eegdash 0.0.1__tar.gz → 0.0.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of eegdash might be problematic. Click here for more details.

Files changed (81) hide show
  1. {eegdash-0.0.1/EEGDash.egg-info → eegdash-0.0.3}/PKG-INFO +75 -8
  2. {eegdash-0.0.1 → eegdash-0.0.3}/README.md +72 -6
  3. {eegdash-0.0.1 → eegdash-0.0.3}/pyproject.toml +6 -3
  4. {eegdash-0.0.1/eegdash → eegdash-0.0.3/src}/data_utils.py +131 -5
  5. {eegdash-0.0.1 → eegdash-0.0.3/src/eegdash.egg-info}/PKG-INFO +75 -8
  6. eegdash-0.0.3/src/eegdash.egg-info/SOURCES.txt +11 -0
  7. eegdash-0.0.3/src/eegdash.egg-info/requires.txt +1 -0
  8. eegdash-0.0.3/src/eegdash.egg-info/top_level.txt +4 -0
  9. eegdash-0.0.3/src/main.py +199 -0
  10. eegdash-0.0.1/EEGDash.egg-info/SOURCES.txt +0 -79
  11. eegdash-0.0.1/EEGDash.egg-info/top_level.txt +0 -1
  12. eegdash-0.0.1/eegdash/SignalStore/__init__.py +0 -0
  13. eegdash-0.0.1/eegdash/SignalStore/signalstore/__init__.py +0 -3
  14. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/abstract_read_adapter.py +0 -13
  15. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/domain_modeling/schema_read_adapter.py +0 -16
  16. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/domain_modeling/vocabulary_read_adapter.py +0 -19
  17. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/handmade_records/excel_study_organizer_read_adapter.py +0 -114
  18. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/axona/axona_read_adapter.py +0 -912
  19. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/ReadIntanSpikeFile.py +0 -140
  20. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/intan_read_adapter.py +0 -29
  21. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/__init__.py +0 -0
  22. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/data_to_result.py +0 -62
  23. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/get_bytes_per_data_block.py +0 -36
  24. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/notch_filter.py +0 -50
  25. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/qstring.py +0 -41
  26. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/read_header.py +0 -135
  27. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/read_one_data_block.py +0 -45
  28. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/load_intan_rhd_format.py +0 -204
  29. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/__init__.py +0 -0
  30. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/data_to_result.py +0 -60
  31. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/get_bytes_per_data_block.py +0 -37
  32. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/notch_filter.py +0 -50
  33. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/qstring.py +0 -41
  34. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/read_header.py +0 -153
  35. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/read_one_data_block.py +0 -47
  36. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/load_intan_rhs_format.py +0 -213
  37. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/neurodata_without_borders/neurodata_without_borders_read_adapter.py +0 -14
  38. eegdash-0.0.1/eegdash/SignalStore/signalstore/operations/__init__.py +0 -4
  39. eegdash-0.0.1/eegdash/SignalStore/signalstore/operations/handler_executor.py +0 -22
  40. eegdash-0.0.1/eegdash/SignalStore/signalstore/operations/handler_factory.py +0 -41
  41. eegdash-0.0.1/eegdash/SignalStore/signalstore/operations/handlers/base_handler.py +0 -44
  42. eegdash-0.0.1/eegdash/SignalStore/signalstore/operations/handlers/domain/property_model_handlers.py +0 -79
  43. eegdash-0.0.1/eegdash/SignalStore/signalstore/operations/handlers/domain/schema_handlers.py +0 -3
