edb-noumea 0.2.7__tar.gz → 0.2.9__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: edb-noumea
3
- Version: 0.2.7
3
+ Version: 0.2.9
4
4
  Summary: Un scraper pour la qualité des eaux de baignade à Nouméa.
5
5
  Project-URL: Homepage, https://github.com/adriens/edb-noumea
6
6
  Project-URL: Repository, https://github.com/adriens/edb-noumea
@@ -90,30 +90,48 @@ def get_detailed_results():
90
90
 
91
91
  print(f"✅ {len(tables)} tableau(x) trouvé(s). Affichage du premier.")
92
92
  df = tables[0]
93
-
94
- # --- Nettoyage du DataFrame ---
95
- columns_to_keep = {
96
- df.columns[0]: "site",
97
- df.columns[1]: "point_de_prelevement",
98
- df.columns[2]: "date",
99
- df.columns[4]: "heure",
100
- df.columns[6]: "e_coli_npp_100ml",
101
- df.columns[9]: "enterocoques_npp_100ml"
93
+ print("\n--- Aperçu du tableau extrait (toutes colonnes) ---")
94
+ with pd.option_context('display.max_columns', None):
95
+ print(df)
96
+ print("\nColonnes:", list(df.columns))
97
+ print("Shape:", df.shape)
98
+
99
+ # Sélectionne et renomme les colonnes demandées
100
+ columns_map = {
101
+ 'Unnamed: 0': 'Nom du site de baignade',
102
+ 'Unnamed: 1': 'Point de prélèvement',
103
+ 'Unnamed: 2': 'Date du prélèvement',
104
+ 'Unnamed: 3': 'Heure du prélèvement',
105
+ 'Escherichia': 'Escherichia coli (NPP/100ml)',
106
+ 'Entérocoques': 'Entérocoques intestinaux (NPP/100ml)'
102
107
  }
103
- cleaned_df = df[columns_to_keep.keys()].copy()
104
- cleaned_df.rename(columns=columns_to_keep, inplace=True)
105
- cleaned_df.replace({'<10': 0}, inplace=True)
106
- cleaned_df['e_coli_npp_100ml'] = pd.to_numeric(cleaned_df['e_coli_npp_100ml'], errors='coerce')
107
- cleaned_df['enterocoques_npp_100ml'] = pd.to_numeric(cleaned_df['enterocoques_npp_100ml'], errors='coerce')
108
- cleaned_df.fillna(0, inplace=True)
109
-
110
- # Split de la colonne point_de_prelevement
111
- split_points = cleaned_df['point_de_prelevement'].str.split(',', n=1, expand=True)
112
- cleaned_df['id_point_prelevement'] = split_points[0].str.strip()
113
- cleaned_df['desc_point_prelevement'] = split_points[1].str.strip() if split_points.shape[1] > 1 else ''
114
-
115
- # Conversion explicite de la colonne 'date' en type date Python
116
- cleaned_df['date'] = pd.to_datetime(cleaned_df['date'], format='%d/%m/%Y', errors='coerce').dt.date
108
+ cleaned_df = df[list(columns_map.keys())].rename(columns=columns_map)
109
+ # Supprime la première ligne (ligne d'en-tête du PDF)
110
+ cleaned_df = cleaned_df.iloc[1:].reset_index(drop=True)
111
+ # Renomme les colonnes pour correspondre au style Python
112
+ cleaned_df = cleaned_df.rename(columns={
113
+ "Nom du site de baignade": "site",
114
+ "Point de prélèvement": "point_de_prelevement",
115
+ "Date du prélèvement": "date",
116
+ "Heure du prélèvement": "heure",
117
+ "Escherichia coli (NPP/100ml)": "e_coli_npp_100ml",
118
+ "Entérocoques intestinaux (NPP/100ml)": "enterocoques_npp_100ml"
119
+ })
120
+
121
+ # Ajoute deux colonnes issues du split de 'point_de_prelevement'
122
+ split_points = cleaned_df["point_de_prelevement"].str.split(",", n=1, expand=True)
123
+ cleaned_df["id_point_prelevement"] = split_points[0].str.strip()
124
+ cleaned_df["desc_point_prelevement"] = split_points[1].str.strip() if split_points.shape[1] > 1 else ""
125
+
126
+ # S'assurer que la colonne 'heure' est bien présente et de type string
127
+ if "heure" in cleaned_df.columns:
128
+ cleaned_df["heure"] = cleaned_df["heure"].astype(str)
129
+
130
+ # Nettoyer et convertir les colonnes e_coli_npp_100ml et enterocoques_npp_100ml
131
+ for col in ["e_coli_npp_100ml", "enterocoques_npp_100ml"]:
132
+ if col in cleaned_df.columns:
133
+ cleaned_df[col] = cleaned_df[col].replace(r"<\s*10", "10", regex=True)
134
+ cleaned_df[col] = pd.to_numeric(cleaned_df[col], errors="coerce").astype('Int64')
117
135
 
118
136
  return cleaned_df
119
137
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: edb-noumea
3
- Version: 0.2.7
3
+ Version: 0.2.9
4
4
  Summary: Un scraper pour la qualité des eaux de baignade à Nouméa.
5
5
  Project-URL: Homepage, https://github.com/adriens/edb-noumea
6
6
  Project-URL: Repository, https://github.com/adriens/edb-noumea
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "edb-noumea"
3
- version = "0.2.7"
3
+ version = "0.2.9"
4
4
  description = "Un scraper pour la qualité des eaux de baignade à Nouméa."
5
5
  dependencies = [
6
6
  "requests",
File without changes
File without changes