eegdash 0.0.1__tar.gz → 0.0.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (80) hide show
  1. {eegdash-0.0.1/EEGDash.egg-info → eegdash-0.0.2}/PKG-INFO +75 -8
  2. {eegdash-0.0.1 → eegdash-0.0.2}/README.md +72 -6
  3. {eegdash-0.0.1 → eegdash-0.0.2}/eegdash/data_utils.py +5 -1
  4. eegdash-0.0.1/eegdash/aws_ingest.py → eegdash-0.0.2/eegdash/script.py +8 -12
  5. eegdash-0.0.2/eegdash/signalstore_data_utils.py +630 -0
  6. {eegdash-0.0.1 → eegdash-0.0.2/eegdash.egg-info}/PKG-INFO +75 -8
  7. eegdash-0.0.2/eegdash.egg-info/SOURCES.txt +14 -0
  8. eegdash-0.0.2/eegdash.egg-info/requires.txt +1 -0
  9. {eegdash-0.0.1 → eegdash-0.0.2}/pyproject.toml +6 -3
  10. eegdash-0.0.1/EEGDash.egg-info/SOURCES.txt +0 -79
  11. eegdash-0.0.1/eegdash/SignalStore/__init__.py +0 -0
  12. eegdash-0.0.1/eegdash/SignalStore/signalstore/__init__.py +0 -3
  13. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/abstract_read_adapter.py +0 -13
  14. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/domain_modeling/schema_read_adapter.py +0 -16
  15. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/domain_modeling/vocabulary_read_adapter.py +0 -19
  16. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/handmade_records/excel_study_organizer_read_adapter.py +0 -114
  17. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/axona/axona_read_adapter.py +0 -912
  18. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/ReadIntanSpikeFile.py +0 -140
  19. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/intan_read_adapter.py +0 -29
  20. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/__init__.py +0 -0
  21. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/data_to_result.py +0 -62
  22. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/get_bytes_per_data_block.py +0 -36
  23. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/notch_filter.py +0 -50
  24. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/qstring.py +0 -41
  25. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/read_header.py +0 -135
  26. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/read_one_data_block.py +0 -45
  27. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/load_intan_rhd_format.py +0 -204
  28. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/__init__.py +0 -0
  29. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/data_to_result.py +0 -60
  30. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/get_bytes_per_data_block.py +0 -37
  31. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/notch_filter.py +0 -50
  32. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/qstring.py +0 -41
  33. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/read_header.py +0 -153
  34. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/read_one_data_block.py +0 -47
  35. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/load_intan_rhs_format.py +0 -213
  36. eegdash-0.0.1/eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/neurodata_without_borders/neurodata_without_borders_read_adapter.py +0 -14
  37. eegdash-0.0.1/eegdash/SignalStore/signalstore/operations/__init__.py +0 -4
  38. eegdash-0.0.1/eegdash/SignalStore/signalstore/operations/handler_executor.py +0 -22
  39. eegdash-0.0.1/eegdash/SignalStore/signalstore/operations/handler_factory.py +0 -41
  40. eegdash-0.0.1/eegdash/SignalStore/signalstore/operations/handlers/base_handler.py +0 -44
  41. eegdash-0.0.1/eegdash/SignalStore/signalstore/operations/handlers/domain/property_model_handlers.py +0 -79
  42. eegdash-0.0.1/eegdash/SignalStore/signalstore/operations/handlers/domain/schema_handlers.py +0 -3
  43. eegdash-0.0.1/eegdash/SignalStore/signalstore/operations/helpers/abstract_helper.py +0 -17
