:: html
17
+
18
+ <figure class="eegdash-figure" style="margin: 0 0 1.25rem 0;">
19
+
20
+ .. raw:: html
21
+ :file: ../build/dataset_bubble.html
22
+
23
+ .. raw:: html
24
+
25
+ <figcaption class="eegdash-caption">
26
+ Figure: Dataset landscape. Each bubble represents a dataset: x-axis shows the number of records,
27
+ y-axis the number of subjects, bubble area encodes on-disk size, and color indicates sampling frequency band.
28
+ Hover for details and use the legend to highlight groups.
29
+ </figcaption>
30
+ </figure>
31
+
32
+
33
+ .. raw:: html
34
+
35
+ <figure class="eegdash-figure" style="margin: 1.0rem 0 0 0;">
36
+
37
+
38
+ MEEG Datasets Table
39
+ ===================
40
+
41
+ The data in EEG-DaSh originates from a collaboration involving 25 laboratories, encompassing 27,053 participants. This extensive collection includes MEEG data, which is a combination of EEG and MEG signals. The data is sourced from various studies conducted by these labs,
42
+ involving both healthy subjects and clinical populations with conditions such as ADHD, depression, schizophrenia, dementia, autism, and psychosis. Additionally, data spans different mental states like sleep, meditation, and cognitive tasks.
43
+
44
+ In addition, EEG-DaSh will incorporate a subset of the data converted from `NEMAR <https://nemar.org/>`__, which includes 330 MEEG BIDS-formatted datasets, further expanding the archive with well-curated, standardized neuroelectromagnetic data.
45
+
46
+ .. raw:: html
47
+ :file: ../build/dataset_summary_table.html
48
+
49
+ .. raw:: html
50
+
51
+ <figcaption class="eegdash-caption">
52
+ Table: Sortable catalogue of EEG‑DaSh datasets. Use the “Filters” button to open column filters;
53
+ click a column header to jump directly to a filter pane. The Total row is pinned at the bottom.
54
+ * means that we use the median value across multiple recordings in the dataset, and empty cells
55
+ when the metainformation is not extracted yet.
56
+ </figcaption>
57
+ </figure>
58
+
59
+ .. raw:: html
60
+
61
+ <!-- jQuery + DataTables core -->
62
+ <script src="https://code.jquery.com/jquery-3.7.1.min.js"></script>
63
+ <link rel="stylesheet" href="https://cdn.datatables.net/v/bm/dt-1.13.4/datatables.min.css"/>
64
+ <script src="https://cdn.datatables.net/v/bm/dt-1.13.4/datatables.min.js"></script>
65
+
66
+ <!-- Buttons + SearchPanes (+ Select required by SearchPanes) -->
67
+ <link rel="stylesheet" href="https://cdn.datatables.net/buttons/2.4.2/css/buttons.dataTables.min.css">
68
+ <script src="https://cdn.datatables.net/buttons/2.4.2/js/dataTables.buttons.min.js"></script>
69
+ <link rel="stylesheet" href="https://cdn.datatables.net/select/1.7.0/css/select.dataTables.min.css">
70
+ <link rel="stylesheet" href="https://cdn.datatables.net/searchpanes/2.3.1/css/searchPanes.dataTables.min.css">
71
+ <script src="https://cdn.datatables.net/select/1.7.0/js/dataTables.select.min.js"></script>
72
+ <script src="https://cdn.datatables.net/searchpanes/2.3.1/js/dataTables.searchPanes.min.js"></script>
73
+
74
+ <style>
75
+ /* Styling for the Total row (placed in tfoot) */
76
+ table.sd-table tfoot td {
77
+ font-weight: 600;
78
+ border-top: 2px solid rgba(0,0,0,0.2);
79
+ background: #f9fafb;
80
+ /* Match body cell padding to keep perfect alignment */
81
+ padding: 8px 10px !important;
82
+ vertical-align: middle;
83
+ }
84
+
85
+ /* Right-align numeric-like columns (2..8) consistently for body & footer */
86
+ table.sd-table tbody td:nth-child(n+2),
87
+ table.sd-table tfoot td:nth-child(n+2) {
88
+ text-align: right;
89
+ }
90
+ /* Keep first column (Dataset/Total) left-aligned */
91
+ table.sd-table tbody td:first-child,
92
+ table.sd-table tfoot td:first-child {
93
+ text-align: left;
94
+ }
95
+ </style>
96
+
97
+ <script>
98
+ // Helper: robustly extract values for SearchPanes when needed
99
+ function tagsArrayFromHtml(html) {
100
+ if (html == null) return [];
101
+ // If it's numeric or plain text, just return as a single value
102
+ if (typeof html === 'number') return [String(html)];
103
+ if (typeof html === 'string' && html.indexOf('<') === -1) return [html.trim()];
104
+ // Else parse any .tag elements inside HTML
105
+ var tmp = document.createElement('div');
106
+ tmp.innerHTML = html;
107
+ var tags = Array.from(tmp.querySelectorAll('.tag')).map(function(el){
108
+ return (el.textContent || '').trim();
109
+ });
110
+ return tags.length ? tags : [tmp.textContent.trim()];
111
+ }
112
+
113
+ // Helper: parse human-readable sizes like "4.31 GB" into bytes (number)
114
+ function parseSizeToBytes(text) {
115
+ if (!text) return 0;
116
+ var s = String(text).trim();
117
+ var m = s.match(/([\d,.]+)\s*(TB|GB|MB|KB|B)/i);
118
+ if (!m) return 0;
119
+ var value = parseFloat(m[1].replace(/,/g, ''));
120
+ var unit = m[2].toUpperCase();
121
+ var factor = { B:1, KB:1024, MB:1024**2, GB:1024**3, TB:1024**4 }[unit] || 1;
122
+ return value * factor;
123
+ }
124
+
125
+ $(function () {
126
+ // 1) Move the "Total" row into <tfoot> so sorting/filtering never moves it
127
+ $('.sortable').each(function(){
128
+ var $t = $(this);
129
+ var $tbody = $t.find('tbody');
130
+ var $total = $tbody.find('tr').filter(function(){
131
+ return $(this).find('td').eq(0).text().trim() === 'Total';
132
+ });
133
+ if ($total.length) {
134
+ var $tfoot = $t.find('tfoot');
135
+ if (!$tfoot.length) $tfoot = $('<tfoot/>').appendTo($t);
136
+ $total.appendTo($tfoot);
137
+ }
138
+ });
139
+
140
+ // 2) Initialize DataTable with SearchPanes button
141
+ var FILTER_COLS = [1,2,3,4,5,6];
142
+ // Detect the index of the size column by header text
143
+ var sizeIdx = (function(){
144
+ var idx = -1;
145
+ $('.sortable thead th').each(function(i){
146
+ var t = $(this).text().trim().toLowerCase();
147
+ if (t === 'size on disk' || t === 'size') idx = i;
148
+ });
149
+ return idx;
150
+ })();
151
+
152
+ var table = $('.sortable').DataTable({
153
+ dom: 'Blfrtip',
154
+ paging: false,
155
+ searching: true,
156
+ info: false,
157
+ language: {
158
+ search: 'Filter dataset:',
159
+ searchPanes: { collapse: { 0: 'Filters', _: 'Filters (%d)' } }
160
+ },
161
+ buttons: [{
162
+ extend: 'searchPanes',
163
+ text: 'Filters',
164
+ config: { cascadePanes: true, viewTotal: true, layout: 'columns-4', initCollapsed: false }
165
+ }],
166
+ columnDefs: (function(){
167
+ var defs = [
168
+ { searchPanes: { show: true }, targets: FILTER_COLS }
169
+ ];
170
+ if (sizeIdx !== -1) {
171
+ defs.push({
172
+ targets: sizeIdx,
173
+ render: function(data, type) {
174
+ if (type === 'sort' || type === 'type') {
175
+ return parseSizeToBytes(data);
176
+ }
177
+ return data;
178
+ }
179
+ });
180
+ }
181
+ return defs;
182
+ })()
183
+ });
184
+
185
+ // 3) UX: click a header to open the relevant filter pane
186
+ $('.sortable thead th').each(function (i) {
187
+ if ([1,2,3,4].indexOf(i) === -1) return;
188
+ $(this).css('cursor','pointer').attr('title','Click to filter this column');
189
+ $(this).on('click', function () {
190
+ table.button('.buttons-searchPanes').trigger();
191
+ setTimeout(function () {
192
+ var idx = [1,2,3,4].indexOf(i);
193
+ var $container = $(table.searchPanes.container());
194
+ var $pane = $container.find('.dtsp-pane').eq(idx);
195
+ var $title = $pane.find('.dtsp-title');
196
+ if ($title.length) $title.trigger('click');
197
+ }, 0);
198
+ });
199
+ });
200
+ });
201
+ </script>
@@ -7,4 +7,4 @@ __init__mongo_client()
7
7
 
