eegdash 0.3.4__tar.gz → 0.3.4.dev70__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of eegdash might be problematic. Click here for more details.

Files changed (97) hide show
  1. {eegdash-0.3.4/eegdash.egg-info → eegdash-0.3.4.dev70}/PKG-INFO +2 -1
  2. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/docs/source/conf.py +1 -1
  3. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash/__init__.py +1 -1
  4. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash/dataset_summary.csv +255 -255
  5. eegdash-0.3.4.dev70/eegdash/registry.py +136 -0
  6. {eegdash-0.3.4 → eegdash-0.3.4.dev70/eegdash.egg-info}/PKG-INFO +2 -1
  7. eegdash-0.3.4.dev70/eegdash.egg-info/SOURCES.txt +48 -0
  8. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash.egg-info/requires.txt +1 -0
  9. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/pyproject.toml +1 -0
  10. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/tests/test_dataset_registration.py +1 -0
  11. eegdash-0.3.4/docs/build/html/_downloads/22c048359758b424393a09689a41275e/challenge_1.ipynb +0 -140
  12. eegdash-0.3.4/docs/build/html/_downloads/2c592649a2079630923cb072bc1beaf3/tutorial_eoec.ipynb +0 -176
  13. eegdash-0.3.4/docs/build/html/_downloads/893ab57ca8de4ec74e7c17907d3e8a27/challenge_2.ipynb +0 -151
  14. eegdash-0.3.4/docs/build/html/_downloads/befd83bab11618bf4f65555df6b7d484/challenge_2_machine_learning.ipynb +0 -224
  15. eegdash-0.3.4/docs/build/html/_downloads/f3cf56a30a7c06a2eccae3b5b3d28e35/tutorial_feature_extractor_open_close_eye.ipynb +0 -260
  16. eegdash-0.3.4/docs/source/api/eegdash.api.rst +0 -7
  17. eegdash-0.3.4/docs/source/api/eegdash.data_config.rst +0 -7
  18. eegdash-0.3.4/docs/source/api/eegdash.data_utils.rst +0 -7
  19. eegdash-0.3.4/docs/source/api/eegdash.dataset.rst +0 -7
  20. eegdash-0.3.4/docs/source/api/eegdash.features.datasets.rst +0 -7
  21. eegdash-0.3.4/docs/source/api/eegdash.features.decorators.rst +0 -7
  22. eegdash-0.3.4/docs/source/api/eegdash.features.extractors.rst +0 -7
  23. eegdash-0.3.4/docs/source/api/eegdash.features.feature_bank.complexity.rst +0 -7
  24. eegdash-0.3.4/docs/source/api/eegdash.features.feature_bank.connectivity.rst +0 -7
  25. eegdash-0.3.4/docs/source/api/eegdash.features.feature_bank.csp.rst +0 -7
  26. eegdash-0.3.4/docs/source/api/eegdash.features.feature_bank.dimensionality.rst +0 -7
  27. eegdash-0.3.4/docs/source/api/eegdash.features.feature_bank.rst +0 -21
  28. eegdash-0.3.4/docs/source/api/eegdash.features.feature_bank.signal.rst +0 -7
  29. eegdash-0.3.4/docs/source/api/eegdash.features.feature_bank.spectral.rst +0 -7
  30. eegdash-0.3.4/docs/source/api/eegdash.features.feature_bank.utils.rst +0 -7
  31. eegdash-0.3.4/docs/source/api/eegdash.features.inspect.rst +0 -7
  32. eegdash-0.3.4/docs/source/api/eegdash.features.rst +0 -28
  33. eegdash-0.3.4/docs/source/api/eegdash.features.serialization.rst +0 -7
  34. eegdash-0.3.4/docs/source/api/eegdash.features.utils.rst +0 -7
  35. eegdash-0.3.4/docs/source/api/eegdash.mongodb.rst +0 -7
  36. eegdash-0.3.4/docs/source/api/eegdash.preprocessing.rst +0 -7
  37. eegdash-0.3.4/docs/source/api/eegdash.registry.rst +0 -7
  38. eegdash-0.3.4/docs/source/api/eegdash.rst +0 -30
  39. eegdash-0.3.4/docs/source/api/eegdash.utils.rst +0 -7
  40. eegdash-0.3.4/docs/source/api/modules.rst +0 -7
  41. eegdash-0.3.4/docs/source/generated/auto_examples/core/sg_execution_times.rst +0 -40
  42. eegdash-0.3.4/docs/source/generated/auto_examples/core/tutorial_eoec.ipynb +0 -176
  43. eegdash-0.3.4/docs/source/generated/auto_examples/core/tutorial_eoec.rst +0 -388
  44. eegdash-0.3.4/docs/source/generated/auto_examples/core/tutorial_feature_extractor_open_close_eye.ipynb +0 -260
  45. eegdash-0.3.4/docs/source/generated/auto_examples/core/tutorial_feature_extractor_open_close_eye.rst +0 -510
  46. eegdash-0.3.4/docs/source/generated/auto_examples/eeg2025/challenge_1.ipynb +0 -140
  47. eegdash-0.3.4/docs/source/generated/auto_examples/eeg2025/challenge_1.rst +0 -381
  48. eegdash-0.3.4/docs/source/generated/auto_examples/eeg2025/challenge_2.ipynb +0 -151
  49. eegdash-0.3.4/docs/source/generated/auto_examples/eeg2025/challenge_2.rst +0 -311
