eegdash 0.1.0__tar.gz → 0.2.1.dev178237806__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of eegdash might be problematic. Click here for more details.
- {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/LICENSE +1 -0
- {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/PKG-INFO +47 -7
- {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/README.md +4 -0
- eegdash-0.2.1.dev178237806/eegdash/__init__.py +8 -0
- eegdash-0.2.1.dev178237806/eegdash/api.py +717 -0
- {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/data_config.py +7 -1
- {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/data_utils.py +215 -118
- eegdash-0.2.1.dev178237806/eegdash/dataset.py +69 -0
- eegdash-0.2.1.dev178237806/eegdash/features/__init__.py +53 -0
- {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/datasets.py +57 -21
- {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/decorators.py +10 -2
- {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/extractors.py +20 -21
- {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/feature_bank/complexity.py +4 -0
- {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/feature_bank/csp.py +2 -2
- {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/feature_bank/dimensionality.py +7 -3
- {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/feature_bank/signal.py +29 -3
- eegdash-0.2.1.dev178237806/eegdash/features/inspect.py +48 -0
- {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/serialization.py +2 -3
- {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/utils.py +1 -1
- eegdash-0.2.1.dev178237806/eegdash/mongodb.py +66 -0
- eegdash-0.2.1.dev178237806/eegdash/preprocessing.py +65 -0
- eegdash-0.2.1.dev178237806/eegdash/utils.py +11 -0
- {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash.egg-info/PKG-INFO +47 -7
- {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash.egg-info/SOURCES.txt +12 -2
- eegdash-0.2.1.dev178237806/eegdash.egg-info/requires.txt +39 -0
- {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/pyproject.toml +58 -11
- eegdash-0.2.1.dev178237806/tests/test_correctness.py +209 -0
- eegdash-0.2.1.dev178237806/tests/test_dataset.py +82 -0
- eegdash-0.2.1.dev178237806/tests/test_eegdash.py +83 -0
- eegdash-0.2.1.dev178237806/tests/test_init.py +40 -0
- eegdash-0.2.1.dev178237806/tests/test_mongo_connection.py +115 -0
- eegdash-0.1.0/eegdash/__init__.py +0 -4
- eegdash-0.1.0/eegdash/features/__init__.py +0 -25
- eegdash-0.1.0/eegdash/main.py +0 -416
- eegdash-0.1.0/eegdash.egg-info/requires.txt +0 -13
- {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/feature_bank/__init__.py +0 -0
- {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/feature_bank/connectivity.py +0 -0
- {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/feature_bank/spectral.py +0 -0
- {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/feature_bank/utils.py +0 -0
- {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash.egg-info/dependency_links.txt +0 -0
- {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash.egg-info/top_level.txt +0 -0
- {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/setup.cfg +0 -0
|
@@ -4,6 +4,7 @@ Copyright (C) 2024-2025
|
|
|
4
4
|
|
|
5
5
|
Young Truong, UCSD, dt.young112@gmail.com
|
|
6
6
|
Arnaud Delorme, UCSD, adelorme@ucsd.edu
|
|
7
|
+
Bruno Aristimunha, b.aristimunha@gmail.com
|
|
7
8
|
|
|
8
9
|
This program is free software; you can redistribute it and/or modify
|
|
9
10
|
it under the terms of the GNU General Public License as published by
|
|
@@ -1,14 +1,15 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: eegdash
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.2.1.dev178237806
|
|
4
4
|
Summary: EEG data for machine learning
|
|
5
|
-
Author-email: Young Truong <dt.young112@gmail.com>, Arnaud Delorme <adelorme@gmail.com>
|
|
5
|
+