8
8
  __all__ = ["EEGDash", "EEGDashDataset", "EEGChallengeDataset"]
9
9
 
10
- __version__ = "0.3.6.dev182011805"
10
+ __version__ = "0.3.7.dev177024734"
@@ -6,15 +6,18 @@ from typing import Any, Mapping
6
6
 
7
7
  import mne
8
8
  import numpy as np
9
+ import platformdirs
9
10
  import xarray as xr
10
11
  from dotenv import load_dotenv
11
12
  from joblib import Parallel, delayed
13
+ from mne.utils import warn
12
14
  from mne_bids import get_bids_path_from_fname, read_raw_bids
13
15
  from pymongo import InsertOne, UpdateOne
14
16
  from s3fs import S3FileSystem
15
17
 
16
18
  from braindecode.datasets import BaseConcatDataset
17
19
 
20
+ from .const import RELEASE_TO_OPENNEURO_DATASET_MAP
18
21
  from .data_config import config as data_config
19
22
  from .data_utils import EEGBIDSDataset, EEGDashBaseDataset
20
23
  from .mongodb import MongoConnectionManager
@@ -693,9 +696,8 @@ class EEGDash:
693
696
  class EEGDashDataset(BaseConcatDataset):
694
697
  def __init__(
695
698
  self,
696
- query: dict | None = None,
697
- cache_dir: str = "~/eegdash_cache",
698
- dataset: str | list[str] | None = None,
699
+ cache_dir: str | Path,
700
+ query: dict[str, Any] = None,
699
701
  description_fields: list[str] = [
700
702
  "subject",
701
703
  "session",
@@ -706,9 +708,10 @@ class EEGDashDataset(BaseConcatDataset):
706
708
  "sex",
707
709
  ],
708
710
  s3_bucket: str | None = None,
709
- data_dir: str | None = None,
710
711
  eeg_dash_instance=None,
711
712
  records: list[dict] | None = None,
713
+ offline_mode: bool = False,
714
+ n_jobs: int = -1,
712
715
  **kwargs,
713
716
  ):
714
717
  """Create a new EEGDashDataset from a given query or local BIDS dataset directory
@@ -754,35 +757,54 @@ class EEGDashDataset(BaseConcatDataset):
754
757
  records : list[dict] | None
755
758
  Optional list of pre-fetched metadata records. If provided, the dataset is
756
759
  constructed directly from these records without querying MongoDB.
760
+ offline_mode : bool
761
+ If True, do not attempt to query MongoDB at all. This is useful if you want to
762
+ work with a local cache only, or if you are offline.
763
+ n_jobs : int
764
+ The number of jobs to run in parallel (default is -1, meaning using all processors).
757
765
  kwargs : dict
758
766
  Additional keyword arguments to be passed to the EEGDashBaseDataset
759
767
  constructor.
760
768
 