  44. eegdash-0.0.1/eegdash/SignalStore/signalstore/operations/helpers/abstract_helper.py +0 -17
  45. eegdash-0.0.1/eegdash/SignalStore/signalstore/operations/helpers/neuroscikit_extractor.py +0 -33
  46. eegdash-0.0.1/eegdash/SignalStore/signalstore/operations/helpers/neuroscikit_rawio.py +0 -165
  47. eegdash-0.0.1/eegdash/SignalStore/signalstore/operations/helpers/spikeinterface_helper.py +0 -100
  48. eegdash-0.0.1/eegdash/SignalStore/signalstore/operations/helpers/wrappers/neo_wrappers.py +0 -21
  49. eegdash-0.0.1/eegdash/SignalStore/signalstore/operations/helpers/wrappers/nwb_wrappers.py +0 -27
  50. eegdash-0.0.1/eegdash/SignalStore/signalstore/store/__init__.py +0 -8
  51. eegdash-0.0.1/eegdash/SignalStore/signalstore/store/data_access_objects.py +0 -1181
  52. eegdash-0.0.1/eegdash/SignalStore/signalstore/store/datafile_adapters.py +0 -131
  53. eegdash-0.0.1/eegdash/SignalStore/signalstore/store/repositories.py +0 -928
  54. eegdash-0.0.1/eegdash/SignalStore/signalstore/store/store_errors.py +0 -68
  55. eegdash-0.0.1/eegdash/SignalStore/signalstore/store/unit_of_work.py +0 -97
  56. eegdash-0.0.1/eegdash/SignalStore/signalstore/store/unit_of_work_provider.py +0 -67
  57. eegdash-0.0.1/eegdash/SignalStore/signalstore/utilities/data_adapters/spike_interface_adapters/si_recording.py +0 -1
  58. eegdash-0.0.1/eegdash/SignalStore/signalstore/utilities/data_adapters/spike_interface_adapters/si_sorter.py +0 -1
  59. eegdash-0.0.1/eegdash/SignalStore/signalstore/utilities/testing/data_mocks.py +0 -513
  60. eegdash-0.0.1/eegdash/SignalStore/signalstore/utilities/tools/dataarrays.py +0 -49
  61. eegdash-0.0.1/eegdash/SignalStore/signalstore/utilities/tools/mongo_records.py +0 -25
  62. eegdash-0.0.1/eegdash/SignalStore/signalstore/utilities/tools/operation_response.py +0 -78
  63. eegdash-0.0.1/eegdash/SignalStore/signalstore/utilities/tools/purge_orchestration_response.py +0 -21
  64. eegdash-0.0.1/eegdash/SignalStore/signalstore/utilities/tools/quantities.py +0 -15
  65. eegdash-0.0.1/eegdash/SignalStore/signalstore/utilities/tools/strings.py +0 -38
  66. eegdash-0.0.1/eegdash/SignalStore/signalstore/utilities/tools/time.py +0 -17
  67. eegdash-0.0.1/eegdash/SignalStore/tests/conftest.py +0 -799
  68. eegdash-0.0.1/eegdash/SignalStore/tests/data/valid_data/data_arrays/make_fake_data.py +0 -59
  69. eegdash-0.0.1/eegdash/SignalStore/tests/unit/store/conftest.py +0 -0
  70. eegdash-0.0.1/eegdash/SignalStore/tests/unit/store/test_data_access_objects.py +0 -1235
  71. eegdash-0.0.1/eegdash/SignalStore/tests/unit/store/test_repositories.py +0 -1309
  72. eegdash-0.0.1/eegdash/SignalStore/tests/unit/store/test_unit_of_work.py +0 -7
  73. eegdash-0.0.1/eegdash/SignalStore/tests/unit/test_ci_cd.py +0 -8
  74. eegdash-0.0.1/eegdash/aws_ingest.py +0 -29
  75. eegdash-0.0.1/eegdash/main.py +0 -17
  76. eegdash-0.0.1/eegdash/signalstore_data_utils.py +0 -280
  77. eegdash-0.0.1/tests/__init__.py +0 -3
  78. {eegdash-0.0.1 → eegdash-0.0.3}/LICENSE +0 -0
  79. {eegdash-0.0.1 → eegdash-0.0.3}/setup.cfg +0 -0
  80. {eegdash-0.0.1/eegdash → eegdash-0.0.3/src}/__init__.py +0 -0
  81. {eegdash-0.0.1/EEGDash.egg-info → eegdash-0.0.3/src/eegdash.egg-info}/dependency_links.txt +0 -0
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.2
2
2
  Name: eegdash
3
- Version: 0.0.1
3
+ Version: 0.0.3
4
4
  Summary: EEG data for machine learning
5
5
  Author-email: Young Truong <dt.young112@gmail.com>, Arnaud Delorme <adelorme@gmail.com>
6
6
  License: GNU General Public License
@@ -32,12 +32,24 @@ Classifier: Operating System :: OS Independent
32
32
  Requires-Python: >=3.8
33
33
  Description-Content-Type: text/markdown
34
34
  License-File: LICENSE
35
+ Requires-Dist: signalstore
35
36
 
