eegdash 0.1.0__tar.gz → 0.2.1.dev178237806__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of eegdash might be problematic. Click here for more details.

Files changed (42) hide show
  1. {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/LICENSE +1 -0
  2. {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/PKG-INFO +47 -7
  3. {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/README.md +4 -0
  4. eegdash-0.2.1.dev178237806/eegdash/__init__.py +8 -0
  5. eegdash-0.2.1.dev178237806/eegdash/api.py +717 -0
  6. {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/data_config.py +7 -1
  7. {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/data_utils.py +215 -118
  8. eegdash-0.2.1.dev178237806/eegdash/dataset.py +69 -0
  9. eegdash-0.2.1.dev178237806/eegdash/features/__init__.py +53 -0
  10. {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/datasets.py +57 -21
  11. {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/decorators.py +10 -2
  12. {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/extractors.py +20 -21
  13. {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/feature_bank/complexity.py +4 -0
  14. {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/feature_bank/csp.py +2 -2
  15. {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/feature_bank/dimensionality.py +7 -3
  16. {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/feature_bank/signal.py +29 -3
  17. eegdash-0.2.1.dev178237806/eegdash/features/inspect.py +48 -0
  18. {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/serialization.py +2 -3
  19. {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/utils.py +1 -1
  20. eegdash-0.2.1.dev178237806/eegdash/mongodb.py +66 -0
  21. eegdash-0.2.1.dev178237806/eegdash/preprocessing.py +65 -0
  22. eegdash-0.2.1.dev178237806/eegdash/utils.py +11 -0
  23. {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash.egg-info/PKG-INFO +47 -7
  24. {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash.egg-info/SOURCES.txt +12 -2
  25. eegdash-0.2.1.dev178237806/eegdash.egg-info/requires.txt +39 -0
  26. {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/pyproject.toml +58 -11
  27. eegdash-0.2.1.dev178237806/tests/test_correctness.py +209 -0
  28. eegdash-0.2.1.dev178237806/tests/test_dataset.py +82 -0
  29. eegdash-0.2.1.dev178237806/tests/test_eegdash.py +83 -0
  30. eegdash-0.2.1.dev178237806/tests/test_init.py +40 -0
  31. eegdash-0.2.1.dev178237806/tests/test_mongo_connection.py +115 -0
  32. eegdash-0.1.0/eegdash/__init__.py +0 -4
  33. eegdash-0.1.0/eegdash/features/__init__.py +0 -25
  34. eegdash-0.1.0/eegdash/main.py +0 -416
  35. eegdash-0.1.0/eegdash.egg-info/requires.txt +0 -13
  36. {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/feature_bank/__init__.py +0 -0
  37. {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/feature_bank/connectivity.py +0 -0
  38. {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/feature_bank/spectral.py +0 -0
  39. {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash/features/feature_bank/utils.py +0 -0
  40. {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash.egg-info/dependency_links.txt +0 -0
  41. {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/eegdash.egg-info/top_level.txt +0 -0
  42. {eegdash-0.1.0 → eegdash-0.2.1.dev178237806}/setup.cfg +0 -0
@@ -4,6 +4,7 @@ Copyright (C) 2024-2025
4
4
 
5
5
  Young Truong, UCSD, dt.young112@gmail.com
6
6
  Arnaud Delorme, UCSD, adelorme@ucsd.edu
7
+ Bruno Aristimunha, b.aristimunha@gmail.com
7
8
 
8
9
  This program is free software; you can redistribute it and/or modify
9
10
  it under the terms of the GNU General Public License as published by
@@ -1,14 +1,15 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: eegdash
3
- Version: 0.1.0
3
+ Version: 0.2.1.dev178237806
4
4
  Summary: EEG data for machine learning
5
- Author-email: Young Truong <dt.young112@gmail.com>, Arnaud Delorme <adelorme@gmail.com>
5
+ Author-email: Young Truong <dt.young112@gmail.com>, Arnaud Delorme <adelorme@gmail.com>, Bruno Aristimunha <b.aristimunha@gmail.com>
6
6
  License: GNU General Public License
7
7
 
8
8
  Copyright (C) 2024-2025
9
9
 
10
10
  Young Truong, UCSD, dt.young112@gmail.com
11
11
  Arnaud Delorme, UCSD, adelorme@ucsd.edu
12
+ Bruno Aristimunha, b.aristimunha@gmail.com
12
13
 