  50. eegdash-0.3.4/docs/source/generated/auto_examples/eeg2025/challenge_2_machine_learning.ipynb +0 -224
  51. eegdash-0.3.4/docs/source/generated/auto_examples/eeg2025/challenge_2_machine_learning.rst +0 -390
  52. eegdash-0.3.4/docs/source/generated/auto_examples/eeg2025/sg_execution_times.rst +0 -43
  53. eegdash-0.3.4/docs/source/generated/auto_examples/index.rst +0 -177
  54. eegdash-0.3.4/docs/source/generated/auto_examples/sg_execution_times.rst +0 -37
  55. eegdash-0.3.4/docs/source/sg_execution_times.rst +0 -49
  56. eegdash-0.3.4/eegdash/registry.py +0 -72
  57. eegdash-0.3.4/eegdash.egg-info/SOURCES.txt +0 -93
  58. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/LICENSE +0 -0
  59. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/MANIFEST.in +0 -0
  60. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/README.md +0 -0
  61. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/docs/Makefile +0 -0
  62. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/docs/source/dataset_summary.rst +0 -0
  63. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/docs/source/index.rst +0 -0
  64. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/docs/source/install/install.rst +0 -0
  65. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/docs/source/install/install_pip.rst +0 -0
  66. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/docs/source/install/install_source.rst +0 -0
  67. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash/api.py +0 -0
  68. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash/data_config.py +0 -0
  69. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash/data_utils.py +0 -0
  70. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash/dataset.py +0 -0
  71. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash/features/__init__.py +0 -0
  72. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash/features/datasets.py +0 -0
  73. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash/features/decorators.py +0 -0
  74. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash/features/extractors.py +0 -0
  75. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash/features/feature_bank/__init__.py +0 -0
  76. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash/features/feature_bank/complexity.py +0 -0
  77. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash/features/feature_bank/connectivity.py +0 -0
  78. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash/features/feature_bank/csp.py +0 -0
  79. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash/features/feature_bank/dimensionality.py +0 -0
  80. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash/features/feature_bank/signal.py +0 -0
  81. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash/features/feature_bank/spectral.py +0 -0
  82. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash/features/feature_bank/utils.py +0 -0
  83. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash/features/inspect.py +0 -0
  84. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash/features/serialization.py +0 -0
  85. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash/features/utils.py +0 -0
  86. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash/mongodb.py +0 -0
  87. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash/preprocessing.py +0 -0
  88. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash/utils.py +0 -0
  89. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash.egg-info/dependency_links.txt +0 -0
  90. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/eegdash.egg-info/top_level.txt +0 -0
  91. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/setup.cfg +0 -0
  92. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/tests/test_correctness.py +0 -0
  93. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/tests/test_dataset.py +0 -0
  94. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/tests/test_eegdash.py +0 -0
  95. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/tests/test_functional.py +0 -0
  96. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/tests/test_init.py +0 -0