36
37
  # EEG-Dash
37
38
  To leverage recent and ongoing advancements in large-scale computational methods and to ensure the preservation of scientific data generated from publicly funded research, the EEG-DaSh data archive will create a data-sharing resource for MEEG (EEG, MEG) data contributed by collaborators for machine learning (ML) and deep learning (DL) applications.
38
39
 
39
40
  ## Data source
40
- The data in EEG-DaSh originates from a collaboration involving 25 laboratories, encompassing 27,053 participants. This extensive collection includes MEEG data, which is a combination of EEG and MEG signals. The data is sourced from various studies conducted by these labs, involving both healthy subjects and clinical populations with conditions such as ADHD, depression, schizophrenia, dementia, autism, and psychosis. Additionally, data spans different mental states like sleep, meditation, and cognitive tasks. In addition, EEG-DaSh will also incorporate data converted from NEMAR, which includes a subset of the 330 MEEG BIDS-formatted datasets available on OpenNeuro, further expanding the archive with well-curated, standardized neuroelectromagnetic data.
41
+ The data in EEG-DaSh originates from a collaboration involving 25 laboratories, encompassing 27,053 participants. This extensive collection includes MEEG data, which is a combination of EEG and MEG signals. The data is sourced from various studies conducted by these labs, involving both healthy subjects and clinical populations with conditions such as ADHD, depression, schizophrenia, dementia, autism, and psychosis. Additionally, data spans different mental states like sleep, meditation, and cognitive tasks. In addition, EEG-DaSh will also incorporate a subset of the data converted from NEMAR, which includes 330 MEEG BIDS-formatted datasets, further expanding the archive with well-curated, standardized neuroelectromagnetic data.
42
+
43
+ ## Datasets available
44
+
45
+ There are currently only two datasets made available for testing purposes.
46
+
47
+ | Dataset ID | Description | Participants | Channels | Task | NEMAR Link |
48
+ |------------|---------------------------------------------------------------------------------------------|--------------|-----------------|-----------------|------------------------------------------------------------------------------------------------|
49
+ | ds002718 | EEG dataset focused on face processing with MRI for source localization | 18 | 70 EEG, 2 EOG | FaceRecognition | [NEMAR ds002718](https://nemar.org/dataexplorer/detail?dataset_id=ds002718) |
50
+ | ds004745 | 8-Channel SSVEP EEG dataset with trials including voluntary movements to introduce artifacts | 6 | 8 EEG | SSVEP tasks | [NEMAR ds004745](https://nemar.org/dataexplorer/detail?dataset_id=ds004745) |
51
+
52
+
41
53
 
42
54
  ## Data formatting
43
55
  The data in EEG-DaSh is formatted to facilitate machine learning (ML) and deep learning (DL) applications by using a simplified structure commonly adopted by these communities. This will involve converting raw MEEG data into a matrix format, where samples (e.g., individual EEG or MEG recordings) are represented by rows, and values (such as time or channel data) are represented by columns. The data is also divided into training and testing sets, with 80% of the data allocated for training and 20% for testing, ensuring a balanced representation of relevant labels across sets. Hierarchical Event Descriptor (HED) tags will be used to annotate labels, which will be stored in a text table, and detailed metadata, including dataset origins and methods. This formatting process will ensure that data is ready for ML/DL models, allowing for efficient training and testing of algorithms while preserving data integrity and reusability.
@@ -49,15 +61,70 @@ The data in EEG-DaSh is formatted to facilitate machine learning (ML) and deep l
49
61
 
50
62
  The data in EEG-DaSh is accessed through Python and MATLAB libraries specifically designed for this platform. These libraries will use objects compatible with deep learning data storage formats in each language, such as <i>Torchvision.dataset</i> in Python and <i>DataStore</i> in MATLAB. Users can dynamically fetch data from the EEG-DaSh server which is then cached locally.
51
63
 
52
- ### AWS S3
64
+ ### Install
65
+ Use your preferred Python environment manager with Python > 3.9 to install the package. Here we show example using Conda environment with Python 3.11.5:
66
+ * Create a new environment Python 3.11.5 -> `conda create --name eegdash python=3.11.5`
67
+ * Switch to the right environment -> `conda activate eegdash`
68
+ * Install dependencies (this is a temporary link that will be updated soon) -> `pip install -r https://raw.githubusercontent.com/sccn/EEG-Dash-Data/refs/heads/develop/requirements.txt`
69
+ * Install _eegdash_ package (this is a temporary link that will be updated soon) -> `pip install -i https://test.pypi.org/simple/ eegdash`
70
+ * Check installation. Start a Python session and type `from eegdash import EEGDash`
71
+
72
+ ### Python data access
73
+
74
+ To create a local object for accessing the database, use the following code:
75
+
76
+ ```python
77
+ from eegdash import EEGDash
78
+ EEGDashInstance = EEGDash()
79
+ ```
80
+
81
+ Once the object is instantiated, it can be utilized to search datasets. Providing an empty parameter will search the entire database and return all available datasets.
82
+
83
+ ```python
84
+ EEGDashInstance.find({})
85
+ ```
86
+ A list of dataset is returned.
87
+
88
+ ```python
89
+ [{'schema_ref': 'eeg_signal',
90
+ 'data_name': 'ds004745_sub-001_task-unnamed_eeg.set',
91
+ 'dataset': 'ds004745',
92
+ 'subject': '001',
93
+ 'task': 'unnamed',
94
+ 'session': '',
95
+ 'run': '',
96
+ 'modality': 'EEG',
97
+ 'sampling_frequency': 1000,
98
+ 'version_timestamp': 0,
99
+ 'has_file': True,
100
+ 'time_of_save': datetime.datetime(2024, 10, 25, 14, 11, 48, 843593, tzinfo=datetime.timezone.utc),
101
+ 'time_of_removal': None}, ...
102
+
103
+ ```
104
+
105
+ Additionally, users can search for a specific dataset by specifying criteria.
106
+
107
+ ```python
108
+ EEGDashInstance.find({'task': 'FaceRecognition'})
109
+ ```
110
+
111
+ After locating the desired dataset or data record, users can download it locally by executing the following command. This will return an xArray Python object.
112
+
113
+ ```python
114
+ XArrayData = EEGDashInstance.get({'task': 'FaceRecognition', 'subject': '019'})
115
+ ```
116
+
117
+ Optionally, this is how you may access the raw data for the first record. This will return an numpy array.
53
118
 