13
14
  This program is free software; you can redistribute it and/or modify
14
15
  it under the terms of the GNU General Public License as published by
@@ -26,14 +27,27 @@ License: GNU General Public License
26
27
 
27
28
  Project-URL: Homepage, https://github.com/sccn/EEG-Dash-Data
28
29
  Project-URL: Issues, https://github.com/sccn/EEG-Dash-Data/issues
29
- Classifier: Programming Language :: Python :: 3
30
30
  Classifier: License :: OSI Approved :: MIT License
31
31
  Classifier: Operating System :: OS Independent
32
- Requires-Python: >3.10
32
+ Classifier: Intended Audience :: Science/Research
33
+ Classifier: Intended Audience :: Developers
34
+ Classifier: Programming Language :: Python
35
+ Classifier: Topic :: Software Development
36
+ Classifier: Topic :: Scientific/Engineering
37
+ Classifier: Development Status :: 3 - Alpha
38
+ Classifier: Operating System :: Microsoft :: Windows
39
+ Classifier: Operating System :: POSIX
40
+ Classifier: Operating System :: Unix
41
+ Classifier: Operating System :: MacOS
42
+ Classifier: Programming Language :: Python :: 3
43
+ Classifier: Programming Language :: Python :: 3.10
44
+ Classifier: Programming Language :: Python :: 3.11
45
+ Classifier: Programming Language :: Python :: 3.12
46
+ Requires-Python: >=3.10
33
47
  Description-Content-Type: text/markdown
34
48
  License-File: LICENSE
35
- Requires-Dist: braindecode
36
- Requires-Dist: mne_bids
49
+ Requires-Dist: braindecode>=1.0
50
+ Requires-Dist: mne_bids>=0.16.0
37
51
  Requires-Dist: numba
38
52
  Requires-Dist: numpy
39
53
  Requires-Dist: pandas
@@ -44,13 +58,37 @@ Requires-Dist: s3fs
44
58
  Requires-Dist: scipy
45
59
  Requires-Dist: tqdm
46
60
  Requires-Dist: xarray
47
- Requires-Dist: pre-commit
61
+ Provides-Extra: tests
62
+ Requires-Dist: pytest; extra == "tests"
63
+ Requires-Dist: pytest-cov; extra == "tests"
64
+ Requires-Dist: codecov; extra == "tests"
65
+ Requires-Dist: pytest_cases; extra == "tests"
66
+ Requires-Dist: pytest-benchmark; extra == "tests"
67
+ Provides-Extra: dev
68
+ Requires-Dist: pre-commit; extra == "dev"
69
+ Provides-Extra: docs
70
+ Requires-Dist: sphinx; extra == "docs"
71
+ Requires-Dist: sphinx_gallery; extra == "docs"
72
+ Requires-Dist: sphinx_rtd_theme; extra == "docs"
73
+ Requires-Dist: numpydoc; extra == "docs"
74
+ Provides-Extra: all
75
+ Requires-Dist: pytest; extra == "all"
76
+ Requires-Dist: pytest-cov; extra == "all"
77
+ Requires-Dist: codecov; extra == "all"
78
+ Requires-Dist: pytest_cases; extra == "all"
79
+ Requires-Dist: pre-commit; extra == "all"
80
+ Requires-Dist: sphinx; extra == "all"
81
+ Requires-Dist: sphinx_gallery; extra == "all"
82
+ Requires-Dist: sphinx_rtd_theme; extra == "all"
83
+ Requires-Dist: numpydoc; extra == "all"
48
84
  Dynamic: license-file
49
85
 
50
86
  # EEG-Dash
87
+
51
88
  To leverage recent and ongoing advancements in large-scale computational methods and to ensure the preservation of scientific data generated from publicly funded research, the EEG-DaSh data archive will create a data-sharing resource for MEEG (EEG, MEG) data contributed by collaborators for machine learning (ML) and deep learning (DL) applications.
52
89
 
53
90
  ## Data source
91
+
54
92
  The data in EEG-DaSh originates from a collaboration involving 25 laboratories, encompassing 27,053 participants. This extensive collection includes MEEG data, which is a combination of EEG and MEG signals. The data is sourced from various studies conducted by these labs, involving both healthy subjects and clinical populations with conditions such as ADHD, depression, schizophrenia, dementia, autism, and psychosis. Additionally, data spans different mental states like sleep, meditation, and cognitive tasks. In addition, EEG-DaSh will incorporate a subset of the data converted from NEMAR, which includes 330 MEEG BIDS-formatted datasets, further expanding the archive with well-curated, standardized neuroelectromagnetic data.
55
93
 