  97. {eegdash-0.3.4 → eegdash-0.3.4.dev70}/tests/test_mongo_connection.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: eegdash
3
- Version: 0.3.4
3
+ Version: 0.3.4.dev70
4
4
  Summary: EEG data for machine learning
5
5
  Author-email: Young Truong <dt.young112@gmail.com>, Arnaud Delorme <adelorme@gmail.com>, Aviv Dotan <avivd220@gmail.com>, Oren Shriki <oren70@gmail.com>, Bruno Aristimunha <b.aristimunha@gmail.com>
6
6
  License-Expression: GPL-3.0-only
@@ -38,6 +38,7 @@ Requires-Dist: tqdm
38
38
  Requires-Dist: xarray
39
39
  Requires-Dist: h5io>=0.2.4
40
40
  Requires-Dist: pymatreader
41
+ Requires-Dist: tabulate
41
42
  Provides-Extra: tests
42
43
  Requires-Dist: pytest; extra == "tests"
43
44
  Requires-Dist: pytest-cov; extra == "tests"
@@ -96,7 +96,7 @@ html_sidebars = {"api": [], "dataset_summary": [], "installation": []}
96
96
 
97
97
 
98
98
  # -- Extension configurations ------------------------------------------------
99
-
99
+ autoclass_content = "both"
100
100
 
101
101
  # Numpydoc
102
102
  numpydoc_show_class_members = False
@@ -7,4 +7,4 @@ __init__mongo_client()
7
7
 
8
8
  __all__ = ["EEGDash", "EEGDashDataset", "EEGChallengeDataset"]
9
9
 
10
- __version__ = "0.3.4"
10
+ __version__ = "0.3.4.dev70"
@@ -1,255 +1,255 @@
1
- dataset,n_records,n_subjects,n_tasks,nchans_set,sampling_freqs,duration_hours_total
2
- ds002718,18,18,1,74,250,14.844
3
- ds005505,1342,136,10,129,500,125.366
4
- ds004745,6,6,1,,1000,0.0
5
- ds005514,2885,295,10,129,500,213.008
6
- ds005512,2320,257,10,129,500,196.205
7
- ds005510,1227,135,10,129,500,112.464
8
- ds005511,3100,381,10,"6,129",500,285.629
9
- ds005509,3326,330,10,129,500,274.559
10
- ds005508,3342,324,10,129,500,269.281
11
- ds005507,1812,184,10,129,500,168.649
12
- ds005506,1405,150,10,129,500,127.896
13
- ds004854,1,1,1,64,128,0.535
14
- ds004853,1,1,1,64,128,0.535
15
- ds004844,68,17,1,64,1024,21.252
16
- ds004843,92,14,1,64,256,29.834
17
- ds004842,102,14,1,64,256,20.102
18
- ds004852,1,1,1,64,128,0.535
19
- ds004851,1,1,1,64,128,0.535
20
- ds004850,1,1,1,64,128,0.535
21
- ds004855,1,1,1,64,128,0.535
22
- ds004849,1,1,1,64,128,0.535
23
- ds004841,147,20,1,64,256,29.054
24
- ds004661,17,17,1,64,128,10.137
25
- ds004660,42,21,1,32,"2048,512",23.962
26
- ds004657,119,24,1,64,"1024,8192",27.205
27
- ds004362,1526,109,1,64,"128,160",48.592
28
- ds004010,24,24,1,64,1000,26.457
29
- ds002181,226,226,1,125,500,7.676
30
- ds004554,16,16,1,99,1000,0.024
31
- ds005697,50,50,1,"65,69",1000,77.689
32
- ds004350,240,24,5,64,256,41.265
33
- ds004785,17,17,1,32,500,0.019
34
- ds004504,88,88,1,19,500,19.608
35
- ds004635,55,55,1,129,1000,20.068
36
- ds005787,448,19,1,"64,66","1000,500",23.733
37
- ds005079,60,1,15,65,500,3.25
38
- ds005342,32,32,1,17,250,33.017
39
- ds005034,100,25,2,129,1000,37.525
40
- ds002680,350,14,1,31,1000,21.244
41
- ds003805,1,1,1,19,500,0.033
42
- ds003838,130,65,2,63,1000,136.757
43
- ds002691,20,20,1,32,250,6.721
44
- ds003690,375,75,3,"64,66",500,46.771
45
- ds004040,4,2,1,64,512,4.229
46
- ds003061,39,13,1,79,256,8.196
47
- ds005672,3,3,1,"65,69",1000,4.585
48
- ds005410,81,81,1,63,1000,22.976
49
- ds003753,25,25,1,64,500,10.104
50
- ds005565,24,24,1,,500,11.436
51
- ds002893,52,49,1,33,"250,250.0293378038558",36.114
52
- ds002578,2,2,1,256,256,1.455
53
- ds005089,36,36,1,63,1000,68.82
54
- ds003822,25,25,1,64,500,12.877
55
- ds003670,62,25,1,32,2000,72.772
56
- ds005048,35,35,1,,250,5.203
57
- ds004574,146,146,1,"63,64,66",500,31.043
58
- ds004519,40,40,1,62,250,0.067
59
- ds004602,546,182,3,128,"250,500",87.11
60
- ds004784,6,1,6,128,512,0.518
61
- ds004771,61,61,1,34,256,0.022
62
- ds003518,137,110,1,64,500,89.888
63
- ds005207,39,20,1,"6,10,12,14,15,16,17,18","128,250",422.881
64
- ds005866,60,60,1,,500,15.976
65
- ds003523,221,91,1,64,500,84.586
66
- ds004347,48,24,1,64,"128,512",6.389
67
- ds004588,42,42,1,24,300,4.957
68
- ds005811,448,19,1,62,"1000,500",23.733
69
- ds003987,69,23,1,64,500.0930232558139,52.076
70
- ds004317,50,50,1,60,500,37.767
71
- ds004033,36,18,2,64,500,42.645
72
- ds004315,50,50,1,60,500,21.104
73
- ds003474,122,122,1,64,500,36.61
74
- ds003509,84,56,1,64,500,48.535