  44. eegdash-0.0.1/eegdash/SignalStore/signalstore/operations/helpers/neuroscikit_extractor.py +0 -33
  45. eegdash-0.0.1/eegdash/SignalStore/signalstore/operations/helpers/neuroscikit_rawio.py +0 -165
  46. eegdash-0.0.1/eegdash/SignalStore/signalstore/operations/helpers/spikeinterface_helper.py +0 -100
  47. eegdash-0.0.1/eegdash/SignalStore/signalstore/operations/helpers/wrappers/neo_wrappers.py +0 -21
  48. eegdash-0.0.1/eegdash/SignalStore/signalstore/operations/helpers/wrappers/nwb_wrappers.py +0 -27
  49. eegdash-0.0.1/eegdash/SignalStore/signalstore/store/__init__.py +0 -8
  50. eegdash-0.0.1/eegdash/SignalStore/signalstore/store/data_access_objects.py +0 -1181
  51. eegdash-0.0.1/eegdash/SignalStore/signalstore/store/datafile_adapters.py +0 -131
  52. eegdash-0.0.1/eegdash/SignalStore/signalstore/store/repositories.py +0 -928
  53. eegdash-0.0.1/eegdash/SignalStore/signalstore/store/store_errors.py +0 -68
  54. eegdash-0.0.1/eegdash/SignalStore/signalstore/store/unit_of_work.py +0 -97
  55. eegdash-0.0.1/eegdash/SignalStore/signalstore/store/unit_of_work_provider.py +0 -67
  56. eegdash-0.0.1/eegdash/SignalStore/signalstore/utilities/data_adapters/spike_interface_adapters/si_recording.py +0 -1
  57. eegdash-0.0.1/eegdash/SignalStore/signalstore/utilities/data_adapters/spike_interface_adapters/si_sorter.py +0 -1
  58. eegdash-0.0.1/eegdash/SignalStore/signalstore/utilities/testing/data_mocks.py +0 -513
  59. eegdash-0.0.1/eegdash/SignalStore/signalstore/utilities/tools/dataarrays.py +0 -49
  60. eegdash-0.0.1/eegdash/SignalStore/signalstore/utilities/tools/mongo_records.py +0 -25
  61. eegdash-0.0.1/eegdash/SignalStore/signalstore/utilities/tools/operation_response.py +0 -78
  62. eegdash-0.0.1/eegdash/SignalStore/signalstore/utilities/tools/purge_orchestration_response.py +0 -21
  63. eegdash-0.0.1/eegdash/SignalStore/signalstore/utilities/tools/quantities.py +0 -15
  64. eegdash-0.0.1/eegdash/SignalStore/signalstore/utilities/tools/strings.py +0 -38
  65. eegdash-0.0.1/eegdash/SignalStore/signalstore/utilities/tools/time.py +0 -17
  66. eegdash-0.0.1/eegdash/SignalStore/tests/conftest.py +0 -799
  67. eegdash-0.0.1/eegdash/SignalStore/tests/data/valid_data/data_arrays/make_fake_data.py +0 -59
  68. eegdash-0.0.1/eegdash/SignalStore/tests/unit/store/conftest.py +0 -0
  69. eegdash-0.0.1/eegdash/SignalStore/tests/unit/store/test_data_access_objects.py +0 -1235
  70. eegdash-0.0.1/eegdash/SignalStore/tests/unit/store/test_repositories.py +0 -1309
  71. eegdash-0.0.1/eegdash/SignalStore/tests/unit/store/test_unit_of_work.py +0 -7
  72. eegdash-0.0.1/eegdash/SignalStore/tests/unit/test_ci_cd.py +0 -8
  73. eegdash-0.0.1/eegdash/signalstore_data_utils.py +0 -280
  74. {eegdash-0.0.1 → eegdash-0.0.2}/LICENSE +0 -0
  75. {eegdash-0.0.1 → eegdash-0.0.2}/eegdash/__init__.py +0 -0
  76. {eegdash-0.0.1 → eegdash-0.0.2}/eegdash/main.py +0 -0
  77. {eegdash-0.0.1/EEGDash.egg-info → eegdash-0.0.2/eegdash.egg-info}/dependency_links.txt +0 -0
  78. {eegdash-0.0.1/EEGDash.egg-info → eegdash-0.0.2/eegdash.egg-info}/top_level.txt +0 -0
  79. {eegdash-0.0.1 → eegdash-0.0.2}/setup.cfg +0 -0
  80. {eegdash-0.0.1 → eegdash-0.0.2}/tests/__init__.py +0 -0
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.2
2
2
  Name: eegdash
3
- Version: 0.0.1
3
+ Version: 0.0.2
4
4
  Summary: EEG data for machine learning
5
5
  Author-email: Young Truong <dt.young112@gmail.com>, Arnaud Delorme <adelorme@gmail.com>
6
6
  License: GNU General Public License
@@ -32,12 +32,24 @@ Classifier: Operating System :: OS Independent
32
32
  Requires-Python: >=3.8
33
33
  Description-Content-Type: text/markdown
34
34
  License-File: LICENSE
35
+ Requires-Dist: signalstore
35
36
 