761
769
  """
762
- self.cache_dir = cache_dir
770
+ self.cache_dir = Path(cache_dir or platformdirs.user_cache_dir("EEGDash"))
771
+ if not self.cache_dir.exists():
772
+ warn(f"Cache directory does not exist, creating it: {self.cache_dir}")
773
+ self.cache_dir.mkdir(exist_ok=True, parents=True)
763
774
  self.s3_bucket = s3_bucket
764
775
  self.eeg_dash = eeg_dash_instance
776
+
777
+ # Separate query kwargs from other kwargs passed to the BaseDataset constructor
778
+ self.query = query or {}
779
+ self.query.update(
780
+ {k: v for k, v in kwargs.items() if k in EEGDash._ALLOWED_QUERY_FIELDS}
781
+ )
782
+ base_dataset_kwargs = {k: v for k, v in kwargs.items() if k not in self.query}
783
+ if "dataset" not in self.query:
784
+ raise ValueError("You must provide a 'dataset' argument")
785
+
786
+ self.data_dir = self.cache_dir / self.query["dataset"]
787
+ if self.query["dataset"] in RELEASE_TO_OPENNEURO_DATASET_MAP.values():
788
+ warn(
789
+ "If you are not participating in the competition, you can ignore this warning!"
790
+ "\n\n"
791
+ "[EEGChallengeDataset] EEG 2025 Competition Data Notice:\n"
792
+ "-------------------------------------------------------\n"
793
+ " You are loading the dataset that is used in the EEG 2025 Competition:\n"
794
+ "IMPORTANT: The data accessed via `EEGDashDataset` is NOT identical to what you get from `EEGChallengeDataset` directly.\n"
795
+ "and it is not what you will use for the competition. Downsampling and filtering were applied to the data"
796
+ "to allow more people to participate.\n"
797
+ "\n",
798
+ "If you are participating in the competition, always use `EEGChallengeDataset` to ensure consistency with the challenge data.\n"
799
+ "\n",
800
+ UserWarning,
801
+ module="eegdash",
802
+ )
765
803
  _owns_client = False
766
804
  if self.eeg_dash is None and records is None:
767
805
  self.eeg_dash = EEGDash()
768
806
  _owns_client = True
769
807
 
770
- # Separate query kwargs from other kwargs passed to the BaseDataset constructor
771
- query_kwargs = {
772
- k: v for k, v in kwargs.items() if k in EEGDash._ALLOWED_QUERY_FIELDS
773
- }
774
- base_dataset_kwargs = {k: v for k, v in kwargs.items() if k not in query_kwargs}
775
-
776
- # If user provided a dataset name via the dedicated parameter (and we're not
777
- # loading from a local directory), treat it as a query filter. Accept str or list.
778
- if data_dir is None and dataset is not None:
779
- # Allow callers to pass a single dataset id (str) or a list of them.
780
- # If list is provided, let _build_query_from_kwargs turn it into $in later.
781
- query_kwargs.setdefault("dataset", dataset)
782
-
783
- # Allow mixing raw DB query with additional keyword filters. Both will be
784
- # merged by EEGDash.find() (logical AND), so we do not raise here.
785
-
786
808
  try:
787
809
  if records is not None:
788
810
  self.records = records
@@ -795,42 +817,26 @@ class EEGDashDataset(BaseConcatDataset):
795
817
  )
796
818
  for record in self.records
797
819
  ]
798
- elif data_dir:
799
- # This path loads from a local directory and is not affected by DB query logic
800
- if isinstance(data_dir, (str, Path)):
801
- datasets = self.load_bids_dataset(
802
- dataset=dataset
803
- if isinstance(dataset, str)
804
- else (dataset[0] if dataset else None),
805
- data_dir=data_dir,
820
+ elif offline_mode: # only assume local data is complete if in offline mode
821
+ if self.data_dir.exists():
822
+ # This path loads from a local directory and is not affected by DB query logic
823
+ datasets = self.load_bids_daxtaset(
824
+ dataset=self.query["dataset"],
825
+ data_dir=self.data_dir,
806
826
  description_fields=description_fields,
807
827
  s3_bucket=s3_bucket,
828
+ n_jobs=n_jobs,
808
829
  **base_dataset_kwargs,
809
830
  )
810
831
  else:
811
- assert dataset is not None, (
812
- "dataset must be provided when passing multiple data_dir"
813
- )
814
- assert len(data_dir) == len(dataset), (
815
- "Number of datasets and directories must match"
832
+ raise ValueError(
833
+ f"Offline mode is enabled, but local data_dir {self.data_dir} does not exist."
816
834
  )
817
- datasets = []
818
- for i, _ in enumerate(data_dir):
819
- datasets.extend(
820
- self.load_bids_dataset(
821
- dataset=dataset[i],
822
- data_dir=data_dir[i],
823
- description_fields=description_fields,
824
- s3_bucket=s3_bucket,
825
- **base_dataset_kwargs,
826
- )
827
- )
828
- elif query is not None or query_kwargs:
835
+ elif self.query:
829
836
  # This is the DB query path that we are improving
830
- datasets = self.find_datasets(
831
- query=query,
837
+ datasets = self._find_datasets(
838
+ query=self.eeg_dash._build_query_from_kwargs(**self.query),
832
839
  description_fields=description_fields,
833
- query_kwargs=query_kwargs,
834
840
  base_dataset_kwargs=base_dataset_kwargs,
835
841
  )
836
842
  # We only need filesystem if we need to access S3
@@ -860,11 +866,10 @@ class EEGDashDataset(BaseConcatDataset):
860
866
  return result
861
867
  return None
862
868
 