75
- ds005868,48,48,1,,500,13.094
76
- ds003516,25,25,1,47,500,22.57
77
- ds004942,62,62,1,65,1000,28.282
78
- ds004348,18,9,2,34,200,35.056
79
- ds004625,543,32,9,120,500,28.397
80
- ds003517,34,17,1,64,500,13.273
81
- ds004368,40,39,1,63,128,0.033
82
- ds004584,149,149,1,"63,64,66",500,6.641
83
- ds003506,84,56,1,64,500,35.381
84
- ds003570,40,40,1,64,2048,26.208
85
- ds003490,75,50,1,64,500,12.76
86
- ds004117,85,23,1,69,"1000,250,500,500.059",15.941
87
- ds004505,25,25,1,120,250,30.398
88
- ds004580,147,147,1,"63,64,66",500,36.514
89
- ds004532,137,110,1,64,500,49.651
90
- ds004902,218,71,2,61,"500,5000",18.118
91
- ds004295,26,26,1,66,"1024,512",34.313
92
- ds003519,54,27,1,64,500,20.504
93
- ds003458,23,23,1,64,500,10.447
94
- ds003004,34,34,1,"134,180,189,196,201,206,207,208,209,211,212,213,214,215,218,219,220,221,222,223,224,226,227,229,231,232,235",256,49.072
95
- ds004200,20,20,1,37,1000,14.123
96
- ds004015,36,36,1,18,500,47.29
97
- ds004595,53,53,1,64,500,17.078
98
- ds004626,52,52,1,68,1000,21.359
99
- ds004475,30,30,1,"113,115,118,119,120,122,123,124,125,126,127,128",512,26.899
100
- ds004515,54,54,1,64,500,20.61
101
- ds004883,516,172,3,128,500,137.855
102
- ds003739,120,30,4,128,256,20.574
103
- ds004389,260,26,4,42,10000,30.932
104
- ds004367,40,40,1,68,1200,24.81
105
- ds004369,41,41,1,4,500,37.333
106
- ds004579,139,139,1,"63,64,66",500,55.703
107
- ds005416,23,23,1,64,1000,24.68
108
- ds001785,54,18,3,63,"1000,1024",14.644
109
- ds001971,273,20,1,108,512,46.183
110
- ds004388,399,40,3,67,10000,43.327
111
- ds003478,243,122,1,64,500,23.57
112
- ds004306,15,12,1,124,1024,18.183
113
- ds005305,165,165,1,64,"2048,512",14.136
114
- ds005114,223,91,1,64,500,125.701
115
- ds003039,16,16,1,64,500,14.82
116
- ds003602,699,118,6,35,1000,159.35
117
- ds003655,156,156,1,19,500,130.923
118
- ds003522,200,96,1,64,500,57.079
119
- ds003801,20,20,1,24,250,13.689
120
- ds005296,62,62,1,,500,37.205
121
- ds004561,23,23,1,62,10000,11.379
122
- ds005131,63,58,2,64,500,52.035
123
- ds005028,66,11,3,,,0.0
124
- ds005170,225,5,1,,,0.0
125
- ds004840,51,9,3,8,"1024,256,512",11.306
126
- ds004718,51,51,1,64,1000,21.836
127
- ds002725,105,21,5,30,1000,0.0
128
- ds004408,380,19,1,128,512,20.026
129
- ds004796,235,79,3,,1000,0.0
130
- ds004511,134,45,3,139,3000,48.922
131
- ds004817,20,20,1,63,1000,0.0
132
- ds003190,280,19,1,0,256,29.891
133
- ds004917,24,24,1,,,0.0
134
- ds004357,16,16,1,63,1000,0.0
135
- ds005397,26,26,1,64,500,27.923
136
- ds003846,60,19,1,64,500,24.574
137
- ds004024,497,13,3,64,20000,55.503
138
- ds005815,137,26,4,30,"1000,500",38.618
139
- ds005429,61,15,3,64,"2500,5000",14.474
140
- ds003702,47,47,1,61,500,0.0
141
- ds004577,130,103,1,"19,21,24",200,22.974
142
- ds003574,18,18,1,64,500,0.0
143
- ds005779,250,19,16,"64,67,70",5000,16.65
144
- ds005185,356,20,3,8,500,0.0
145
- ds001787,40,24,1,64,256,27.607
146
- ds003505,37,19,2,128,2048,0.0
147
- ds005340,15,15,1,2,10000,35.297
148
- ds005363,43,43,1,64,1000,43.085
149
- ds005121,39,34,1,58,512,41.498
150
- ds004256,53,53,2,64,500,42.337
151
- ds005420,72,37,2,20,500,5.485
152
- ds002034,167,14,4,64,512,37.248
153
- ds003825,50,50,1,"63,128",1000,0.0
154
- ds004587,114,103,1,59,10000,25.491
155
- ds004598,20,9,1,,10000,0.0
156
- ds005383,240,30,1,30,200,8.327
157
- ds003195,20,10,2,19,200,4.654
158
- ds005403,32,32,1,62,10000,13.383
159
- ds004621,167,42,4,,1000,0.0
160
- ds005863,357,127,4,27,500,0.0
161
- ds005594,16,16,1,64,1000,12.934
162
- ds002336,54,10,6,,5000,0.0
163
- ds004043,20,20,1,63,1000,0.0
164
- ds005106,42,42,1,32,500,0.012
165
- ds004284,18,18,1,129,1000,9.454
166
- ds005620,202,21,3,"64,65",5000,21.811
167
- ds002720,165,18,10,19,1000,0.0
168
- ds005307,73,7,1,"72,104",10000,1.335
169
- ds002094,43,20,3,30,5000,18.593
170
- ds002833,80,20,1,257,1000,11.604
171
- ds002218,18,18,1,0,256,16.52
172
- ds005021,36,36,1,64,1024,0.0
173
- ds004264,21,21,1,31,1000,0.0
174
- ds004446,237,30,1,129,1000,33.486
175
- ds004980,17,17,1,64,"499.9911824,499.9912809,499.991385,499.9914353,499.9914553,499.9915179,499.9917272,499.9917286,499.9917378,499.9919292,499.9919367,499.9923017,499.9923795,500",36.846