36
37
  # EEG-Dash
37
38
  To leverage recent and ongoing advancements in large-scale computational methods and to ensure the preservation of scientific data generated from publicly funded research, the EEG-DaSh data archive will create a data-sharing resource for MEEG (EEG, MEG) data contributed by collaborators for machine learning (ML) and deep learning (DL) applications.
38
39
 
39
40
  ## Data source
40
- The data in EEG-DaSh originates from a collaboration involving 25 laboratories, encompassing 27,053 participants. This extensive collection includes MEEG data, which is a combination of EEG and MEG signals. The data is sourced from various studies conducted by these labs, involving both healthy subjects and clinical populations with conditions such as ADHD, depression, schizophrenia, dementia, autism, and psychosis. Additionally, data spans different mental states like sleep, meditation, and cognitive tasks. In addition, EEG-DaSh will also incorporate data converted from NEMAR, which includes a subset of the 330 MEEG BIDS-formatted datasets available on OpenNeuro, further expanding the archive with well-curated, standardized neuroelectromagnetic data.
41
+ The data in EEG-DaSh originates from a collaboration involving 25 laboratories, encompassing 27,053 participants. This extensive collection includes MEEG data, which is a combination of EEG and MEG signals. The data is sourced from various studies conducted by these labs, involving both healthy subjects and clinical populations with conditions such as ADHD, depression, schizophrenia, dementia, autism, and psychosis. Additionally, data spans different mental states like sleep, meditation, and cognitive tasks. In addition, EEG-DaSh will also incorporate a subset of the data converted from NEMAR, which includes 330 MEEG BIDS-formatted datasets, further expanding the archive with well-curated, standardized neuroelectromagnetic data.
42
+
43
+ ## Datasets available
44
+
45
+ There are currently only two datasets made available for testing purposes.
46
+
47
+ | Dataset ID | Description | Participants | Channels | Task | NEMAR Link |
48
+ |------------|---------------------------------------------------------------------------------------------|--------------|-----------------|-----------------|------------------------------------------------------------------------------------------------|
49
+ | ds002718 | EEG dataset focused on face processing with MRI for source localization | 18 | 70 EEG, 2 EOG | FaceRecognition | [NEMAR ds002718](https://nemar.org/dataexplorer/detail?dataset_id=ds002718) |
50
+ | ds004745 | 8-Channel SSVEP EEG dataset with trials including voluntary movements to introduce artifacts | 6 | 8 EEG | SSVEP tasks | [NEMAR ds004745](https://nemar.org/dataexplorer/detail?dataset_id=ds004745) |
51
+
52
+
41
53
 
42
54
  ## Data formatting
43
55
  The data in EEG-DaSh is formatted to facilitate machine learning (ML) and deep learning (DL) applications by using a simplified structure commonly adopted by these communities. This will involve converting raw MEEG data into a matrix format, where samples (e.g., individual EEG or MEG recordings) are represented by rows, and values (such as time or channel data) are represented by columns. The data is also divided into training and testing sets, with 80% of the data allocated for training and 20% for testing, ensuring a balanced representation of relevant labels across sets. Hierarchical Event Descriptor (HED) tags will be used to annotate labels, which will be stored in a text table, and detailed metadata, including dataset origins and methods. This formatting process will ensure that data is ready for ML/DL models, allowing for efficient training and testing of algorithms while preserving data integrity and reusability.
@@ -49,15 +61,70 @@ The data in EEG-DaSh is formatted to facilitate machine learning (ML) and deep l
49
61
 
50
62
  The data in EEG-DaSh is accessed through Python and MATLAB libraries specifically designed for this platform. These libraries will use objects compatible with deep learning data storage formats in each language, such as <i>Torchvision.dataset</i> in Python and <i>DataStore</i> in MATLAB. Users can dynamically fetch data from the EEG-DaSh server which is then cached locally.
51
63
 
