dycw-utilities 0.109.14__tar.gz → 0.109.16__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/PKG-INFO +1 -1
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/pyproject.toml +2 -2
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_numpy.py +31 -0
- dycw_utilities-0.109.16/src/tests/test_polars_ols.py +114 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/__init__.py +1 -1
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/numpy.py +48 -2
- dycw_utilities-0.109.16/src/utilities/polars_ols.py +171 -0
- dycw_utilities-0.109.14/src/tests/test_polars_ols.py +0 -103
- dycw_utilities-0.109.14/src/utilities/polars_ols.py +0 -71
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/.gitignore +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/LICENSE +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/README.md +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/__init__.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/conftest.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/modules/__init__.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/modules/package_missing/__init__.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/modules/package_missing/module.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/modules/package_with/__init__.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/modules/package_with/outer_1.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/modules/package_with/outer_2.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/modules/package_with/subpackage/__init__.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/modules/package_with/subpackage/inner_1.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/modules/package_with/subpackage/inner_2.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/modules/package_with/subpackage/inner_3.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/modules/package_without/__init__.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/modules/package_without/module_1.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/modules/package_without/module_2.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/modules/standalone.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/modules/with_imports.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/regressions/test_pytest_regressions/TestMultipleRegressionFixtures__test_main__obj.json +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/regressions/test_pytest_regressions/TestMultipleRegressionFixtures__test_main__series.json +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/regressions/test_pytest_regressions/TestOrjsonRegressionFixture__test_dataclass_int.json +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/regressions/test_pytest_regressions/TestOrjsonRegressionFixture__test_dataclass_literal__false.json +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/regressions/test_pytest_regressions/TestOrjsonRegressionFixture__test_dataclass_literal__true.json +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/regressions/test_pytest_regressions/TestOrjsonRegressionFixture__test_dataclass_nested.json +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/regressions/test_pytest_regressions/TestPolarsRegressionFixture__test_dataframe.json +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/regressions/test_pytest_regressions/TestPolarsRegressionFixture__test_series.json +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/scripts/__init__.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/scripts/test_async_service/__init__.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/scripts/test_async_service/__main__.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/scripts/test_async_service/run.sh +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/scripts/test_queue_processor/__init__.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/scripts/test_queue_processor/__main__.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/scripts/test_queue_processor/run.sh +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_altair.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_astor.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_asyncio.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_atomicwrites.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_atools.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_cachetools.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_click.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_concurrent.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_contextlib.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_contextvars.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_cryptography.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_cvxpy.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_dataclasses.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_datetime.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_enum.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_errors.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_eventkit.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_fastapi.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_fpdf2.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_functions.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_functools.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_getpass.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_git.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_hashlib.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_http.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_hypothesis.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_ipython.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_iterables.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_jupyter.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_lightweight_charts.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_logging.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_loguru.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_luigi.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_math.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_memory_profiler.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_modules.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_more_itertools.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_operator.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_optuna.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_orjson.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_os.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_parse.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_pathlib.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_period.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_pickle.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_platform.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_polars.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_pqdm.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_pydantic.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_pyinstrument.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_pyrsistent.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_pytest.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_pytest_regressions.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_python_dotenv.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_random.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_re.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_redis.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_reprlib.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_rich.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_scipy.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_sentinel.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_shelve.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_slack_sdk.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_socket.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_sqlalchemy.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_sqlalchemy_polars.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_streamlit.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_sys.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_tempfile.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_tenacity.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_text.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_threading.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_timer.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_traceback.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_traceback_funcs/__init__.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_traceback_funcs/chain.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_traceback_funcs/decorated_async.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_traceback_funcs/decorated_sync.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_traceback_funcs/error_bind.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_traceback_funcs/many.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_traceback_funcs/one.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_traceback_funcs/recursive.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_traceback_funcs/task_group_one.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_traceback_funcs/task_group_two.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_traceback_funcs/two.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_traceback_funcs/untraced.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_types.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_typing.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_typing_funcs/__init__.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_typing_funcs/no_future.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_typing_funcs/with_future.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_tzdata.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_tzlocal.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_uuid.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_version.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_warnings.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_whenever.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_zipfile.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/test_zoneinfo.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/altair.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/astor.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/asyncio.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/atomicwrites.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/atools.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/cachetools.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/click.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/concurrent.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/contextlib.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/contextvars.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/cryptography.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/cvxpy.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/dataclasses.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/datetime.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/enum.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/errors.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/eventkit.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/fastapi.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/fpdf2.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/functions.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/functools.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/getpass.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/git.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/hashlib.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/http.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/hypothesis.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/ipython.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/iterables.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/jupyter.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/lightweight_charts.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/logging.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/loguru.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/luigi.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/math.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/memory_profiler.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/modules.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/more_itertools.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/operator.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/optuna.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/orjson.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/os.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/parse.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/pathlib.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/period.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/pickle.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/platform.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/polars.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/pqdm.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/py.typed +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/pydantic.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/pyinstrument.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/pyrsistent.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/pytest.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/pytest_regressions.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/python_dotenv.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/random.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/re.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/redis.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/reprlib.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/rich.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/scipy.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/sentinel.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/shelve.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/slack_sdk.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/socket.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/sqlalchemy.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/sqlalchemy_polars.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/streamlit.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/sys.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/tempfile.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/tenacity.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/text.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/threading.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/timer.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/traceback.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/types.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/typing.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/tzdata.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/tzlocal.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/uuid.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/version.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/warnings.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/whenever.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/zipfile.py +0 -0
- {dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/utilities/zoneinfo.py +0 -0
@@ -92,7 +92,7 @@ dependencies = [
|
|
92
92
|
name = "dycw-utilities"
|
93
93
|
readme = "README.md"
|
94
94
|
requires-python = ">= 3.12"
|
95
|
-
version = "0.109.
