eegdash 0.0.9__tar.gz → 0.1.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of eegdash might be problematic. Click here for more details.
- {eegdash-0.0.9/src/eegdash.egg-info → eegdash-0.1.0}/PKG-INFO +22 -18
- {eegdash-0.0.9 → eegdash-0.1.0}/README.md +8 -2
- eegdash-0.1.0/eegdash/__init__.py +4 -0
- eegdash-0.1.0/eegdash/data_config.py +28 -0
- {eegdash-0.0.9/src → eegdash-0.1.0}/eegdash/data_utils.py +164 -118
- {eegdash-0.0.9/src → eegdash-0.1.0}/eegdash/features/__init__.py +14 -14
- {eegdash-0.0.9/src → eegdash-0.1.0}/eegdash/features/datasets.py +6 -3
- {eegdash-0.0.9/src → eegdash-0.1.0}/eegdash/features/decorators.py +4 -4
- {eegdash-0.0.9/src → eegdash-0.1.0}/eegdash/features/extractors.py +2 -1
- {eegdash-0.0.9/src → eegdash-0.1.0}/eegdash/features/feature_bank/complexity.py +2 -3
- eegdash-0.1.0/eegdash/features/feature_bank/connectivity.py +59 -0
- {eegdash-0.0.9/src → eegdash-0.1.0}/eegdash/features/feature_bank/csp.py +2 -3
- {eegdash-0.0.9/src → eegdash-0.1.0}/eegdash/features/feature_bank/dimensionality.py +1 -2
- {eegdash-0.0.9/src → eegdash-0.1.0}/eegdash/features/feature_bank/spectral.py +10 -28
- eegdash-0.1.0/eegdash/features/feature_bank/utils.py +48 -0
- {eegdash-0.0.9/src → eegdash-0.1.0}/eegdash/features/utils.py +8 -6
- {eegdash-0.0.9/src → eegdash-0.1.0}/eegdash/main.py +189 -132
- {eegdash-0.0.9 → eegdash-0.1.0/eegdash.egg-info}/PKG-INFO +22 -18
- eegdash-0.1.0/eegdash.egg-info/SOURCES.txt +26 -0
- {eegdash-0.0.9/src → eegdash-0.1.0}/eegdash.egg-info/requires.txt +10 -12
- eegdash-0.1.0/eegdash.egg-info/top_level.txt +1 -0
- eegdash-0.1.0/pyproject.toml +68 -0
- eegdash-0.0.9/pyproject.toml +0 -41
- eegdash-0.0.9/src/eegdash/__init__.py +0 -1
- eegdash-0.0.9/src/eegdash/data_config.py +0 -28
- eegdash-0.0.9/src/eegdash/features/feature_bank/connectivity.py +0 -99
- eegdash-0.0.9/src/eegdash.egg-info/SOURCES.txt +0 -25
- eegdash-0.0.9/src/eegdash.egg-info/top_level.txt +0 -2
- {eegdash-0.0.9 → eegdash-0.1.0}/LICENSE +0 -0
- {eegdash-0.0.9/src → eegdash-0.1.0}/eegdash/features/feature_bank/__init__.py +3 -3
- {eegdash-0.0.9/src → eegdash-0.1.0}/eegdash/features/feature_bank/signal.py +1 -1
- {eegdash-0.0.9/src → eegdash-0.1.0}/eegdash/features/serialization.py +2 -2
- {eegdash-0.0.9/src → eegdash-0.1.0}/eegdash.egg-info/dependency_links.txt +0 -0
- {eegdash-0.0.9 → eegdash-0.1.0}/setup.cfg +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: eegdash
|
|
3
|
-
Version: 0.0
|
|
3
|
+
Version: 0.1.0
|
|
4
4
|
Summary: EEG data for machine learning
|
|
5
5
|
Author-email: Young Truong <dt.young112@gmail.com>, Arnaud Delorme <adelorme@gmail.com>
|
|
6
6
|
License: GNU General Public License
|
|
@@ -24,29 +24,27 @@ License: GNU General Public License
|
|
|
24
24
|
along with this program; if not, write to the Free Software
|
|
25
25
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1.07 USA
|
|
26
26
|
|
|
27
|
-
Project-URL: Homepage, https://
|
|
28
|
-
Project-URL: Issues, https://github.com/sccn/
|
|
27
|
+
Project-URL: Homepage, https://github.com/sccn/EEG-Dash-Data
|
|
28
|
+
Project-URL: Issues, https://github.com/sccn/EEG-Dash-Data/issues
|
|
29
29
|
Classifier: Programming Language :: Python :: 3
|
|
30
30
|