863
- def find_datasets(
869
+ def _find_datasets(
864
870
  self,
865
871
  query: dict[str, Any] | None,
866
872
  description_fields: list[str],
867
- query_kwargs: dict,
868
873
  base_dataset_kwargs: dict,
869
874
  ) -> list[EEGDashBaseDataset]:
870
875
  """Helper method to find datasets in the MongoDB collection that satisfy the
@@ -888,11 +893,7 @@ class EEGDashDataset(BaseConcatDataset):
888
893
  """
889
894
  datasets: list[EEGDashBaseDataset] = []
890
895
 
891
- # Build records using either a raw query OR keyword filters, but not both.
892
- # Note: callers may accidentally pass an empty dict for `query` along with
893
- # kwargs. In that case, treat it as if no query was provided and rely on kwargs.
894
- # Always delegate merging of raw query + kwargs to EEGDash.find
895
- self.records = self.eeg_dash.find(query, **query_kwargs)
896
+ self.records = self.eeg_dash.find(query)
896
897
 
897
898
  for record in self.records:
898
899
  description = {}
@@ -903,8 +904,8 @@ class EEGDashDataset(BaseConcatDataset):
903
904
  datasets.append(
904
905
  EEGDashBaseDataset(
905
906
  record,
906
- self.cache_dir,
907
- self.s3_bucket,
907
+ cache_dir=self.cache_dir,
908
+ s3_bucket=self.s3_bucket,
908
909
  description=description,
909
910
  **base_dataset_kwargs,
910
911
  )
@@ -917,6 +918,7 @@ class EEGDashDataset(BaseConcatDataset):
917
918
  data_dir: str | Path,
918
919
  description_fields: list[str],
919
920
  s3_bucket: str | None = None,
921
+ n_jobs: int = -1,
920
922
  **kwargs,
921
923
  ):
922
924
  """Helper method to load a single local BIDS dataset and return it as a list of
@@ -931,13 +933,17 @@ class EEGDashDataset(BaseConcatDataset):
931
933
  description_fields : list[str]
932
934
  A list of fields to be extracted from the dataset records
933
935
  and included in the returned dataset description(s).
936
+ s3_bucket : str | None
937
+ The S3 bucket to upload the dataset files to (if any).
938
+ n_jobs : int
939
+ The number of jobs to run in parallel (default is -1, meaning using all processors).
934
940
 