176
- ds002722,94,19,5,32,1000,0.0
177
- ds003944,82,82,1,61,"1000,3000.00030000003",6.999
178
- ds004279,60,56,1,64,1000,53.729
179
- ds005876,29,29,1,32,1000,16.017
180
- ds003816,1077,48,8,127,1000,159.313
181
- ds005385,3264,608,2,64,1000,169.62
182
- ds004572,516,52,10,58,1000,52.624
183
- ds005095,48,48,1,63,1000,16.901
184
- ds004460,40,20,1,160,1000,27.494
185
- ds005189,30,30,1,61,1000,0.0
186
- ds005274,22,22,1,6,500,0.0
187
- ds004075,116,29,4,,1000,0.0
188
- ds004447,418,22,1,"128,129",1000,23.554
189
- ds004952,245,10,1,128,1000,123.411
190
- ds002724,96,10,4,32,1000,0.0
191
- ds005571,45,24,2,64,5000,0.0
192
- ds004262,21,21,1,31,1000,0.0
193
- ds005273,33,33,1,63,1000,58.055
194
- ds004520,33,33,1,62,250,0.055
195
- ds004444,465,30,1,129,1000,55.687
196
- ds004582,73,73,1,59,10000,34.244
197
- ds002723,44,8,6,32,1000,0.0
198
- ds003751,38,38,1,128,250,19.95
199
- ds003421,80,20,1,257,1000,11.604
200
- ds002158,117,20,1,,,0.0
201
- ds004951,23,11,1,63,1000,29.563
202
- ds004802,38,38,1,65,"2048,512",0.0
203
- ds004816,20,20,1,63,1000,0.0
204
- ds005873,2850,125,1,2,256,11935.09
205
- ds003194,29,15,2,"19,21",200,7.178
206
- ds004356,24,22,1,34,10000,0.0
207
- ds004381,437,18,1,"4,5,7,8,10",20000,11.965
208
- ds004196,4,4,1,64,512,1.511
209
- ds005692,59,30,1,24,5000,112.206
210
- ds002338,85,17,4,,5000,0.0
211
- ds004022,21,7,1,"16,18",500,0.0
212
- ds004603,37,37,1,64,1024,30.653
213
- ds004752,136,15,1,"0,8,10,19,20,21,23","200,2000,4000,4096",0.302
214
- ds003768,255,33,2,,,0.0
215
- ds003947,61,61,1,61,"1000,3000.00030000003",5.266
216
- ds005530,21,17,1,10,500,154.833
217
- ds005555,256,128,1,"2,8,9,11,12,13",256,2002.592
218
- ds004477,9,9,1,79,2048,13.557
219
- ds005688,89,20,5,4,"10000,20000",2.502
220
- ds003766,124,31,4,129,1000,39.973
221
- ds005540,103,59,1,64,"1200,600",0.0
222
- ds004152,21,21,1,31,1000,0.0
223
- ds003626,30,10,1,,,0.0
224
- ds002814,168,21,1,68,1200,0.0
225
- ds003645,108,18,1,,,0.0
226
- ds005586,23,23,1,60,1000,33.529
227
- ds003810,50,10,1,15,125,0.0
228
- ds003969,392,98,4,64,"1024,2048",66.512
229
- ds004000,86,43,2,128,2048,0.0
230
- ds004995,20,20,1,,,0.0
231
- ds003638,57,57,1,64,512,40.597
232
- ds004521,34,34,1,62,250,0.057
233
- ds001849,120,20,1,30,5000,0.0
234
- ds004252,1,1,1,,,0.0
235
- ds004448,280,56,1,129,1000,43.732
236
- ds005795,39,34,2,72,500,0.0
237
- ds004018,32,16,1,63,1000,0.0
238
- ds004324,26,26,1,28,500,19.216
239
- ds003887,24,24,1,128,1000,0.0
240
- ds004860,31,31,1,32,"2048,512",0.0
241
- ds002721,185,31,6,19,1000,0.0
242
- ds003555,30,30,1,,1024,0.0
243
- ds005486,445,159,1,,"25000,5000",0.0
244
- ds005520,69,23,3,67,1000,60.73
245
- ds005262,186,12,1,,,0.0
246
- ds002778,46,31,1,40,512,2.518
247
- ds003885,24,24,1,128,1000,0.0
248
- ds005406,29,29,1,63,1000,15.452
249
- ds003710,48,13,1,32,5000,9.165
250
- ds003343,59,20,1,16,500,6.551
251
- ds005345,26,26,1,64,500,0.0
252
- ds004067,84,80,1,63,2000,0.0
253
- ds001810,263,47,1,64,512,91.205
254
- ds005515,2516,533,8,129,500,198.849
255
- ds005516,3397,430,8,129,500,256.932
1
+ dataset,n_records,n_subjects,n_tasks,nchans_set,sampling_freqs,duration_hours_total
2
+ ds002718,18,18,1,74,250,14.844
3
+ ds005505,1342,136,10,129,500,125.366
4
+ ds004745,6,6,1,,1000,0.0
5
+ ds005514,2885,295,10,129,500,213.008
6
+ ds005512,2320,257,10,129,500,196.205
7
+ ds005510,1227,135,10,129,500,112.464
8
+ ds005511,3100,381,10,"6,129",500,285.629
9
+ ds005509,3326,330,10,129,500,274.559
10
+ ds005508,3342,324,10,129,500,269.281
11
+ ds005507,1812,184,10,129,500,168.649
12
+ ds005506,1405,150,10,129,500,127.896
13
+ ds004854,1,1,1,64,128,0.535
14
+ ds004853,1,1,1,64,128,0.535
15
+ ds004844,68,17,1,64,1024,21.252
16
+ ds004843,92,14,1,64,256,29.834
17
+ ds004842,102,14,1,64,256,20.102
18
+ ds004852,1,1,1,64,128,0.535
19
+ ds004851,1,1,1,64,128,0.535
20
+ ds004850,1,1,1,64,128,0.535
21
+ ds004855,1,1,1,64,128,0.535
22
+ ds004849,1,1,1,64,128,0.535
23
+ ds004841,147,20,1,64,256,29.054
24
+ ds004661,17,17,1,64,128,10.137
25
+ ds004660,42,21,1,32,"2048,512",23.962
26
+ ds004657,119,24,1,64,"1024,8192",27.205
27
+ ds004362,1526,109,1,64,"128,160",48.592
28
+ ds004010,24,24,1,64,1000,26.457
