edb-noumea 0.2.11__tar.gz → 0.2.13__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: edb-noumea
3
- Version: 0.2.11
3
+ Version: 0.2.13
4
4
  Summary: Un scraper pour la qualité des eaux de baignade à Nouméa.
5
5
  Project-URL: Homepage, https://github.com/adriens/edb-noumea
6
6
  Project-URL: Repository, https://github.com/adriens/edb-noumea
@@ -96,8 +96,19 @@ def get_detailed_results():
96
96
  print("\nColonnes:", list(df.columns))
97
97
  print("Shape:", df.shape)
98
98
 
99
- # Sélectionne les colonnes par position et applique le mapping fixe
100
- expected_columns = [
99
+ # Sélection dynamique des colonnes bactéries par nom
100
+ # Recherche des colonnes contenant les mots-clés
101
+ e_coli_col = next((col for col in df.columns if "Escherichia" in str(col) or "coli" in str(col)), None)
102
+ entero_col = next((col for col in df.columns if "Entérocoques" in str(col)), None)
103
+
104
+ if e_coli_col is None or entero_col is None:
105
+ print(f"❌ Colonnes bactéries non trouvées dans le tableau extrait. Colonnes disponibles : {list(df.columns)}")
106
+ return None
107
+
108
+ # Sélectionne les 4 premières colonnes + colonnes bactéries trouvées
109
+ selected_cols = [df.columns[0], df.columns[1], df.columns[2], df.columns[4], e_coli_col, entero_col]
110
+ cleaned_df = df.loc[:, selected_cols].copy()
111
+ cleaned_df.columns = [
101
112
  "site",
102
113
  "point_de_prelevement",
103
114
  "date",
@@ -105,8 +116,6 @@ def get_detailed_results():
105
116
  "e_coli_npp_100ml",
106
117
  "enterocoques_npp_100ml"
107
118
  ]
108
- cleaned_df = df.iloc[:, :6].copy()
109
- cleaned_df.columns = expected_columns
110
119
 
111
120
  # Ajoute deux colonnes issues du split de 'point_de_prelevement'
112
121
  split_points = cleaned_df["point_de_prelevement"].str.split(",", n=1, expand=True)
@@ -117,11 +126,19 @@ def get_detailed_results():
117
126
  if "heure" in cleaned_df.columns:
118
127
  cleaned_df["heure"] = cleaned_df["heure"].astype(str)
119
128
 
129
+
120
130
  # Nettoyer et convertir les colonnes e_coli_npp_100ml et enterocoques_npp_100ml
121
- for col in ["e_coli_npp_100ml", "enterocoques_npp_100ml"]:
122
- if col in cleaned_df.columns:
123
- cleaned_df[col] = cleaned_df[col].astype(str).str.replace(r"<\s*10", "10", regex=True)
124
- cleaned_df[col] = pd.to_numeric(cleaned_df[col], errors="coerce").astype('Int64')
131
+ if "e_coli_npp_100ml" in cleaned_df.columns:
132
+ cleaned_df["e_coli_npp_100ml"] = cleaned_df["e_coli_npp_100ml"].astype(str).str.replace(r"<\s*10", "10", regex=True)
133
+ cleaned_df["e_coli_npp_100ml"] = pd.to_numeric(cleaned_df["e_coli_npp_100ml"], errors="coerce").astype('Int64')
134
+
135
+ if "enterocoques_npp_100ml" in cleaned_df.columns:
136
+ cleaned_df["enterocoques_npp_100ml"] = cleaned_df["enterocoques_npp_100ml"].astype(str).str.replace(r"<\s*10", "10", regex=True)
137
+ cleaned_df["enterocoques_npp_100ml"] = pd.to_numeric(cleaned_df["enterocoques_npp_100ml"], errors="coerce").astype('Int64')
138
+
139
+ # Convertir la colonne 'date' en datetime (format jour/mois/année)
140
+ if "date" in cleaned_df.columns:
141
+ cleaned_df["date"] = pd.to_datetime(cleaned_df["date"], format="%d/%m/%Y", errors="coerce")
125
142
 
126
143
  return cleaned_df
127
144
 
@@ -129,9 +146,12 @@ if __name__ == "__main__":
129
146
  # Obtenir le DataFrame des résultats détaillés
130
147
  detailed_df = get_detailed_results()
131
148
 
132
- # Afficher le DataFrame s'il a été créé avec succès
149
+ # Afficher seulement les colonnes demandées
133
150
  if detailed_df is not None:
134
- print("\n📋 Voici les détails des derniers relevés (toutes colonnes) :")
135
- print(detailed_df)
136
- print("\nColonnes du DataFrame :")
137
- print(list(detailed_df.columns))
151
+ print("\n📋 Détails synthétiques :")
152
+ print(detailed_df[[
153
+ "point_de_prelevement",
154
+ "date",
155
+ "e_coli_npp_100ml",
156
+ "enterocoques_npp_100ml"
157
+ ]])
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: edb-noumea
3
- Version: 0.2.11
3
+ Version: 0.2.13
4
4
  Summary: Un scraper pour la qualité des eaux de baignade à Nouméa.
5
5
  Project-URL: Homepage, https://github.com/adriens/edb-noumea
6
6
  Project-URL: Repository, https://github.com/adriens/edb-noumea
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "edb-noumea"
3
- version = "0.2.11"
3
+ version = "0.2.13"
4
4
  description = "Un scraper pour la qualité des eaux de baignade à Nouméa."
5
5
  dependencies = [
6
6
  "requests",
File without changes
File without changes