52
- ### AWS S3
64
+ ### Install
65
+ Use your preferred Python environment manager with Python > 3.9 to install the package. Here we show example using Conda environment with Python 3.11.5:
66
+ * Create a new environment Python 3.11.5 -> `conda create --name eegdash python=3.11.5`
67
+ * Switch to the right environment -> `conda activate eegdash`
68
+ * Install dependencies (this is a temporary link that will be updated soon) -> `pip install -r https://raw.githubusercontent.com/sccn/EEG-Dash-Data/refs/heads/develop/requirements.txt`
69
+ * Install _eegdash_ package (this is a temporary link that will be updated soon) -> `pip install -i https://test.pypi.org/simple/ eegdash`
70
+ * Check installation. Start a Python session and type `from eegdash import EEGDash`
71
+
72
+ ### Python data access
73
+
74
+ To create a local object for accessing the database, use the following code:
75
+
76
+ ```python
77
+ from eegdash import EEGDash
78
+ EEGDashInstance = EEGDash()
79
+ ```
80
+
81
+ Once the object is instantiated, it can be utilized to search datasets. Providing an empty parameter will search the entire database and return all available datasets.
82
+
83
+ ```python
84
+ EEGDashInstance.find({})
85
+ ```
86
+ A list of dataset is returned.
87
+
88
+ ```python
89
+ [{'schema_ref': 'eeg_signal',
90
+ 'data_name': 'ds004745_sub-001_task-unnamed_eeg.set',
91
+ 'dataset': 'ds004745',
92
+ 'subject': '001',
93
+ 'task': 'unnamed',
94
+ 'session': '',
95
+ 'run': '',
96
+ 'modality': 'EEG',
97
+ 'sampling_frequency': 1000,
98
+ 'version_timestamp': 0,
99
+ 'has_file': True,
100
+ 'time_of_save': datetime.datetime(2024, 10, 25, 14, 11, 48, 843593, tzinfo=datetime.timezone.utc),
101
+ 'time_of_removal': None}, ...
102
+
103
+ ```
104
+
105
+ Additionally, users can search for a specific dataset by specifying criteria.
106
+
107
+ ```python
108
+ EEGDashInstance.find({'task': 'FaceRecognition'})
109
+ ```
110
+
111
+ After locating the desired dataset or data record, users can download it locally by executing the following command:
112
+
113
+ ```python
114
+ EEGDashInstance.get({'task': 'FaceRecognition', 'subject': '019'})
115
+ ```
116
+
117
+ Optionally, this is how you may access the raw data for the first record.
53
118
 
54
- Coming soon...
119
+ ```python
120
+ EEGDashInstance.get({'task': 'FaceRecognition', 'subject': '019'})[0].values
121
+ ```
55
122
 
56
- ### EEG-Dash API
123
+ ## Example use
57
124
 
58
- Coming soon...
125
+ This [example](tests/eegdash.ipynb) demonstrates the full workflow from data retrieval with `EEGDash` to model definition, data handling, and training in PyTorch.
59
126
 
60
- ## Education
127
+ ## Education - Coming soon...
61
128
 
62
129
  We organize workshops and educational events to foster cross-cultural education and student training, offering both online and in-person opportunities in collaboration with US and Israeli partners. There is no event planned for 2024. Events for 2025 will be advertised on the EEGLABNEWS mailing list so make sure to [subscribe](https://sccn.ucsd.edu/mailman/listinfo/eeglabnews).
63
130
 
@@ -2,7 +2,18 @@
2
2
  To leverage recent and ongoing advancements in large-scale computational methods and to ensure the preservation of scientific data generated from publicly funded research, the EEG-DaSh data archive will create a data-sharing resource for MEEG (EEG, MEG) data contributed by collaborators for machine learning (ML) and deep learning (DL) applications.
3
3
 