29
+ ds002181,226,226,1,125,500,7.676
30
+ ds004554,16,16,1,99,1000,0.024
31
+ ds005697,50,50,1,"65,69",1000,77.689
32
+ ds004350,240,24,5,64,256,41.265
33
+ ds004785,17,17,1,32,500,0.019
34
+ ds004504,88,88,1,19,500,19.608
35
+ ds004635,55,55,1,129,1000,20.068
36
+ ds005787,448,19,1,"64,66","1000,500",23.733
37
+ ds005079,60,1,15,65,500,3.25
38
+ ds005342,32,32,1,17,250,33.017
39
+ ds005034,100,25,2,129,1000,37.525
40
+ ds002680,350,14,1,31,1000,21.244
41
+ ds003805,1,1,1,19,500,0.033
42
+ ds003838,130,65,2,63,1000,136.757
43
+ ds002691,20,20,1,32,250,6.721
44
+ ds003690,375,75,3,"64,66",500,46.771
45
+ ds004040,4,2,1,64,512,4.229
46
+ ds003061,39,13,1,79,256,8.196
47
+ ds005672,3,3,1,"65,69",1000,4.585
48
+ ds005410,81,81,1,63,1000,22.976
49
+ ds003753,25,25,1,64,500,10.104
50
+ ds005565,24,24,1,,500,11.436
51
+ ds002893,52,49,1,33,"250,250.0293378038558",36.114
52
+ ds002578,2,2,1,256,256,1.455
53
+ ds005089,36,36,1,63,1000,68.82
54
+ ds003822,25,25,1,64,500,12.877
55
+ ds003670,62,25,1,32,2000,72.772
56
+ ds005048,35,35,1,,250,5.203
57
+ ds004574,146,146,1,"63,64,66",500,31.043
58
+ ds004519,40,40,1,62,250,0.067
59
+ ds004602,546,182,3,128,"250,500",87.11
60
+ ds004784,6,1,6,128,512,0.518
61
+ ds004771,61,61,1,34,256,0.022
62
+ ds003518,137,110,1,64,500,89.888
63
+ ds005207,39,20,1,"6,10,12,14,15,16,17,18","128,250",422.881
64
+ ds005866,60,60,1,,500,15.976
65
+ ds003523,221,91,1,64,500,84.586
66
+ ds004347,48,24,1,64,"128,512",6.389
67
+ ds004588,42,42,1,24,300,4.957
68
+ ds005811,448,19,1,62,"1000,500",23.733
69
+ ds003987,69,23,1,64,500.0930232558139,52.076
70
+ ds004317,50,50,1,60,500,37.767
71
+ ds004033,36,18,2,64,500,42.645
72
+ ds004315,50,50,1,60,500,21.104
73
+ ds003474,122,122,1,64,500,36.61
74
+ ds003509,84,56,1,64,500,48.535
75
+ ds005868,48,48,1,,500,13.094
76
+ ds003516,25,25,1,47,500,22.57
77
+ ds004942,62,62,1,65,1000,28.282
78
+ ds004348,18,9,2,34,200,35.056
79
+ ds004625,543,32,9,120,500,28.397
80
+ ds003517,34,17,1,64,500,13.273
81
+ ds004368,40,39,1,63,128,0.033
82
+ ds004584,149,149,1,"63,64,66",500,6.641
83
+ ds003506,84,56,1,64,500,35.381
84
+ ds003570,40,40,1,64,2048,26.208
85
+ ds003490,75,50,1,64,500,12.76
86
+ ds004117,85,23,1,69,"1000,250,500,500.059",15.941
87
+ ds004505,25,25,1,120,250,30.398
88
+ ds004580,147,147,1,"63,64,66",500,36.514
89
+ ds004532,137,110,1,64,500,49.651
90
+ ds004902,218,71,2,61,"500,5000",18.118
91
+ ds004295,26,26,1,66,"1024,512",34.313
92
+ ds003519,54,27,1,64,500,20.504
93
+ ds003458,23,23,1,64,500,10.447
94
+ ds003004,34,34,1,"134,180,189,196,201,206,207,208,209,211,212,213,214,215,218,219,220,221,222,223,224,226,227,229,231,232,235",256,49.072
95
+ ds004200,20,20,1,37,1000,14.123
96
+ ds004015,36,36,1,18,500,47.29
97
+ ds004595,53,53,1,64,500,17.078
98
+ ds004626,52,52,1,68,1000,21.359
99
+ ds004475,30,30,1,"113,115,118,119,120,122,123,124,125,126,127,128",512,26.899
100
+ ds004515,54,54,1,64,500,20.61
101
+ ds004883,516,172,3,128,500,137.855
102
+ ds003739,120,30,4,128,256,20.574
103
+ ds004389,260,26,4,42,10000,30.932
104
+ ds004367,40,40,1,68,1200,24.81
105
+ ds004369,41,41,1,4,500,37.333
106
+ ds004579,139,139,1,"63,64,66",500,55.703
107
+ ds005416,23,23,1,64,1000,24.68
108
+ ds001785,54,18,3,63,"1000,1024",14.644
109
+ ds001971,273,20,1,108,512,46.183
110
+ ds004388,399,40,3,67,10000,43.327
111
+ ds003478,243,122,1,64,500,23.57
112
+ ds004306,15,12,1,124,1024,18.183
113
+ ds005305,165,165,1,64,"2048,512",14.136
114
+ ds005114,223,91,1,64,500,125.701
115
+ ds003039,16,16,1,64,500,14.82
116
+ ds003602,699,118,6,35,1000,159.35
117
+ ds003655,156,156,1,19,500,130.923
118
+ ds003522,200,96,1,64,500,57.079
119
+ ds003801,20,20,1,24,250,13.689
120
+ ds005296,62,62,1,,500,37.205
121
+ ds004561,23,23,1,62,10000,11.379
122
+ ds005131,63,58,2,64,500,52.035
123
+ ds005028,66,11,3,,,0.0
124
+ ds005170,225,5,1,,,0.0
125
+ ds004840,51,9,3,8,"1024,256,512",11.306
126
+ ds004718,51,51,1,64,1000,21.836
127
+ ds002725,105,21,5,30,1000,0.0
128
+ ds004408,380,19,1,128,512,20.026
129
+ ds004796,235,79,3,,1000,0.0
130
+ ds004511,134,45,3,139,3000,48.922
131
+ ds004817,20,20,1,63,1000,0.0
132
+ ds003190,280,19,1,0,256,29.891