Classifier: License :: OSI Approved :: MIT License
|
|
31
31
|
Classifier: Operating System :: OS Independent
|
|
32
|
-
Requires-Python:
|
|
32
|
+
Requires-Python: >3.10
|
|
33
33
|
Description-Content-Type: text/markdown
|
|
34
34
|
License-File: LICENSE
|
|
35
|
-
Requires-Dist: xarray
|
|
36
|
-
Requires-Dist: python-dotenv
|
|
37
|
-
Requires-Dist: s3fs
|
|
38
|
-
Requires-Dist: mne
|
|
39
|
-
Requires-Dist: pynwb
|
|
40
|
-
Requires-Dist: h5py
|
|
41
|
-
Requires-Dist: pymongo
|
|
42
|
-
Requires-Dist: joblib
|
|
43
35
|
Requires-Dist: braindecode
|
|
44
|
-
Requires-Dist:
|
|
36
|
+
Requires-Dist: mne_bids
|
|
37
|
+
Requires-Dist: numba
|
|
38
|
+
Requires-Dist: numpy
|
|
39
|
+
Requires-Dist: pandas
|
|
45
40
|
Requires-Dist: pybids
|
|
46
|
-
Requires-Dist:
|
|
47
|
-
Requires-Dist:
|
|
41
|
+
Requires-Dist: pymongo
|
|
42
|
+
Requires-Dist: python-dotenv
|
|
43
|
+
Requires-Dist: s3fs
|
|
44
|
+
Requires-Dist: scipy
|
|
48
45
|
Requires-Dist: tqdm
|
|
49
|
-
Requires-Dist:
|
|
46
|
+
Requires-Dist: xarray
|
|
47
|
+
Requires-Dist: pre-commit
|
|
50
48
|
Dynamic: license-file
|
|
51
49
|
|
|
52
50
|
# EEG-Dash
|
|
@@ -90,7 +88,10 @@ To use the data from a single subject, enter:
|
|
|
90
88
|
|
|
91
89
|
```python
|
|
92
90
|
from eegdash import EEGDashDataset
|
|
93
|
-
|
|
91
|
+
|
|
92
|
+
ds_NDARDB033FW5 = EEGDashDataset(
|
|
93
|
+
{"dataset": "ds005514", "task": "RestingState", "subject": "NDARDB033FW5"}
|
|
94
|
+
)
|
|
94
95
|
```
|
|
95
96
|
|
|
96
97
|
This will search and download the metadata for the task **RestingState** for subject **NDARDB033FW5** in BIDS dataset **ds005514**. The actual data will not be downloaded at this stage. Following standard practice, data is only downloaded once it is processed. The **ds_NDARDB033FW5** object is a fully functional BrainDecode dataset, which is itself a PyTorch dataset. This [tutorial](https://github.com/sccn/EEGDash/blob/develop/notebooks/tutorial_eoec.ipynb) shows how to preprocess the EEG data, extracting portions of the data containing eyes-open and eyes-closed segments, then perform eyes-open vs. eyes-closed classification using a (shallow) deep-learning model.
|
|
@@ -99,7 +100,10 @@ To use the data from multiple subjects, enter:
|
|
|
99
100
|
|
|
100
101
|
```python
|
|
101
102
|
from eegdash import EEGDashDataset
|
|
102
|
-
|
|
103
|
+
|
|
104
|
+
ds_ds005505rest = EEGDashDataset(
|
|
105
|
+
{"dataset": "ds005505", "task": "RestingState"}, target_name="sex"
|
|
106
|
+
)
|
|
103
107
|
```
|
|
104
108
|
|
|
105
109
|
This will search and download the metadata for the task 'RestingState' for all subjects in BIDS dataset 'ds005505' (a total of 136). As above, the actual data will not be downloaded at this stage so this command is quick to execute. Also, the target class for each subject is assigned using the target_name parameter. This means that this object is ready to be directly fed to a deep learning model, although the [tutorial script](https://github.com/sccn/EEGDash/blob/develop/notebooks/tutorial_sex_classification.ipynb) performs minimal processing on it, prior to training a deep-learning model. Because 14 gigabytes of data are downloaded, this tutorial takes about 10 minutes to execute.