54
- Coming soon...
119
+ ```python
120
+ npData = EEGDashInstance.get({'task': 'FaceRecognition', 'subject': '019'})[0].values
121
+ ```
55
122
 
56
- ### EEG-Dash API
123
+ ## Example use
57
124
 
58
- Coming soon...
125
+ This [example](tests/eegdash.ipynb) demonstrates the full workflow from data retrieval with `EEGDash` to model definition, data handling, and training in PyTorch.
59
126
 
60
- ## Education
127
+ ## Education - Coming soon...
61
128
 
62
129
  We organize workshops and educational events to foster cross-cultural education and student training, offering both online and in-person opportunities in collaboration with US and Israeli partners. There is no event planned for 2024. Events for 2025 will be advertised on the EEGLABNEWS mailing list so make sure to [subscribe](https://sccn.ucsd.edu/mailman/listinfo/eeglabnews).
63
130
 
@@ -2,7 +2,18 @@
2
2
  To leverage recent and ongoing advancements in large-scale computational methods and to ensure the preservation of scientific data generated from publicly funded research, the EEG-DaSh data archive will create a data-sharing resource for MEEG (EEG, MEG) data contributed by collaborators for machine learning (ML) and deep learning (DL) applications.
3
3
 
4
4
  ## Data source
5
- The data in EEG-DaSh originates from a collaboration involving 25 laboratories, encompassing 27,053 participants. This extensive collection includes MEEG data, which is a combination of EEG and MEG signals. The data is sourced from various studies conducted by these labs, involving both healthy subjects and clinical populations with conditions such as ADHD, depression, schizophrenia, dementia, autism, and psychosis. Additionally, data spans different mental states like sleep, meditation, and cognitive tasks. In addition, EEG-DaSh will also incorporate data converted from NEMAR, which includes a subset of the 330 MEEG BIDS-formatted datasets available on OpenNeuro, further expanding the archive with well-curated, standardized neuroelectromagnetic data.
5
+ The data in EEG-DaSh originates from a collaboration involving 25 laboratories, encompassing 27,053 participants. This extensive collection includes MEEG data, which is a combination of EEG and MEG signals. The data is sourced from various studies conducted by these labs, involving both healthy subjects and clinical populations with conditions such as ADHD, depression, schizophrenia, dementia, autism, and psychosis. Additionally, data spans different mental states like sleep, meditation, and cognitive tasks. In addition, EEG-DaSh will also incorporate a subset of the data converted from NEMAR, which includes 330 MEEG BIDS-formatted datasets, further expanding the archive with well-curated, standardized neuroelectromagnetic data.
6
+
7
+ ## Datasets available
8
+
9
+ There are currently only two datasets made available for testing purposes.
10
+
11
+ | Dataset ID | Description | Participants | Channels | Task | NEMAR Link |
12
+ |------------|---------------------------------------------------------------------------------------------|--------------|-----------------|-----------------|------------------------------------------------------------------------------------------------|
13
+ | ds002718 | EEG dataset focused on face processing with MRI for source localization | 18 | 70 EEG, 2 EOG | FaceRecognition | [NEMAR ds002718](https://nemar.org/dataexplorer/detail?dataset_id=ds002718) |
14
+ | ds004745 | 8-Channel SSVEP EEG dataset with trials including voluntary movements to introduce artifacts | 6 | 8 EEG | SSVEP tasks | [NEMAR ds004745](https://nemar.org/dataexplorer/detail?dataset_id=ds004745) |
15
+
16
+
6
17
 
7
18
  ## Data formatting
8
19
  The data in EEG-DaSh is formatted to facilitate machine learning (ML) and deep learning (DL) applications by using a simplified structure commonly adopted by these communities. This will involve converting raw MEEG data into a matrix format, where samples (e.g., individual EEG or MEG recordings) are represented by rows, and values (such as time or channel data) are represented by columns. The data is also divided into training and testing sets, with 80% of the data allocated for training and 20% for testing, ensuring a balanced representation of relevant labels across sets. Hierarchical Event Descriptor (HED) tags will be used to annotate labels, which will be stored in a text table, and detailed metadata, including dataset origins and methods. This formatting process will ensure that data is ready for ML/DL models, allowing for efficient training and testing of algorithms while preserving data integrity and reusability.
@@ -14,15 +25,70 @@ The data in EEG-DaSh is formatted to facilitate machine learning (ML) and deep l
14
25
 
15
26
  The data in EEG-DaSh is accessed through Python and MATLAB libraries specifically designed for this platform. These libraries will use objects compatible with deep learning data storage formats in each language, such as <i>Torchvision.dataset</i> in Python and <i>DataStore</i> in MATLAB. Users can dynamically fetch data from the EEG-DaSh server which is then cached locally.
16
27
 