4
4
  ## Data source
5
- The data in EEG-DaSh originates from a collaboration involving 25 laboratories, encompassing 27,053 participants. This extensive collection includes MEEG data, which is a combination of EEG and MEG signals. The data is sourced from various studies conducted by these labs, involving both healthy subjects and clinical populations with conditions such as ADHD, depression, schizophrenia, dementia, autism, and psychosis. Additionally, data spans different mental states like sleep, meditation, and cognitive tasks. In addition, EEG-DaSh will also incorporate data converted from NEMAR, which includes a subset of the 330 MEEG BIDS-formatted datasets available on OpenNeuro, further expanding the archive with well-curated, standardized neuroelectromagnetic data.
5
+ The data in EEG-DaSh originates from a collaboration involving 25 laboratories, encompassing 27,053 participants. This extensive collection includes MEEG data, which is a combination of EEG and MEG signals. The data is sourced from various studies conducted by these labs, involving both healthy subjects and clinical populations with conditions such as ADHD, depression, schizophrenia, dementia, autism, and psychosis. Additionally, data spans different mental states like sleep, meditation, and cognitive tasks. In addition, EEG-DaSh will also incorporate a subset of the data converted from NEMAR, which includes 330 MEEG BIDS-formatted datasets, further expanding the archive with well-curated, standardized neuroelectromagnetic data.
6
+
7
+ ## Datasets available
8
+
9
+ There are currently only two datasets made available for testing purposes.
10
+
11
+ | Dataset ID | Description | Participants | Channels | Task | NEMAR Link |
12
+ |------------|---------------------------------------------------------------------------------------------|--------------|-----------------|-----------------|------------------------------------------------------------------------------------------------|
13
+ | ds002718 | EEG dataset focused on face processing with MRI for source localization | 18 | 70 EEG, 2 EOG | FaceRecognition | [NEMAR ds002718](https://nemar.org/dataexplorer/detail?dataset_id=ds002718) |
14
+ | ds004745 | 8-Channel SSVEP EEG dataset with trials including voluntary movements to introduce artifacts | 6 | 8 EEG | SSVEP tasks | [NEMAR ds004745](https://nemar.org/dataexplorer/detail?dataset_id=ds004745) |
15
+
16
+
6
17
 
7
18
  ## Data formatting
8
19
  The data in EEG-DaSh is formatted to facilitate machine learning (ML) and deep learning (DL) applications by using a simplified structure commonly adopted by these communities. This will involve converting raw MEEG data into a matrix format, where samples (e.g., individual EEG or MEG recordings) are represented by rows, and values (such as time or channel data) are represented by columns. The data is also divided into training and testing sets, with 80% of the data allocated for training and 20% for testing, ensuring a balanced representation of relevant labels across sets. Hierarchical Event Descriptor (HED) tags will be used to annotate labels, which will be stored in a text table, and detailed metadata, including dataset origins and methods. This formatting process will ensure that data is ready for ML/DL models, allowing for efficient training and testing of algorithms while preserving data integrity and reusability.
@@ -14,15 +25,70 @@ The data in EEG-DaSh is formatted to facilitate machine learning (ML) and deep l
14
25
 
15
26
  The data in EEG-DaSh is accessed through Python and MATLAB libraries specifically designed for this platform. These libraries will use objects compatible with deep learning data storage formats in each language, such as <i>Torchvision.dataset</i> in Python and <i>DataStore</i> in MATLAB. Users can dynamically fetch data from the EEG-DaSh server which is then cached locally.
16
27
 
17
- ### AWS S3
28
+ ### Install
29
+ Use your preferred Python environment manager with Python > 3.9 to install the package. Here we show example using Conda environment with Python 3.11.5:
30
+ * Create a new environment Python 3.11.5 -> `conda create --name eegdash python=3.11.5`
31
+ * Switch to the right environment -> `conda activate eegdash`
32
+ * Install dependencies (this is a temporary link that will be updated soon) -> `pip install -r https://raw.githubusercontent.com/sccn/EEG-Dash-Data/refs/heads/develop/requirements.txt`
33
+ * Install _eegdash_ package (this is a temporary link that will be updated soon) -> `pip install -i https://test.pypi.org/simple/ eegdash`
34
+ * Check installation. Start a Python session and type `from eegdash import EEGDash`
35
+
36
+ ### Python data access
37
+
38
+ To create a local object for accessing the database, use the following code:
39
+
40
+ ```python
41
+ from eegdash import EEGDash
42
+ EEGDashInstance = EEGDash()
43
+ ```
44
+
45
+ Once the object is instantiated, it can be utilized to search datasets. Providing an empty parameter will search the entire database and return all available datasets.
46
+
47
+ ```python
48
+ EEGDashInstance.find({})
49
+ ```
50
+ A list of dataset is returned.
51
+
52
+ ```python
53
+ [{'schema_ref': 'eeg_signal',
54
+ 'data_name': 'ds004745_sub-001_task-unnamed_eeg.set',
55
+ 'dataset': 'ds004745',
56
+ 'subject': '001',
57
+ 'task': 'unnamed',
58
+ 'session': '',
59
+ 'run': '',
60
+ 'modality': 'EEG',
61
+ 'sampling_frequency': 1000,
62
+ 'version_timestamp': 0,
63
+ 'has_file': True,
64
+ 'time_of_save': datetime.datetime(2024, 10, 25, 14, 11, 48, 843593, tzinfo=datetime.timezone.utc),
65
+ 'time_of_removal': None}, ...
66
+
67
+ ```
68
+
69
+ Additionally, users can search for a specific dataset by specifying criteria.
70
+
71
+ ```python
72
+ EEGDashInstance.find({'task': 'FaceRecognition'})
73
+ ```
74
+
75
+ After locating the desired dataset or data record, users can download it locally by executing the following command:
76
+
77
+ ```python
78
+ EEGDashInstance.get({'task': 'FaceRecognition', 'subject': '019'})
79
+ ```
80
+
81
+ Optionally, this is how you may access the raw data for the first record.
18
82
 