56
94
  ## Featured data
@@ -70,9 +108,11 @@ The following HBN datasets are currently featured on EEGDash. Documentation abou
70
108
  A total of [246 other datasets](datasets.md) are also available through EEGDash.
71
109
 
72
110
  ## Data format
111
+
73
112
  EEGDash queries return a **Pytorch Dataset** formatted to facilitate machine learning (ML) and deep learning (DL) applications. PyTorch Datasets are the best format for EEGDash queries because they provide an efficient, scalable, and flexible structure for machine learning (ML) and deep learning (DL) applications. They allow seamless integration with PyTorch’s DataLoader, enabling efficient batching, shuffling, and parallel data loading, which is essential for training deep learning models on large EEG datasets.
74
113
 
75
114
  ## Data preprocessing
115
+
76
116
  EEGDash datasets are processed using the popular [BrainDecode](https://braindecode.org/stable/index.html) library. In fact, EEGDash datasets are BrainDecode datasets, which are themselves PyTorch datasets. This means that any preprocessing possible on BrainDecode datasets is also possible on EEGDash datasets. Refer to [BrainDecode](https://braindecode.org/stable/index.html) tutorials for guidance on preprocessing EEG data.
77
117
 
78
118
  ## EEG-Dash usage
@@ -1,7 +1,9 @@
1
1
  # EEG-Dash
2
+
2
3
  To leverage recent and ongoing advancements in large-scale computational methods and to ensure the preservation of scientific data generated from publicly funded research, the EEG-DaSh data archive will create a data-sharing resource for MEEG (EEG, MEG) data contributed by collaborators for machine learning (ML) and deep learning (DL) applications.
3
4
 
4
5
  ## Data source
6
+
5
7
  The data in EEG-DaSh originates from a collaboration involving 25 laboratories, encompassing 27,053 participants. This extensive collection includes MEEG data, which is a combination of EEG and MEG signals. The data is sourced from various studies conducted by these labs, involving both healthy subjects and clinical populations with conditions such as ADHD, depression, schizophrenia, dementia, autism, and psychosis. Additionally, data spans different mental states like sleep, meditation, and cognitive tasks. In addition, EEG-DaSh will incorporate a subset of the data converted from NEMAR, which includes 330 MEEG BIDS-formatted datasets, further expanding the archive with well-curated, standardized neuroelectromagnetic data.
6
8
 
7
9
  ## Featured data
@@ -21,9 +23,11 @@ The following HBN datasets are currently featured on EEGDash. Documentation abou
21
23
  A total of [246 other datasets](datasets.md) are also available through EEGDash.
22
24
 
23
25
  ## Data format
26
+
24
27
  EEGDash queries return a **Pytorch Dataset** formatted to facilitate machine learning (ML) and deep learning (DL) applications. PyTorch Datasets are the best format for EEGDash queries because they provide an efficient, scalable, and flexible structure for machine learning (ML) and deep learning (DL) applications. They allow seamless integration with PyTorch’s DataLoader, enabling efficient batching, shuffling, and parallel data loading, which is essential for training deep learning models on large EEG datasets.
25
28
 
26
29
  ## Data preprocessing
30
+
27
31
  EEGDash datasets are processed using the popular [BrainDecode](https://braindecode.org/stable/index.html) library. In fact, EEGDash datasets are BrainDecode datasets, which are themselves PyTorch datasets. This means that any preprocessing possible on BrainDecode datasets is also possible on EEGDash datasets. Refer to [BrainDecode](https://braindecode.org/stable/index.html) tutorials for guidance on preprocessing EEG data.
28
32
 
29
33
  ## EEG-Dash usage
@@ -0,0 +1,8 @@
1
+ from .api import EEGDash, EEGDashDataset
2
+ from .dataset import EEGChallengeDataset
3
+ from .utils import __init__mongo_client
4
+
5
+ __init__mongo_client()
6
+
7
+ __all__ = ["EEGDash", "EEGDashDataset", "EEGChallengeDataset"]
8
+ __version__ = "0.2.1.dev178237806"