17
- ### AWS S3
28
+ ### Install
29
+ Use your preferred Python environment manager with Python > 3.9 to install the package. Here we show example using Conda environment with Python 3.11.5:
30
+ * Create a new environment Python 3.11.5 -> `conda create --name eegdash python=3.11.5`
31
+ * Switch to the right environment -> `conda activate eegdash`
32
+ * Install dependencies (this is a temporary link that will be updated soon) -> `pip install -r https://raw.githubusercontent.com/sccn/EEG-Dash-Data/refs/heads/develop/requirements.txt`
33
+ * Install _eegdash_ package (this is a temporary link that will be updated soon) -> `pip install -i https://test.pypi.org/simple/ eegdash`
34
+ * Check installation. Start a Python session and type `from eegdash import EEGDash`
35
+
36
+ ### Python data access
37
+
38
+ To create a local object for accessing the database, use the following code:
39
+
40
+ ```python
41
+ from eegdash import EEGDash
42
+ EEGDashInstance = EEGDash()
43
+ ```
44
+
45
+ Once the object is instantiated, it can be utilized to search datasets. Providing an empty parameter will search the entire database and return all available datasets.
46
+
47
+ ```python
48
+ EEGDashInstance.find({})
49
+ ```
50
+ A list of dataset is returned.
51
+
52
+ ```python
53
+ [{'schema_ref': 'eeg_signal',
54
+ 'data_name': 'ds004745_sub-001_task-unnamed_eeg.set',
55
+ 'dataset': 'ds004745',
56
+ 'subject': '001',
57
+ 'task': 'unnamed',
58
+ 'session': '',
59
+ 'run': '',
60
+ 'modality': 'EEG',
61
+ 'sampling_frequency': 1000,
62
+ 'version_timestamp': 0,
63
+ 'has_file': True,
64
+ 'time_of_save': datetime.datetime(2024, 10, 25, 14, 11, 48, 843593, tzinfo=datetime.timezone.utc),
65
+ 'time_of_removal': None}, ...
66
+
67
+ ```
68
+
69
+ Additionally, users can search for a specific dataset by specifying criteria.
70
+
71
+ ```python
72
+ EEGDashInstance.find({'task': 'FaceRecognition'})
73
+ ```
74
+
75
+ After locating the desired dataset or data record, users can download it locally by executing the following command. This will return an xArray Python object.
76
+
77
+ ```python
78
+ XArrayData = EEGDashInstance.get({'task': 'FaceRecognition', 'subject': '019'})
79
+ ```
80
+
81
+ Optionally, this is how you may access the raw data for the first record. This will return an numpy array.
18
82
 
19
- Coming soon...
83
+ ```python
84
+ npData = EEGDashInstance.get({'task': 'FaceRecognition', 'subject': '019'})[0].values
85
+ ```
20
86
 
21
- ### EEG-Dash API
87
+ ## Example use
22
88
 
23
- Coming soon...
89
+ This [example](tests/eegdash.ipynb) demonstrates the full workflow from data retrieval with `EEGDash` to model definition, data handling, and training in PyTorch.
24
90
 
25
- ## Education
91
+ ## Education - Coming soon...
26
92
 
27
93
  We organize workshops and educational events to foster cross-cultural education and student training, offering both online and in-person opportunities in collaboration with US and Israeli partners. There is no event planned for 2024. Events for 2025 will be advertised on the EEGLABNEWS mailing list so make sure to [subscribe](https://sccn.ucsd.edu/mailman/listinfo/eeglabnews).
28
94
 
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "eegdash"
7
- version = "0.0.1"
7
+ version = "0.0.3"
8
8
  authors = [
9
9
  { name="Young Truong", email="dt.young112@gmail.com" },
10
10
  { name="Arnaud Delorme", email="adelorme@gmail.com" },
@@ -18,7 +18,10 @@ classifiers = [
18
18
  "License :: OSI Approved :: MIT License",
19
19
  "Operating System :: OS Independent",
20
20
  ]
21
-
21
+ dependencies = [
22
+ "signalstore"
23
+ ]
22
24
  [project.urls]
23
25
  Homepage = "https://github.com/sccn/EEG-Dash-Data"
24
- Issues = "https://github.com/sccn/EEG-Dash-Data/issues"
26
+ Issues = "https://github.com/sccn/EEG-Dash-Data/issues"
27
+
@@ -3,11 +3,104 @@ import sys
3
3
  from joblib import Parallel, delayed
4
4
  import mne
5
5
  import numpy as np
6
+ import pandas as pd
6
7
  from pathlib import Path
7
8
  import re
8
9
  import json
10
+ from mne.io import BaseRaw
11
+ from mne._fiff.utils import _find_channels, _read_segments_file
12
+ import s3fs
13
+ import tempfile
14
+ from mne._fiff.utils import _read_segments_file
9
15
 