Author-email: Young Truong <dt.young112@gmail.com>, Arnaud Delorme <adelorme@gmail.com>, Bruno Aristimunha <b.aristimunha@gmail.com>
|
|
6
6
|
License: GNU General Public License
|
|
7
7
|
|
|
8
8
|
Copyright (C) 2024-2025
|
|
9
9
|
|
|
10
10
|
Young Truong, UCSD, dt.young112@gmail.com
|
|
11
11
|
Arnaud Delorme, UCSD, adelorme@ucsd.edu
|
|
12
|
+
Bruno Aristimunha, b.aristimunha@gmail.com
|
|
12
13
|
|
|
13
14
|
This program is free software; you can redistribute it and/or modify
|
|
14
15
|
it under the terms of the GNU General Public License as published by
|
|
@@ -26,14 +27,27 @@ License: GNU General Public License
|
|
|
26
27
|
|
|
27
28
|
Project-URL: Homepage, https://github.com/sccn/EEG-Dash-Data
|
|
28
29
|
Project-URL: Issues, https://github.com/sccn/EEG-Dash-Data/issues
|
|
29
|
-
Classifier: Programming Language :: Python :: 3
|
|
30
30
|
Classifier: License :: OSI Approved :: MIT License
|
|
31
31
|
Classifier: Operating System :: OS Independent
|
|
32
|
-
|
|
32
|
+
Classifier: Intended Audience :: Science/Research
|
|
33
|
+
Classifier: Intended Audience :: Developers
|
|
34
|
+
Classifier: Programming Language :: Python
|
|
35
|
+
Classifier: Topic :: Software Development
|
|
36
|
+
Classifier: Topic :: Scientific/Engineering
|
|
37
|
+
Classifier: Development Status :: 3 - Alpha
|
|
38
|
+
Classifier: Operating System :: Microsoft :: Windows
|
|
39
|
+
Classifier: Operating System :: POSIX
|
|
40
|
+
Classifier: Operating System :: Unix
|
|
41
|
+
Classifier: Operating System :: MacOS
|
|
42
|
+
Classifier: Programming Language :: Python :: 3
|
|
43
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
44
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
45
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
46
|
+
Requires-Python: >=3.10
|
|
33
47
|
Description-Content-Type: text/markdown
|
|
34
48
|
License-File: LICENSE
|
|
35
|
-
Requires-Dist: braindecode
|
|
36
|
-
Requires-Dist: mne_bids
|
|
49
|
+
Requires-Dist: braindecode>=1.0
|
|
50
|
+
Requires-Dist: mne_bids>=0.16.0
|
|
37
51
|
Requires-Dist: numba
|
|
38
52
|
Requires-Dist: numpy
|
|
39
53
|
Requires-Dist: pandas
|
|
@@ -44,13 +58,37 @@ Requires-Dist: s3fs
|
|
|
44
58
|
Requires-Dist: scipy
|
|
45
59
|
Requires-Dist: tqdm
|
|
46
60
|
Requires-Dist: xarray
|
|
47
|
-
|
|
61
|
+
Provides-Extra: tests
|
|
62
|
+
Requires-Dist: pytest; extra == "tests"
|
|
63
|
+
Requires-Dist: pytest-cov; extra == "tests"
|
|
64
|
+
Requires-Dist: codecov; extra == "tests"
|
|
65
|
+
Requires-Dist: pytest_cases; extra == "tests"
|
|
66
|
+
Requires-Dist: pytest-benchmark; extra == "tests"
|
|
67
|
+
Provides-Extra: dev
|
|
68
|
+
Requires-Dist: pre-commit; extra == "dev"
|
|
69
|
+
Provides-Extra: docs
|
|
70
|
+
Requires-Dist: sphinx; extra == "docs"
|
|
71
|
+
Requires-Dist: sphinx_gallery; extra == "docs"
|
|
72
|
+
Requires-Dist: sphinx_rtd_theme; extra == "docs"
|
|
73
|
+
Requires-Dist: numpydoc; extra == "docs"
|
|
74
|
+
Provides-Extra: all
|
|
75
|
+
Requires-Dist: pytest; extra == "all"
|
|
76
|
+
Requires-Dist: pytest-cov; extra == "all"
|
|
77
|
+
Requires-Dist: codecov; extra == "all"
|
|
78
|
+
Requires-Dist: pytest_cases; extra == "all"
|
|
79
|
+
Requires-Dist: pre-commit; extra == "all"
|
|
80
|
+
Requires-Dist: sphinx; extra == "all"
|
|
81
|
+
Requires-Dist: sphinx_gallery; extra == "all"
|
|
82
|
+
Requires-Dist: sphinx_rtd_theme; extra == "all"
|
|
83
|
+
Requires-Dist: numpydoc; extra == "all"
|
|
48
84
|
Dynamic: license-file
|
|
49
85
|
|
|
50
86
|
# EEG-Dash
|
|
87
|
+
|
|
51
88
|
To leverage recent and ongoing advancements in large-scale computational methods and to ensure the preservation of scientific data generated from publicly funded research, the EEG-DaSh data archive will create a data-sharing resource for MEEG (EEG, MEG) data contributed by collaborators for machine learning (ML) and deep learning (DL) applications.