133
+ ds004917,24,24,1,,,0.0
134
+ ds004357,16,16,1,63,1000,0.0
135
+ ds005397,26,26,1,64,500,27.923
136
+ ds003846,60,19,1,64,500,24.574
137
+ ds004024,497,13,3,64,20000,55.503
138
+ ds005815,137,26,4,30,"1000,500",38.618
139
+ ds005429,61,15,3,64,"2500,5000",14.474
140
+ ds003702,47,47,1,61,500,0.0
141
+ ds004577,130,103,1,"19,21,24",200,22.974
142
+ ds003574,18,18,1,64,500,0.0
143
+ ds005779,250,19,16,"64,67,70",5000,16.65
144
+ ds005185,356,20,3,8,500,0.0
145
+ ds001787,40,24,1,64,256,27.607
146
+ ds003505,37,19,2,128,2048,0.0
147
+ ds005340,15,15,1,2,10000,35.297
148
+ ds005363,43,43,1,64,1000,43.085
149
+ ds005121,39,34,1,58,512,41.498
150
+ ds004256,53,53,2,64,500,42.337
151
+ ds005420,72,37,2,20,500,5.485
152
+ ds002034,167,14,4,64,512,37.248
153
+ ds003825,50,50,1,"63,128",1000,0.0
154
+ ds004587,114,103,1,59,10000,25.491
155
+ ds004598,20,9,1,,10000,0.0
156
+ ds005383,240,30,1,30,200,8.327
157
+ ds003195,20,10,2,19,200,4.654
158
+ ds005403,32,32,1,62,10000,13.383
159
+ ds004621,167,42,4,,1000,0.0
160
+ ds005863,357,127,4,27,500,0.0
161
+ ds005594,16,16,1,64,1000,12.934
162
+ ds002336,54,10,6,,5000,0.0
163
+ ds004043,20,20,1,63,1000,0.0
164
+ ds005106,42,42,1,32,500,0.012
165
+ ds004284,18,18,1,129,1000,9.454
166
+ ds005620,202,21,3,"64,65",5000,21.811
167
+ ds002720,165,18,10,19,1000,0.0
168
+ ds005307,73,7,1,"72,104",10000,1.335
169
+ ds002094,43,20,3,30,5000,18.593
170
+ ds002833,80,20,1,257,1000,11.604
171
+ ds002218,18,18,1,0,256,16.52
172
+ ds005021,36,36,1,64,1024,0.0
173
+ ds004264,21,21,1,31,1000,0.0
174
+ ds004446,237,30,1,129,1000,33.486
175
+ ds004980,17,17,1,64,"499.9911824,499.9912809,499.991385,499.9914353,499.9914553,499.9915179,499.9917272,499.9917286,499.9917378,499.9919292,499.9919367,499.9923017,499.9923795,500",36.846
176
+ ds002722,94,19,5,32,1000,0.0
177
+ ds003944,82,82,1,61,"1000,3000.00030000003",6.999
178
+ ds004279,60,56,1,64,1000,53.729
179
+ ds005876,29,29,1,32,1000,16.017
180
+ ds003816,1077,48,8,127,1000,159.313
181
+ ds005385,3264,608,2,64,1000,169.62
182
+ ds004572,516,52,10,58,1000,52.624
183
+ ds005095,48,48,1,63,1000,16.901
184
+ ds004460,40,20,1,160,1000,27.494
185
+ ds005189,30,30,1,61,1000,0.0
186
+ ds005274,22,22,1,6,500,0.0
187
+ ds004075,116,29,4,,1000,0.0
188
+ ds004447,418,22,1,"128,129",1000,23.554
189
+ ds004952,245,10,1,128,1000,123.411
190
+ ds002724,96,10,4,32,1000,0.0
191
+ ds005571,45,24,2,64,5000,0.0
192
+ ds004262,21,21,1,31,1000,0.0
193
+ ds005273,33,33,1,63,1000,58.055
194
+ ds004520,33,33,1,62,250,0.055
195
+ ds004444,465,30,1,129,1000,55.687
196
+ ds004582,73,73,1,59,10000,34.244
197
+ ds002723,44,8,6,32,1000,0.0
198
+ ds003751,38,38,1,128,250,19.95
199
+ ds003421,80,20,1,257,1000,11.604
200
+ ds002158,117,20,1,,,0.0
201
+ ds004951,23,11,1,63,1000,29.563
202
+ ds004802,38,38,1,65,"2048,512",0.0
203
+ ds004816,20,20,1,63,1000,0.0
204
+ ds005873,2850,125,1,2,256,11935.09
205
+ ds003194,29,15,2,"19,21",200,7.178
206
+ ds004356,24,22,1,34,10000,0.0
207
+ ds004381,437,18,1,"4,5,7,8,10",20000,11.965
208
+ ds004196,4,4,1,64,512,1.511
209
+ ds005692,59,30,1,24,5000,112.206
210
+ ds002338,85,17,4,,5000,0.0
211
+ ds004022,21,7,1,"16,18",500,0.0
212
+ ds004603,37,37,1,64,1024,30.653
213
+ ds004752,136,15,1,"0,8,10,19,20,21,23","200,2000,4000,4096",0.302
214
+ ds003768,255,33,2,,,0.0
215
+ ds003947,61,61,1,61,"1000,3000.00030000003",5.266
216
+ ds005530,21,17,1,10,500,154.833
217
+ ds005555,256,128,1,"2,8,9,11,12,13",256,2002.592
218
+ ds004477,9,9,1,79,2048,13.557
219
+ ds005688,89,20,5,4,"10000,20000",2.502
220
+ ds003766,124,31,4,129,1000,39.973
221
+ ds005540,103,59,1,64,"1200,600",0.0
222
+ ds004152,21,21,1,31,1000,0.0
223
+ ds003626,30,10,1,,,0.0
224
+ ds002814,168,21,1,68,1200,0.0
225
+ ds003645,108,18,1,,,0.0
226
+ ds005586,23,23,1,60,1000,33.529
227
+ ds003810,50,10,1,15,125,0.0
228
+ ds003969,392,98,4,64,"1024,2048",66.512
229
+ ds004000,86,43,2,128,2048,0.0
230
+ ds004995,20,20,1,,,0.0
231
+ ds003638,57,57,1,64,512,40.597
232
+ ds004521,34,34,1,62,250,0.057
233
+ ds001849,120,20,1,30,5000,0.0
234
+ ds004252,1,1,1,,,0.0
235
+ ds004448,280,56,1,129,1000,43.732
236
+ ds005795,39,34,2,72,500,0.0
237