10
- verbose = False
16
+ class RawEEGDash(BaseRaw):
17
+ r"""Raw object from EEG-Dash connection with Openneuro S3 file.
18
+
19
+ Parameters
20
+ ----------
21
+ input_fname : path-like
22
+ Path to the S3 file
23
+ eog : list | tuple | 'auto'
24
+ Names or indices of channels that should be designated EOG channels.
25
+ If 'auto', the channel names containing ``EOG`` or ``EYE`` are used.
26
+ Defaults to empty tuple.
27
+ %(preload)s
28
+ Note that preload=False will be effective only if the data is stored
29
+ in a separate binary file.
30
+ %(uint16_codec)s
31
+ %(montage_units)s
32
+ %(verbose)s
33
+
34
+ See Also
35
+ --------
36
+ mne.io.Raw : Documentation of attributes and methods.
37
+
38
+ Notes
39
+ -----
40
+ .. versionadded:: 0.11.0
41
+ """
42
+
43
+ def __init__(
44
+ self,
45
+ input_fname,
46
+ metadata,
47
+ eog=(),
48
+ preload=False,
49
+ *,
50
+ cache_dir='./.eegdash_cache',
51
+ uint16_codec=None,
52
+ montage_units="auto",
53
+ verbose=None,
54
+ ):
55
+ '''
56
+ Get to work with S3 endpoint first, no caching
57
+ '''
58
+ # Create a simple RawArray
59
+ sfreq = metadata['sfreq'] # Sampling frequency
60
+ n_times = metadata['n_times']
61
+ ch_names = metadata['ch_names']
62
+ ch_types = []
63
+ for ch in metadata['ch_types']:
64
+ chtype = ch.lower()
65
+ if chtype == 'heog' or chtype == 'veog':
66
+ chtype = 'eog'
67
+ ch_types.append(chtype)
68
+ info = mne.create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
69
+ self.s3file = input_fname
70
+ os.makedirs(cache_dir, exist_ok=True)
71
+ self.filecache = os.path.join(cache_dir, os.path.basename(self.s3file))
72
+
73
+ if preload and not os.path.exists(self.filecache):
74
+ self._download_s3()
75
+ preload = self.filecache
76
+
77
+ super().__init__(
78
+ info,
79
+ preload,
80
+ last_samps=[n_times-1],
81
+ orig_format="single",
82
+ verbose=verbose,
83
+ )
84
+
85
+ def _download_s3(self):
86
+ filesystem = s3fs.S3FileSystem(anon=True, client_kwargs={'region_name': 'us-east-2'})
87
+ print('s3file', self.s3file)
88
+ print('filecache', self.filecache)
89
+ filesystem.download(self.s3file, self.filecache)
90
+ self.filenames = [self.filecache]
91
+
92
+ def _read_segment(
93
+ self, start=0, stop=None, sel=None, data_buffer=None, *, verbose=None
94
+ ):
95
+ if not os.path.exists(self.filecache): # not preload
96
+ self._download_s3()
97
+ else: # not preload and file is not cached
98
+ self.filenames = [self.filecache]
99
+ return super()._read_segment(start, stop, sel, data_buffer, verbose=verbose)
100
+
101
+ def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
102
+ """Read a chunk of data from the file."""
103
+ _read_segments_file(self, data, idx, fi, start, stop, cals, mult, dtype="<f4")
11
104
 
12
105
 
13
106
  class BIDSDataset():
@@ -20,7 +113,7 @@ class BIDSDataset():
20
113
  }
21
114
  METADATA_FILE_EXTENSIONS = ['eeg.json', 'channels.tsv', 'electrodes.tsv', 'events.tsv', 'events.json']
22
115
  def __init__(self,
23
- data_dir=None, # location of asr cleaned data
116
+ data_dir=None, # location of bids dataset
24
117
  dataset='', # dataset name
25
118
  raw_format='eeglab', # format of raw data
26
119
  ):
@@ -44,9 +137,25 @@ class BIDSDataset():
44
137
  self.files = np.load(temp_dir / f'{dataset}_files.npy', allow_pickle=True)
45
138
 
46
139
  def get_property_from_filename(self, property, filename):
47
- lookup = re.search(rf'{property}-(.*?)[_\/]', filename)
140
+ import platform
141
+ if platform.system() == "Windows":
142
+ lookup = re.search(rf'{property}-(.*?)[_\\]', filename)
143
+ else:
144
+ lookup = re.search(rf'{property}-(.*?)[_\/]', filename)
48
145
  return lookup.group(1) if lookup else ''
49
146
 
147
+ def merge_json_inheritance(self, json_files):
148
+ '''
149
+ Merge list of json files found by get_bids_file_inheritance,
150
+ expecting the order (from left to right) is from lowest level to highest level,
151
+ and return a merged dictionary
152
+ '''
153
+ json_files.reverse()
154
+ json_dict = {}
155
+ for f in json_files:
156
+ json_dict.update(json.load(open(f)))
157
+ return json_dict
158
+
50
159
  def get_bids_file_inheritance(self, path, basename, extension):
51
160
  '''
52
161
  Get all files with given extension that applies to the basename file
@@ -68,7 +177,7 @@ class BIDSDataset():
68
177
  for file in os.listdir(path):
69
178
  # target_file = path / f"{cur_file_basename}_{extension}"
70
179
  if os.path.isfile(path/file):
71
- cur_file_basename = file[:file.rfind('_')]
180
+ cur_file_basename = file[:file.rfind('_')] # TODO: change to just search for any file with extension
72
181
  if file.endswith(extension) and cur_file_basename in basename:
73
182
  filepath = path / file
74
183
  bids_files.append(filepath)
@@ -210,4 +319,21 @@ class BIDSDataset():
210
319
  return self.get_property_from_filename('run', data_filepath)
211
320
 