|
|
52
89
|
|
|
53
90
|
## Data source
|
|
91
|
+
|
|
54
92
|
The data in EEG-DaSh originates from a collaboration involving 25 laboratories, encompassing 27,053 participants. This extensive collection includes MEEG data, which is a combination of EEG and MEG signals. The data is sourced from various studies conducted by these labs, involving both healthy subjects and clinical populations with conditions such as ADHD, depression, schizophrenia, dementia, autism, and psychosis. Additionally, data spans different mental states like sleep, meditation, and cognitive tasks. In addition, EEG-DaSh will incorporate a subset of the data converted from NEMAR, which includes 330 MEEG BIDS-formatted datasets, further expanding the archive with well-curated, standardized neuroelectromagnetic data.
|
|
55
93
|
|
|
56
94
|
## Featured data
|
|
@@ -70,9 +108,11 @@ The following HBN datasets are currently featured on EEGDash. Documentation abou
|
|
|
70
108
|
A total of [246 other datasets](datasets.md) are also available through EEGDash.
|
|
71
109
|
|
|
72
110
|
## Data format
|
|
111
|
+
|
|
73
112
|
EEGDash queries return a **Pytorch Dataset** formatted to facilitate machine learning (ML) and deep learning (DL) applications. PyTorch Datasets are the best format for EEGDash queries because they provide an efficient, scalable, and flexible structure for machine learning (ML) and deep learning (DL) applications. They allow seamless integration with PyTorch’s DataLoader, enabling efficient batching, shuffling, and parallel data loading, which is essential for training deep learning models on large EEG datasets.
|
|
74
113
|
|
|
75
114
|
## Data preprocessing
|
|
115
|
+
|
|
76
116
|
EEGDash datasets are processed using the popular [BrainDecode](https://braindecode.org/stable/index.html) library. In fact, EEGDash datasets are BrainDecode datasets, which are themselves PyTorch datasets. This means that any preprocessing possible on BrainDecode datasets is also possible on EEGDash datasets. Refer to [BrainDecode](https://braindecode.org/stable/index.html) tutorials for guidance on preprocessing EEG data.
|
|
77
117
|
|
|
78
118
|
## EEG-Dash usage
|
|
@@ -1,7 +1,9 @@
|
|
|
1
1
|
# EEG-Dash
|
|
2
|
+
|
|
2
3
|
To leverage recent and ongoing advancements in large-scale computational methods and to ensure the preservation of scientific data generated from publicly funded research, the EEG-DaSh data archive will create a data-sharing resource for MEEG (EEG, MEG) data contributed by collaborators for machine learning (ML) and deep learning (DL) applications.
|
|
3
4
|
|
|
4
5
|
## Data source
|
|
6
|
+
|
|
5
7
|
The data in EEG-DaSh originates from a collaboration involving 25 laboratories, encompassing 27,053 participants. This extensive collection includes MEEG data, which is a combination of EEG and MEG signals. The data is sourced from various studies conducted by these labs, involving both healthy subjects and clinical populations with conditions such as ADHD, depression, schizophrenia, dementia, autism, and psychosis. Additionally, data spans different mental states like sleep, meditation, and cognitive tasks. In addition, EEG-DaSh will incorporate a subset of the data converted from NEMAR, which includes 330 MEEG BIDS-formatted datasets, further expanding the archive with well-curated, standardized neuroelectromagnetic data.
|
|
6
8
|
|
|
7
9
|
## Featured data
|
|
@@ -21,9 +23,11 @@ The following HBN datasets are currently featured on EEGDash. Documentation abou
|
|
|
21
23
|
A total of [246 other datasets](datasets.md) are also available through EEGDash.
|
|
22
24
|
|
|
23
25
|
## Data format
|
|
26
|
+
|
|
24
27
|
EEGDash queries return a **Pytorch Dataset** formatted to facilitate machine learning (ML) and deep learning (DL) applications. PyTorch Datasets are the best format for EEGDash queries because they provide an efficient, scalable, and flexible structure for machine learning (ML) and deep learning (DL) applications. They allow seamless integration with PyTorch’s DataLoader, enabling efficient batching, shuffling, and parallel data loading, which is essential for training deep learning models on large EEG datasets.
|
|
25
28
|
|
|
26
29
|
## Data preprocessing
|
|
30
|
+
|
|
27
31
|
EEGDash datasets are processed using the popular [BrainDecode](https://braindecode.org/stable/index.html) library. In fact, EEGDash datasets are BrainDecode datasets, which are themselves PyTorch datasets. This means that any preprocessing possible on BrainDecode datasets is also possible on EEGDash datasets. Refer to [BrainDecode](https://braindecode.org/stable/index.html) tutorials for guidance on preprocessing EEG data.
|
|
28
32
|
|
|
29
33
|
## EEG-Dash usage
|