19
- Coming soon...
83
+ ```python
84
+ EEGDashInstance.get({'task': 'FaceRecognition', 'subject': '019'})[0].values
85
+ ```
20
86
 
21
- ### EEG-Dash API
87
+ ## Example use
22
88
 
23
- Coming soon...
89
+ This [example](tests/eegdash.ipynb) demonstrates the full workflow from data retrieval with `EEGDash` to model definition, data handling, and training in PyTorch.
24
90
 
25
- ## Education
91
+ ## Education - Coming soon...
26
92
 
27
93
  We organize workshops and educational events to foster cross-cultural education and student training, offering both online and in-person opportunities in collaboration with US and Israeli partners. There is no event planned for 2024. Events for 2025 will be advertised on the EEGLABNEWS mailing list so make sure to [subscribe](https://sccn.ucsd.edu/mailman/listinfo/eeglabnews).
28
94
 
@@ -44,7 +44,11 @@ class BIDSDataset():
44
44
  self.files = np.load(temp_dir / f'{dataset}_files.npy', allow_pickle=True)
45
45
 
46
46
  def get_property_from_filename(self, property, filename):
47
- lookup = re.search(rf'{property}-(.*?)[_\/]', filename)
47
+ import platform
48
+ if platform.system() == "Windows":
49
+ lookup = re.search(rf'{property}-(.*?)[_\\]', filename)
50
+ else:
51
+ lookup = re.search(rf'{property}-(.*?)[_\/]', filename)
48
52
  return lookup.group(1) if lookup else ''
49
53
 
50
54
  def get_bids_file_inheritance(self, path, basename, extension):
@@ -1,15 +1,5 @@
1
- import sys
2
- sys.path.append('..')
3
1
  import argparse
4
- from src.signalstore_data_utils import SignalstoreBIDS
5
-
6
- def add_bids_dataset(args):
7
- signalstore_aws = SignalstoreBIDS(
8
- dbconnectionstring='mongodb://23.21.113.214:27017/?directConnection=true&serverSelectionTimeoutMS=2000&appName=mongosh+2.2.1',
9
- local_filesystem=False,
10
- project_name='eegdash',
11
- )
12
- signalstore_aws.add_bids_dataset(dataset=args.dataset, data_dir=args.data, raw_format='eeglab')
2
+ from signalstore_data_utils import SignalstoreOpenneuro
13
3
 
14
4
  def main():
15
5
  # Create the parser
@@ -23,7 +13,13 @@ def main():
23
13
  args = parser.parse_args()
24
14
  print('Arguments:', args)
25
15
 
26
- add_bids_dataset(args)
16
+ signalstore = SignalstoreOpenneuro(
17
+ is_public=False,
18
+ local_filesystem=False,
19
+ )
20
+ hbn_datasets = ['ds005505', 'ds005510', 'ds005514','ds005512','ds005511','ds005509','ds005508','ds005507','ds005506']
21
+ for ds in hbn_datasets:
22
+ signalstore.add_bids_dataset(dataset=ds, data_dir=f'/mnt/nemar/openneuro/{ds}', raw_format='eeglab')
27
23
 
28
24
  if __name__ == "__main__":
29
25
  main()