212
321
  def subject(self, data_filepath):
213
- return self.get_property_from_filename('sub', data_filepath)
322
+ return self.get_property_from_filename('sub', data_filepath)
323
+
324
+ def num_channels(self, data_filepath):
325
+ channels_tsv = pd.read_csv(self.get_bids_metadata_files(data_filepath, 'channels.tsv')[0], sep='\t')
326
+ return len(channels_tsv)
327
+
328
+ def channel_labels(self, data_filepath):
329
+ channels_tsv = pd.read_csv(self.get_bids_metadata_files(data_filepath, 'channels.tsv')[0], sep='\t')
330
+ return channels_tsv['name'].tolist()
331
+
332
+ def channel_types(self, data_filepath):
333
+ channels_tsv = pd.read_csv(self.get_bids_metadata_files(data_filepath, 'channels.tsv')[0], sep='\t')
334
+ return channels_tsv['type'].tolist()
335
+
336
+ def num_times(self, data_filepath):
337
+ eeg_jsons = self.get_bids_metadata_files(data_filepath, 'eeg.json')
338
+ eeg_json_dict = self.merge_json_inheritance(eeg_jsons)
339
+ return int(eeg_json_dict['SamplingFrequency'] * eeg_json_dict['RecordingDuration'])
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.2
2
2
  Name: eegdash
3
- Version: 0.0.1
3
+ Version: 0.0.3
4
4
  Summary: EEG data for machine learning
5
5
  Author-email: Young Truong <dt.young112@gmail.com>, Arnaud Delorme <adelorme@gmail.com>
6
6
  License: GNU General Public License
@@ -32,12 +32,24 @@ Classifier: Operating System :: OS Independent
32
32
  Requires-Python: >=3.8
33
33
  Description-Content-Type: text/markdown
34
34
  License-File: LICENSE
35
+ Requires-Dist: signalstore
35
36
 
36
37
  # EEG-Dash
37
38
  To leverage recent and ongoing advancements in large-scale computational methods and to ensure the preservation of scientific data generated from publicly funded research, the EEG-DaSh data archive will create a data-sharing resource for MEEG (EEG, MEG) data contributed by collaborators for machine learning (ML) and deep learning (DL) applications.
38
39
 
39
40
  ## Data source
40
- The data in EEG-DaSh originates from a collaboration involving 25 laboratories, encompassing 27,053 participants. This extensive collection includes MEEG data, which is a combination of EEG and MEG signals. The data is sourced from various studies conducted by these labs, involving both healthy subjects and clinical populations with conditions such as ADHD, depression, schizophrenia, dementia, autism, and psychosis. Additionally, data spans different mental states like sleep, meditation, and cognitive tasks. In addition, EEG-DaSh will also incorporate data converted from NEMAR, which includes a subset of the 330 MEEG BIDS-formatted datasets available on OpenNeuro, further expanding the archive with well-curated, standardized neuroelectromagnetic data.
41
+ The data in EEG-DaSh originates from a collaboration involving 25 laboratories, encompassing 27,053 participants. This extensive collection includes MEEG data, which is a combination of EEG and MEG signals. The data is sourced from various studies conducted by these labs, involving both healthy subjects and clinical populations with conditions such as ADHD, depression, schizophrenia, dementia, autism, and psychosis. Additionally, data spans different mental states like sleep, meditation, and cognitive tasks. In addition, EEG-DaSh will also incorporate a subset of the data converted from NEMAR, which includes 330 MEEG BIDS-formatted datasets, further expanding the archive with well-curated, standardized neuroelectromagnetic data.
42
+
43
+ ## Datasets available
44
+
45
+ There are currently only two datasets made available for testing purposes.
46
+
47
+ | Dataset ID | Description | Participants | Channels | Task | NEMAR Link |
48
+ |------------|---------------------------------------------------------------------------------------------|--------------|-----------------|-----------------|------------------------------------------------------------------------------------------------|
49
+ | ds002718 | EEG dataset focused on face processing with MRI for source localization | 18 | 70 EEG, 2 EOG | FaceRecognition | [NEMAR ds002718](https://nemar.org/dataexplorer/detail?dataset_id=ds002718) |
50
+ | ds004745 | 8-Channel SSVEP EEG dataset with trials including voluntary movements to introduce artifacts | 6 | 8 EEG | SSVEP tasks | [NEMAR ds004745](https://nemar.org/dataexplorer/detail?dataset_id=ds004745) |
51
+
52
+
41
53
 