|
|
@@ -39,7 +39,10 @@ To use the data from a single subject, enter:
|
|
|
39
39
|
|
|
40
40
|
```python
|
|
41
41
|
from eegdash import EEGDashDataset
|
|
42
|
-
|
|
42
|
+
|
|
43
|
+
ds_NDARDB033FW5 = EEGDashDataset(
|
|
44
|
+
{"dataset": "ds005514", "task": "RestingState", "subject": "NDARDB033FW5"}
|
|
45
|
+
)
|
|
43
46
|
```
|
|
44
47
|
|
|
45
48
|
This will search and download the metadata for the task **RestingState** for subject **NDARDB033FW5** in BIDS dataset **ds005514**. The actual data will not be downloaded at this stage. Following standard practice, data is only downloaded once it is processed. The **ds_NDARDB033FW5** object is a fully functional BrainDecode dataset, which is itself a PyTorch dataset. This [tutorial](https://github.com/sccn/EEGDash/blob/develop/notebooks/tutorial_eoec.ipynb) shows how to preprocess the EEG data, extracting portions of the data containing eyes-open and eyes-closed segments, then perform eyes-open vs. eyes-closed classification using a (shallow) deep-learning model.
|
|
@@ -48,7 +51,10 @@ To use the data from multiple subjects, enter:
|
|
|
48
51
|
|
|
49
52
|
```python
|
|
50
53
|
from eegdash import EEGDashDataset
|
|
51
|
-
|
|
54
|
+
|
|
55
|
+
ds_ds005505rest = EEGDashDataset(
|
|
56
|
+
{"dataset": "ds005505", "task": "RestingState"}, target_name="sex"
|
|
57
|
+
)
|
|
52
58
|
```
|
|
53
59
|
|
|
54
60
|
This will search and download the metadata for the task 'RestingState' for all subjects in BIDS dataset 'ds005505' (a total of 136). As above, the actual data will not be downloaded at this stage so this command is quick to execute. Also, the target class for each subject is assigned using the target_name parameter. This means that this object is ready to be directly fed to a deep learning model, although the [tutorial script](https://github.com/sccn/EEGDash/blob/develop/notebooks/tutorial_sex_classification.ipynb) performs minimal processing on it, prior to training a deep-learning model. Because 14 gigabytes of data are downloaded, this tutorial takes about 10 minutes to execute.
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
config = {
|
|
2
|
+
"required_fields": ["data_name"],
|
|
3
|
+
"attributes": {
|
|
4
|
+
"data_name": "str",
|
|
5
|
+
"dataset": "str",
|
|
6
|
+
"bidspath": "str",
|
|
7
|
+
"subject": "str",
|
|
8
|
+
"task": "str",
|
|
9
|
+
"session": "str",
|
|
10
|
+
"run": "str",
|
|
11
|
+
"sampling_frequency": "float",
|
|
12
|
+
"modality": "str",
|
|
13
|
+
"nchans": "int",
|
|
14
|
+
"ntimes": "int",
|
|
15
|
+
},
|
|
16
|
+
"description_fields": ["subject", "session", "run", "task", "age", "gender", "sex"],
|
|
17
|
+
"bids_dependencies_files": [
|
|
18
|
+
"dataset_description.json",
|
|
19
|
+
"participants.tsv",
|
|
20
|
+
"events.tsv",
|
|
21
|
+
"events.json",
|
|
22
|
+
"eeg.json",
|
|
23
|
+
"electrodes.tsv",
|
|
24
|
+
"channels.tsv",
|
|
25
|
+
"coordsystem.json",
|
|
26
|
+
],
|
|
27
|
+
"accepted_query_fields": ["data_name", "dataset"],
|
|
28
|
+
}
|