+ ds004018,32,16,1,63,1000,0.0
238
+ ds004324,26,26,1,28,500,19.216
239
+ ds003887,24,24,1,128,1000,0.0
240
+ ds004860,31,31,1,32,"2048,512",0.0
241
+ ds002721,185,31,6,19,1000,0.0
242
+ ds003555,30,30,1,,1024,0.0
243
+ ds005486,445,159,1,,"25000,5000",0.0
244
+ ds005520,69,23,3,67,1000,60.73
245
+ ds005262,186,12,1,,,0.0
246
+ ds002778,46,31,1,40,512,2.518
247
+ ds003885,24,24,1,128,1000,0.0
248
+ ds005406,29,29,1,63,1000,15.452
249
+ ds003710,48,13,1,32,5000,9.165
250
+ ds003343,59,20,1,16,500,6.551
251
+ ds005345,26,26,1,64,500,0.0
252
+ ds004067,84,80,1,63,2000,0.0
253
+ ds001810,263,47,1,64,512,91.205
254
+ ds005515,2516,533,8,129,500,198.849
255
+ ds005516,3397,430,8,129,500,256.932
@@ -0,0 +1,136 @@
1
+ from __future__ import annotations
2
+
3
+ from pathlib import Path
4
+ from typing import Any, Dict
5
+
6
+ import pandas as pd
7
+ from tabulate import tabulate
8
+
9
+
10
+ def register_openneuro_datasets(
11
+ summary_file: str | Path,
12
+ *,
13
+ base_class=None,
14
+ namespace: Dict[str, Any] | None = None,
15
+ add_to_all: bool = True,
16
+ ) -> Dict[str, type]:
17
+ """Dynamically create dataset classes from a summary file."""
18
+ if base_class is None:
19
+ from .api import EEGDashDataset as base_class # lazy import
20
+
21
+ summary_path = Path(summary_file)
22
+ namespace = namespace if namespace is not None else globals()
23
+ module_name = namespace.get("__name__", __name__)
24
+ registered: Dict[str, type] = {}
25
+
26
+ df = pd.read_csv(summary_path, comment="#", skip_blank_lines=True)
27
+ for _, row_series in df.iterrows():
28
+ row = row_series.tolist()
29
+ dataset_id = str(row[0]).strip()
30
+ if not dataset_id:
31
+ continue
32
+
33
+ class_name = dataset_id.upper()
34
+
35
+ # avoid zero-arg super() here
36
+ def make_init(_dataset: str):
37
+ def __init__(
38
+ self,
39
+ cache_dir: str,
40
+ query: dict | None = None,
41
+ s3_bucket: str | None = None,
42
+ **kwargs,
43
+ ):
44
+ q = {"dataset": _dataset}
45
+ if query:
46
+ q.update(query)
47
+ # call base_class.__init__ directly
48
+ base_class.__init__(
49
+ self,
50
+ query=q,
51
+ cache_dir=cache_dir,
52
+ s3_bucket=s3_bucket,
53
+ **kwargs,
54
+ )
55
+
56
+ return __init__
57
+
58
+ init = make_init(dataset_id)
59
+
60
+ doc = f"""Create an instance for OpenNeuro dataset ``{dataset_id}``.
61
+
62
+ {markdown_table(row_series)}
63
+
64
+ Parameters
65
+ ----------
66
+ cache_dir : str
67
+ Local cache directory.
68
+ query : dict | None
69
+ Extra Mongo query merged with ``{{'dataset': '{dataset_id}'}}``.
70
+ s3_bucket : str | None
71
+ Optional S3 bucket name.
72
+ **kwargs
73
+ Passed through to {base_class.__name__}.
74
+ """
75
+
76
+ init.__doc__ = doc
77
+
78
+ cls = type(
79
+ class_name,
80
+ (base_class,),
81
+ {
82
+ "_dataset": dataset_id,
83
+ "__init__": init,
84
+ "__doc__": doc,
85
+ "__module__": module_name, #
86
+ },
87
+ )
88
+
89
+ namespace[class_name] = cls
90
+ registered[class_name] = cls
91
+
92
+ if add_to_all:
93
+ ns_all = namespace.setdefault("__all__", [])
94
+ if isinstance(ns_all, list) and class_name not in ns_all:
95
+ ns_all.append(class_name)
96
+
97
+ return registered
98
+
99
+
100
+ def markdown_table(row_series: pd.Series) -> str:
101
+ """Create a reStructuredText grid table from a pandas Series."""
102
+ if row_series.empty:
103
+ return ""
104
+
105
+ # Prepare the dataframe with user's suggested logic
106
+ df = (
107
+ row_series.to_frame()
108
+ .T.rename(
109
+ columns={
110
+ "n_subjects": "#Subj",
111
+ "nchans_set": "#Chan",
112
+ "n_tasks": "#Classes",
113
+ "sampling_freqs": "Freq(Hz)",
114
+ "duration_hours_total": "Duration(H)",
115
+ }
116
+ )
117
+ .reindex(
118
+ columns=[
119
+ "dataset",
120
+ "#Subj",
121
+ "#Chan",
122
+ "#Classes",
123
+ "Freq(Hz)",
124
+ "Duration(H)",
125
+ ]
126
+ )
127
+ .infer_objects(copy=False)
128
+ .fillna("")
129
+ )
130
+
131
+ # Use tabulate for the final rst formatting
132
+ table = tabulate(df, headers="keys", tablefmt="rst", showindex=False)
133
+
134
+ # Indent the table to fit within the admonition block
135
+ indented_table = "\n".join(" " + line for line in table.split("\n"))
136
+ return f"\n\n{indented_table}"