42
54
  ## Data formatting
43
55
  The data in EEG-DaSh is formatted to facilitate machine learning (ML) and deep learning (DL) applications by using a simplified structure commonly adopted by these communities. This will involve converting raw MEEG data into a matrix format, where samples (e.g., individual EEG or MEG recordings) are represented by rows, and values (such as time or channel data) are represented by columns. The data is also divided into training and testing sets, with 80% of the data allocated for training and 20% for testing, ensuring a balanced representation of relevant labels across sets. Hierarchical Event Descriptor (HED) tags will be used to annotate labels, which will be stored in a text table, and detailed metadata, including dataset origins and methods. This formatting process will ensure that data is ready for ML/DL models, allowing for efficient training and testing of algorithms while preserving data integrity and reusability.
@@ -49,15 +61,70 @@ The data in EEG-DaSh is formatted to facilitate machine learning (ML) and deep l
49
61
 
50
62
  The data in EEG-DaSh is accessed through Python and MATLAB libraries specifically designed for this platform. These libraries will use objects compatible with deep learning data storage formats in each language, such as <i>Torchvision.dataset</i> in Python and <i>DataStore</i> in MATLAB. Users can dynamically fetch data from the EEG-DaSh server which is then cached locally.
51
63
 
52
- ### AWS S3
64
+ ### Install
65
+ Use your preferred Python environment manager with Python > 3.9 to install the package. Here we show example using Conda environment with Python 3.11.5:
66
+ * Create a new environment Python 3.11.5 -> `conda create --name eegdash python=3.11.5`
67
+ * Switch to the right environment -> `conda activate eegdash`
68
+ * Install dependencies (this is a temporary link that will be updated soon) -> `pip install -r https://raw.githubusercontent.com/sccn/EEG-Dash-Data/refs/heads/develop/requirements.txt`
69
+ * Install _eegdash_ package (this is a temporary link that will be updated soon) -> `pip install -i https://test.pypi.org/simple/ eegdash`
70
+ * Check installation. Start a Python session and type `from eegdash import EEGDash`
71
+
72
+ ### Python data access
73
+
74
+ To create a local object for accessing the database, use the following code:
75
+
76
+ ```python
77
+ from eegdash import EEGDash
78
+ EEGDashInstance = EEGDash()
79
+ ```
80
+
81
+ Once the object is instantiated, it can be utilized to search datasets. Providing an empty parameter will search the entire database and return all available datasets.
82
+
83
+ ```python
84
+ EEGDashInstance.find({})
85
+ ```
86
+ A list of dataset is returned.
87
+
88
+ ```python
89
+ [{'schema_ref': 'eeg_signal',
90
+ 'data_name': 'ds004745_sub-001_task-unnamed_eeg.set',
91
+ 'dataset': 'ds004745',
92
+ 'subject': '001',
93
+ 'task': 'unnamed',
94
+ 'session': '',
95
+ 'run': '',
96
+ 'modality': 'EEG',
97
+ 'sampling_frequency': 1000,
98
+ 'version_timestamp': 0,
99
+ 'has_file': True,
100
+ 'time_of_save': datetime.datetime(2024, 10, 25, 14, 11, 48, 843593, tzinfo=datetime.timezone.utc),
101
+ 'time_of_removal': None}, ...
102
+
103
+ ```
104
+
105
+ Additionally, users can search for a specific dataset by specifying criteria.
106
+
107
+ ```python
108
+ EEGDashInstance.find({'task': 'FaceRecognition'})
109
+ ```
110
+
111
+ After locating the desired dataset or data record, users can download it locally by executing the following command. This will return an xArray Python object.
112
+
113
+ ```python
114
+ XArrayData = EEGDashInstance.get({'task': 'FaceRecognition', 'subject': '019'})
115
+ ```
116
+
117
+ Optionally, this is how you may access the raw data for the first record. This will return an numpy array.
53
118
 
54
- Coming soon...
119
+ ```python
120
+ npData = EEGDashInstance.get({'task': 'FaceRecognition', 'subject': '019'})[0].values
121
+ ```
55
122
 
56
- ### EEG-Dash API
123
+ ## Example use
57
124
 
58
- Coming soon...
125
+ This [example](tests/eegdash.ipynb) demonstrates the full workflow from data retrieval with `EEGDash` to model definition, data handling, and training in PyTorch.
59
126
 
60
- ## Education
127
+ ## Education - Coming soon...
61
128
 
62
129
  We organize workshops and educational events to foster cross-cultural education and student training, offering both online and in-person opportunities in collaboration with US and Israeli partners. There is no event planned for 2024. Events for 2025 will be advertised on the EEGLABNEWS mailing list so make sure to [subscribe](https://sccn.ucsd.edu/mailman/listinfo/eeglabnews).
63
130
 
@@ -0,0 +1,11 @@
1
+ LICENSE
2
+ README.md
3
+ pyproject.toml
4
+ src/__init__.py
5
+ src/data_utils.py
6
+ src/main.py
7
+ src/eegdash.egg-info/PKG-INFO
8
+ src/eegdash.egg-info/SOURCES.txt
9
+ src/eegdash.egg-info/dependency_links.txt
10
+ src/eegdash.egg-info/requires.txt
11
+ src/eegdash.egg-info/top_level.txt
@@ -0,0 +1 @@
1
+ signalstore
@@ -0,0 +1,4 @@
1
+ DomainModels
2
+ __init__
3
+ data_utils
4
+ main