935
941
  """
936
942
  bids_dataset = EEGBIDSDataset(
937
943
  data_dir=data_dir,
938
944
  dataset=dataset,
939
945
  )
940
- datasets = Parallel(n_jobs=-1, prefer="threads", verbose=1)(
946
+ datasets = Parallel(n_jobs=n_jobs, prefer="threads", verbose=1)(
941
947
  delayed(self.get_base_dataset_from_bids_file)(
942
948
  bids_dataset=bids_dataset,
943
949
  bids_file=bids_file,
@@ -1,8 +1,3 @@
1
- from pathlib import Path
2
-
3
- from .api import EEGDashDataset
4
- from .registry import register_openneuro_datasets
5
-
6
1
  RELEASE_TO_OPENNEURO_DATASET_MAP = {
7
2
  "R11": "ds005516",
8
3
  "R10": "ds005515",
@@ -261,93 +256,3 @@ SUBJECT_MINI_RELEASE_MAP = {
261
256
  "NDARFW972KFQ",
262
257
  ],
263
258
  }
264
-
265
-
266
- class EEGChallengeDataset(EEGDashDataset):
267
- def __init__(
268
- self,
269
- release: str,
270
- cache_dir: str,
271
- mini: bool = True,
272
- query: dict | None = None,
273
- s3_bucket: str | None = "s3://nmdatasets/NeurIPS25",
274
- **kwargs,
275
- ):
276
- """Create a new EEGDashDataset from a given query or local BIDS dataset directory
277
- and dataset name. An EEGDashDataset is pooled collection of EEGDashBaseDataset
278
- instances (individual recordings) and is a subclass of braindecode's BaseConcatDataset.
279
-
280
- Parameters
281
- ----------
282
- release: str
283
- Release name. Can be one of ["R1", ..., "R11"]
284
- mini: bool, default True
285
- Whether to use the mini-release version of the dataset. It is recommended
286
- to use the mini version for faster training and evaluation.
287
- query : dict | None
288
- Optionally a dictionary that specifies a query to be executed,
289
- in addition to the dataset (automatically inferred from the release argument).
290
- See EEGDash.find() for details on the query format.
291
- cache_dir : str
292
- A directory where the dataset will be cached locally.
293
- s3_bucket : str | None
294
- An optional S3 bucket URI to use instead of the
295
- default OpenNeuro bucket for loading data files.
296
- kwargs : dict
297
- Additional keyword arguments to be passed to the EEGDashDataset
298
- constructor.
299
-
300
- """
301
- self.release = release
302
- self.mini = mini
303
-
304
- if release not in RELEASE_TO_OPENNEURO_DATASET_MAP:
305
- raise ValueError(
306
- f"Unknown release: {release}, expected one of {list(RELEASE_TO_OPENNEURO_DATASET_MAP.keys())}"
307
- )
308
-
309
- dataset_parameters = []
310
- if isinstance(release, str):
311
- dataset_parameters.append(RELEASE_TO_OPENNEURO_DATASET_MAP[release])
312
- else:
313
- raise ValueError(
314
- f"Unknown release type: {type(release)}, the expected type is str."
315
- )
316
-
317
- if query and "dataset" in query:
318
- raise ValueError(
319
- "Query using the parameters `dataset` with the class EEGChallengeDataset is not possible."
320
- "Please use the release argument instead, or the object EEGDashDataset instead."
321
- )
322
-
323
- if self.mini:
324
- # Disallow mixing subject selection with mini=True since mini already
325
- # applies a predefined subject subset.
326
- if (query and "subject" in query) or ("subject" in kwargs):
327
- raise ValueError(
328
- "Query using the parameters `subject` with the class EEGChallengeDataset and `mini==True` is not possible."
329
- "Please don't use the `subject` selection twice."
330
- "Set `mini=False` to use the `subject` selection."
331
- )
332
- kwargs["subject"] = SUBJECT_MINI_RELEASE_MAP[release]
333
- s3_bucket = f"{s3_bucket}/{release}_mini_L100_bdf"
334
- else:
335
- s3_bucket = f"{s3_bucket}/{release}_L100_bdf"
336
-
337
- super().__init__(
338
- dataset=dataset_parameters,
339
- query=query,
340
- cache_dir=cache_dir,
341
- s3_bucket=s3_bucket,
342
- **kwargs,
343
- )
344
-
345
-
346
- registered_classes = register_openneuro_datasets(
347
- summary_file=Path(__file__).with_name("dataset_summary.csv"),
348
- base_class=EEGDashDataset,
349
- namespace=globals(),
350
- )
351
-
352
-
353
- __all__ = ["EEGChallengeDataset"] + list(registered_classes.keys())
@@ -0,0 +1,118 @@
1
+ import logging
2
+ from pathlib import Path
3
+
4
+ from mne.utils import warn
5
+
6
+ from .api import EEGDashDataset
7
+ from .const import RELEASE_TO_OPENNEURO_DATASET_MAP, SUBJECT_MINI_RELEASE_MAP
8
+ from .registry import register_openneuro_datasets
9
+
10
+ logger = logging.getLogger("eegdash")
11
+
12
+
13
+ class EEGChallengeDataset(EEGDashDataset):
14
+ def __init__(
15
+ self,
16
+ release: str,
17
+ cache_dir: str,
18
+ mini: bool = True,
19
+ query: dict | None = None,
20
+ s3_bucket: str | None = "s3://nmdatasets/NeurIPS25",
21
+ **kwargs,
22
+ ):
23
+ """Create a new EEGDashDataset from a given query or local BIDS dataset directory
24
+ and dataset name. An EEGDashDataset is pooled collection of EEGDashBaseDataset
25
+ instances (individual recordings) and is a subclass of braindecode's BaseConcatDataset.
26
+
27
+ Parameters
28
+ ----------
29
+ release: str
30
+ Release name. Can be one of ["R1", ..., "R11"]
31
+ mini: bool, default True
32
+ Whether to use the mini-release version of the dataset. It is recommended
33
+ to use the mini version for faster training and evaluation.
34
+ query : dict | None
35
+ Optionally a dictionary that specifies a query to be executed,
36
+ in addition to the dataset (automatically inferred from the release argument).
37
+ See EEGDash.find() for details on the query format.
38
+ cache_dir : str
39
+ A directory where the dataset will be cached locally.
40
+ s3_bucket : str | None
41
+ An optional S3 bucket URI to use instead of the
42
+ default OpenNeuro bucket for loading data files.
43
+ kwargs : dict
44
+ Additional keyword arguments to be passed to the EEGDashDataset
45
+ constructor.
46
+
47
+ """
48
+ self.release = release
49
+ self.mini = mini
50
+
51
+ if release not in RELEASE_TO_OPENNEURO_DATASET_MAP:
52
+ raise ValueError(
53
+ f"Unknown release: {release}, expected one of {list(RELEASE_TO_OPENNEURO_DATASET_MAP.keys())}"
54
+ )
55
+
56
+ dataset_parameters = []
57
+ if isinstance(release, str):
58
+ dataset_parameters.append(RELEASE_TO_OPENNEURO_DATASET_MAP[release])
59
+ else:
60
+ raise ValueError(
61
+ f"Unknown release type: {type(release)}, the expected type is str."
62
+ )
63
+
64
+ if query and "dataset" in query:
65
+ raise ValueError(
66
+ "Query using the parameters `dataset` with the class EEGChallengeDataset is not possible."
67
+ "Please use the release argument instead, or the object EEGDashDataset instead."
68
+ )
69
+
70
+ if self.mini:
71
+ # Disallow mixing subject selection with mini=True since mini already
72
+ # applies a predefined subject subset.
73
+ if (query and "subject" in query) or ("subject" in kwargs):
74
+ raise ValueError(
75
+ "Query using the parameters `subject` with the class EEGChallengeDataset and `mini==True` is not possible."
76
+ "Please don't use the `subject` selection twice."
77
+ "Set `mini=False` to use the `subject` selection."
78
+ )
79
+ kwargs["subject"] = SUBJECT_MINI_RELEASE_MAP[release]
80
+ s3_bucket = f"{s3_bucket}/{release}_mini_L100_bdf"
81
+ else:
82
+ s3_bucket = f"{s3_bucket}/{release}_L100_bdf"
83
+
84
+ warn(
85
+ "\n\n"
86
+ "[EEGChallengeDataset] EEG 2025 Competition Data Notice:\n"
87
+ "-------------------------------------------------------\n"
88
+ "This object loads the HBN dataset that has been preprocessed for the EEG Challenge:\n"
89
+ " - Downsampled from 500Hz to 100Hz\n"
90
+ " - Bandpass filtered (0.5–50 Hz)\n"
91
+ "\n"
92
+ "For full preprocessing details, see:\n"
93
+ " https://github.com/eeg2025/downsample-datasets\n"
94
+ "\n"
95
+ "IMPORTANT: The data accessed via `EEGChallengeDataset` is NOT identical to what you get from `EEGDashDataset` directly.\n"
96
+ "If you are participating in the competition, always use `EEGChallengeDataset` to ensure consistency with the challenge data.\n"
97
+ "\n",
98
+ UserWarning,
99
+ module="eegdash",
100
+ )
101
+
102
+ super().__init__(
103
+ dataset=RELEASE_TO_OPENNEURO_DATASET_MAP[release],
104
+ query=query,
105
+ cache_dir=cache_dir,
106
+ s3_bucket=s3_bucket,
107
+ **kwargs,
108
+ )
109
+
110
+
111
+ registered_classes = register_openneuro_datasets(
112
+ summary_file=Path(__file__).with_name("dataset_summary.csv"),
113
+ base_class=EEGDashDataset,
114
+ namespace=globals(),
115
+ )
116
+
117
+
118
+ __all__ = ["EEGChallengeDataset"] + list(registered_classes.keys())
@@ -57,7 +57,7 @@ def register_openneuro_datasets(
57
57
 
58
58
  init = make_init(dataset_id)
59
59
 
60
- doc = f"""Create an instance for OpenNeuro dataset ``{dataset_id}``.
60
+ doc = f"""OpenNeuro dataset ``{dataset_id}``.
61
61
 
62
62
  {markdown_table(row_series)}
63
63
 
@@ -69,11 +69,15 @@ def register_openneuro_datasets(
69
69
  Extra Mongo query merged with ``{{'dataset': '{dataset_id}'}}``.
70
70
  s3_bucket : str | None
71
71
  Optional S3 bucket name.
72
+ subject : str | None
73
+ Optional subject identifier.
74
+ task : str | None
75
+ Optional task identifier.
72
76
  **kwargs
73
77
  Passed through to {base_class.__name__}.
74
78
  """
75
79
 
76
- init.__doc__ = doc
80
+ # init.__doc__ = doc
77
81
 
78
82
  cls = type(
79
83
  class_name,
@@ -101,6 +105,7 @@ def markdown_table(row_series: pd.Series) -> str:
101
105
  """Create a reStructuredText grid table from a pandas Series."""
102
106
  if row_series.empty:
103
107
  return ""
108
+ dataset_id = row_series["dataset"]
104
109
 
105
110
  # Prepare the dataframe with user's suggested logic
106
111
  df = (
@@ -112,6 +117,7 @@ def markdown_table(row_series: pd.Series) -> str:
112
117
  "n_tasks": "#Classes",
113
118
  "sampling_freqs": "Freq(Hz)",
114
119
  "duration_hours_total": "Duration(H)",
120
+ "size": "Size",
115
121
  }
116
122
  )
117
123
  .reindex(
@@ -122,6 +128,7 @@ def markdown_table(row_series: pd.Series) -> str:
122
128
  "#Classes",
123
129
  "Freq(Hz)",
124
130
  "Duration(H)",
131
+ "Size",
125
132
  ]
126
133
  )
127
134
  .infer_objects(copy=False)
@@ -131,6 +138,9 @@ def markdown_table(row_series: pd.Series) -> str:
131
138
  # Use tabulate for the final rst formatting
132
139
  table = tabulate(df, headers="keys", tablefmt="rst", showindex=False)
133
140
 
141
+ # Add a caption for the table
142
+ caption = f"Short overview of dataset {dataset_id} more details in the `Nemar documentation <https://nemar.org/dataexplorer/detail?dataset_id={dataset_id}>`_."
143
+ # adding caption below the table
134
144
  # Indent the table to fit within the admonition block
135
145
  indented_table = "\n".join(" " + line for line in table.split("\n"))
136
- return f"\n\n{indented_table}"
146
+ return f"\n\n{indented_table}\n\n{caption}"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: eegdash
3
- Version: 0.3.6.dev182011805
3
+ Version: 0.3.7.dev177024734
4
4
  Summary: EEG data for machine learning
5
5
  Author-email: Young Truong <dt.young112@gmail.com>, Arnaud Delorme <adelorme@gmail.com>, Aviv Dotan <avivd220@gmail.com>, Oren Shriki <oren70@gmail.com>, Bruno Aristimunha <b.aristimunha@gmail.com>
6
6
  License-Expression: GPL-3.0-only
@@ -48,6 +48,7 @@ Requires-Dist: pytest_cases; extra == "tests"
48
48
  Requires-Dist: pytest-benchmark; extra == "tests"
49
49
  Provides-Extra: dev
50
50
  Requires-Dist: pre-commit; extra == "dev"
51
+ Requires-Dist: ipykernel; extra == "dev"
51
52
  Provides-Extra: docs
52
53
  Requires-Dist: sphinx; extra == "docs"
53
54
  Requires-Dist: sphinx_design; extra == "docs"
@@ -55,10 +56,12 @@ Requires-Dist: sphinx_gallery; extra == "docs"
55
56
  Requires-Dist: sphinx_rtd_theme; extra == "docs"
56
57
  Requires-Dist: pydata-sphinx-theme; extra == "docs"
57
58
  Requires-Dist: sphinx-autobuild; extra == "docs"
59
+ Requires-Dist: sphinx-sitemap; extra == "docs"
58
60
  Requires-Dist: numpydoc; extra == "docs"
59
61
  Requires-Dist: memory_profiler; extra == "docs"
60
62
  Requires-Dist: ipython; extra == "docs"
61
63
  Requires-Dist: lightgbm; extra == "docs"
64
+ Requires-Dist: plotly; extra == "docs"
62
65
  Provides-Extra: all
63
66
  Requires-Dist: eegdash[docs]; extra == "all"
64
67
  Requires-Dist: eegdash[dev]; extra == "all"
@@ -12,6 +12,7 @@ docs/source/install/install_pip.rst
12
12
  docs/source/install/install_source.rst
13
13
  eegdash/__init__.py
14
14
  eegdash/api.py
15
+ eegdash/const.py
15
16
  eegdash/data_config.py
16
17
  eegdash/data_utils.py
17
18
  eegdash/dataset.py
@@ -43,6 +44,7 @@ eegdash/features/feature_bank/utils.py
43
44
  tests/test_api.py
44
45
  tests/test_challenge_kwargs.py
45
46
  tests/test_correctness.py
47
+ tests/test_database.py
46
48
  tests/test_dataset.py
47
49
  tests/test_dataset_registration.py
48
50
  tests/test_eegdash.py
@@ -22,6 +22,7 @@ eegdash[tests]
22
22
 
23
23
  [dev]
24
24
  pre-commit
25
+ ipykernel
25
26
 
26
27
  [docs]
27
28
  sphinx
@@ -30,10 +31,12 @@ sphinx_gallery
30
31
  sphinx_rtd_theme
31
32
  pydata-sphinx-theme
32
33
  sphinx-autobuild
34
+ sphinx-sitemap
33
35
  numpydoc
34
36
  memory_profiler
35
37
  ipython
36
38
  lightgbm
39
+ plotly
37
40
 
38
41
  [tests]
39
42
  pytest
@@ -67,7 +67,8 @@ tests = [
67
67
  'pytest-benchmark',
68
68
  ]
69
69
  dev = [
70
- "pre-commit"
70
+ "pre-commit",
71
+ "ipykernel"
71
72
  ]
72
73
 
73
74
  docs = [
@@ -77,10 +78,12 @@ docs = [
77
78
  "sphinx_rtd_theme",
78
79
  "pydata-sphinx-theme",
79
80
  "sphinx-autobuild",
81
+ "sphinx-sitemap",
80
82
  "numpydoc",
81
83
  "memory_profiler",
82
84
  "ipython",
83
85
  "lightgbm",
86
+ "plotly"
84
87
  ]
85
88
 
86
89
  all = [
File without changes
@@ -16,9 +16,9 @@ def test_register_openneuro_datasets(tmp_path: Path):
16
16
  summary.write_text(
17
17
  "\n".join(
18
18
  [
19
- "dataset_id,num_subjects,num_sessions,num_runs,num_channels,sampling_rate,duration",
20
- "ds002718,18,18,1,74,250,14.844",
21
- "ds000001,1,1,1,1,1,1",
19
+ "dataset,num_subjects,num_sessions,num_runs,num_channels,sampling_rate,duration,size",
20
+ "ds002718,18,18,1,74,250,14.844,1.2GB",
21
+ "ds000001,1,1,1,1,1,1,100MB",
22
22
  ]
23
23
  )
24
24
  )
@@ -12,7 +12,9 @@ def test_dataset_loads_without_eegdash(monkeypatch):
12
12
  """Dataset should load from records without contacting network resources."""
13
13
  eeg_dash = EEGDash()
14
14
 
15
- records = eeg_dash.find(subject="NDARAC350XUM", task="RestingState")
15
+ records = eeg_dash.find(
16
+ dataset="ds005509", subject="NDARAC350XUM", task="RestingState"
17
+ )
16
18
 
17
19
  # test with internet
18
20
  dataset_internet = EEGDashDataset(
@@ -24,14 +26,14 @@ def test_dataset_loads_without_eegdash(monkeypatch):
24
26
  # Monkeypatch any network calls inside EEGDashDataset to raise if called
25
27
  monkeypatch.setattr(
26
28
  EEGDashDataset,
27
- "find_datasets",
29
+ "_find_datasets",
28
30
  lambda *args, **kwargs: pytest.skip(
29
31
  "Skipping network download in offline test"
30
32
  ),
31
33
  )
32
34
  monkeypatch.setattr(
33
35
  EEGDashDataset,
34
- "find_datasets",
36
+ "_find_datasets",
35
37
  lambda *args, **kwargs: pytest.skip(
36
38
  "Skipping network download in offline test"
37
39
  ),
@@ -39,7 +41,7 @@ def test_dataset_loads_without_eegdash(monkeypatch):
39
41
  # TO-DO: discover way to do this pytest
40
42
 
41
43
  dataset_without_internet = EEGDashDataset(
42
- records=records, cache_dir=CACHE_DIR, eeg_dash_instance=None
44
+ dataset="ds005509", records=records, cache_dir=CACHE_DIR, eeg_dash_instance=None
43
45
  )
44
46
 
45
47
  assert dataset_internet.datasets[0].raw == dataset_without_internet.datasets[0].raw
@@ -1,85 +0,0 @@
1
- .. meta::
2
- :hide_sidebar: true
3
-
4
- :html_theme.sidebar_secondary.remove:
5
- :html_theme.sidebar_primary.remove:
6
-
7
- .. _data_summary:
8
- .. automodule:: eegdash.dataset
9
-
10
- .. currentmodule:: eegdash.dataset
11
-
12
- To leverage recent and ongoing advancements in large-scale computational methods and to ensure the preservation of scientific data generated from publicly funded research, the EEG-DaSh data archive will create a data-sharing resource for MEEG (EEG, MEG) data contributed by collaborators for machine learning (ML) and deep learning (DL) applications.
13
-
14
- The archive is currently still in :bdg-danger:`beta testing` mode, so be kind.
15
-
16
- EEG Dash Datasets
17
- ==================
18
-
19
- The data in EEG-DaSh originates from a collaboration involving 25 laboratories, encompassing 27,053 participants. This extensive collection includes MEEG data, which is a combination of EEG and MEG signals. The data is sourced from various studies conducted by these labs, involving both healthy subjects and clinical populations with conditions such as ADHD, depression, schizophrenia, dementia, autism, and psychosis. Additionally, data spans different mental states like sleep, meditation, and cognitive tasks. In addition, EEG-DaSh will incorporate a subset of the data converted from NEMAR, which includes 330 MEEG BIDS-formatted datasets, further expanding the archive with well-curated, standardized neuroelectromagnetic data.
20
-
21
- Columns definitions for the table below:
22
- - **dataset**: Name of the dataset.
23
- - **n_records**: Number of EEG records in the dataset.
24
- - **n_subjects**: Number of subjects in the dataset.
25
- - **n_tasks**: Number of experimental tasks in the dataset.
26
- - **nchans_set**: Set of EEG channel counts used in the dataset.
27
- - **sampling_freqs**: Set of sampling frequencies used in the dataset.
28
- - **duration_hours_total**: Total duration of all recordings in hours.
29
-
30
-
31
- Datasets
32
- ======================
33
-
34
- .. csv-table::
35
- :file: ../build/dataset_summary.csv
36
- :header-rows: 1
37
- :class: sortable
38
-
39
-
40
-
41
- .. raw:: html
42
- <style>
43
- /* Make this page full-width and remove side padding */
44
- :root {
45
- --pst-page-max-width: 100%;
46
- --pst-content-max-width: 100%;
47
- }
48
- .bd-main .bd-content .bd-article-container {
49
- max-width: 100%;
50
- padding-left: 0;
51
- padding-right: 0;
52
- }
53
- /* Ensure the DataTable uses the full width */
54
- table.sortable { width: 100% !important; }
55
- </style>
56
-
57
- <link href="https://cdn.datatables.net/v/bm/jq-3.7.0/dt-2.3.2/af-2.7.0/b-3.2.4/b-html5-3.2.4/cr-2.1.1/fh-4.0.3/r-3.0.5/datatables.min.css"
58
- rel="stylesheet"
59
- integrity="sha384-aemAM3yl2c0KAZZkR1b1AwMH2u3r1NHOppsl5i6Ny1L5pfqn7SDH52qdaa1TbyN9"
60
- crossorigin="anonymous">
61
-
62
- <script src="https://cdn.datatables.net/v/bm/jq-3.7.0/dt-2.3.2/af-2.7.0/b-3.2.4/b-html5-3.2.4/cr-2.1.1/fh-4.0.3/r-3.0.5/datatables.min.js"
63
- integrity="sha384-CKcCNsP1rMRsJFtrN6zMWK+KIK/FjYiV/d8uOp0LZtbEVzbidk105YcuVncAhBR8"
64
- crossorigin="anonymous"></script>
65
-
66
- <script>
67
- document.addEventListener('DOMContentLoaded', function () {
68
- const tables = document.querySelectorAll('table.sortable');
69
- tables.forEach(function (tbl) {
70
- // Use the jQuery plugin that ships in the bundle
71
- $(tbl).DataTable({
72
- paging: false,
73
- searching: false,
74
- info: false,
75
- ordering: true,
76
- responsive: true,
77
- fixedHeader: true,
78
- // Avoid re-initialization if this script runs more than once
79
- retrieve: true,
80
- scrollX: true
81
- });
82
- });
83
- });
84
- </script>
85
-