|
95
|
+
version = "0.109.16"
|
96
96
|
|
97
97
|
[project.optional-dependencies]
|
98
98
|
test = [
|
@@ -335,7 +335,7 @@ zzz-test-zoneinfo = [
|
|
335
335
|
# bump-my-version
|
336
336
|
[tool.bumpversion]
|
337
337
|
allow_dirty = true
|
338
|
-
current_version = "0.109.
|
338
|
+
current_version = "0.109.16"
|
339
339
|
|
340
340
|
[[tool.bumpversion.files]]
|
341
341
|
filename = "src/utilities/__init__.py"
|
@@ -3,6 +3,7 @@ from __future__ import annotations
|
|
3
3
|
from re import escape
|
4
4
|
from typing import TYPE_CHECKING, Any, Literal
|
5
5
|
|
6
|
+
import numpy as np
|
6
7
|
from hypothesis import assume, given
|
7
8
|
from hypothesis.strategies import DataObject, data, floats, integers, none
|
8
9
|
from numpy import (
|
@@ -12,13 +13,16 @@ from numpy import (
|
|
12
13
|
full,
|
13
14
|
inf,
|
14
15
|
isclose,
|
16
|
+
linspace,
|
15
17
|
median,
|
16
18
|
nan,
|
17
19
|
ndarray,
|
18
20
|
ones,
|
21
|
+
pi,
|
19
22
|
zeros,
|
20
23
|
zeros_like,
|
21
24
|
)
|
25
|
+
from numpy.fft import fft, fftfreq
|
22
26
|
from numpy.random import Generator
|
23
27
|
from numpy.testing import assert_equal
|
24
28
|
from pytest import mark, param, raises
|
@@ -36,7 +40,9 @@ from utilities.numpy import (
|
|
36
40
|
as_int,
|
37
41
|
discretize,
|
38
42
|
fillna,
|
43
|
+
filter_frequencies,
|
39
44
|
flatn0,
|
45
|
+
get_frequency_spectrum,
|
40
46
|
has_dtype,
|
41
47
|
is_at_least,
|
42
48
|
is_at_least_or_nan,
|
@@ -268,6 +274,19 @@ class TestFillNa:
|
|
268
274
|
assert_equal(result, expected)
|
269
275
|
|
270
276
|
|
277
|
+
class TestFilterFrequencies:
|
278
|
+
def test_main(self) -> None:
|
279
|
+
n = 1000
|
280
|
+
x = linspace(0, 2 * pi, n)
|
281
|
+
noise = DEFAULT_RNG.normal(scale=0.25, size=n)
|
282
|
+
y = x + noise
|
283
|
+
result = filter_frequencies(y, lambda f: np.abs(f) <= 0.02)
|
284
|
+
assert result.shape == (n,)
|
285
|
+
fft_vals = fft(result)
|
286
|
+
freqs = fftfreq(n)
|
287
|
+
assert np.allclose(fft_vals[np.abs(freqs) > 0.02], 0.0)
|
288
|
+
|
289
|
+
|
271
290
|
class TestFlatN0:
|
272
291
|
@given(data=data(), n=integers(1, 10))
|
273
292
|
def test_main(self, *, data: DataObject, n: int) -> None:
|
@@ -288,6 +307,18 @@ class TestFlatN0:
|
|
288
307
|
_ = flatn0(ones(2, dtype=bool))
|
289
308
|
|
290
309
|
|
310
|
+
class TestGetFrequencySpectrum:
|
311
|
+
def test_main(self) -> None:
|
312
|
+
n = 1000
|
313
|
+
x = linspace(0, 2 * pi, n)
|
314
|
+
noise = DEFAULT_RNG.normal(scale=0.25, size=n)
|
315
|
+
y = x + noise
|
316
|
+
y2 = filter_frequencies(y, lambda f: np.abs(f) <= 0.02)
|
317
|
+
result = get_frequency_spectrum(y2)
|
318
|
+
assert result.shape == (n, 2)
|
319
|
+
assert np.allclose(result[result[:, 0] > 0.02, 1], 0.0)
|
320
|
+
|
321
|
+
|
291
322
|
class TestHasDtype:
|
292
323
|
@mark.parametrize(("dtype", "expected"), [param(float, True), param(int, False)])
|
293
324
|
@mark.parametrize("is_tuple", [param(True), param(False)])
|
@@ -0,0 +1,114 @@
|
|
1
|
+
from __future__ import annotations
|
2
|
+
|
3
|
+
from hypothesis import given
|
4
|
+
from hypothesis.strategies import sampled_from
|
5
|
+
from numpy import isclose
|
6
|
+
from polars import DataFrame, Float64, Series, Struct, col
|
7
|
+
from polars.testing import assert_frame_equal
|
8
|
+
from sklearn.linear_model import LinearRegression
|
9
|
+
|
10
|
+
from utilities.polars import concat_series, integers, normal
|
11
|
+
from utilities.polars_ols import compute_rolling_ols
|
12
|
+
|
13
|
+
|
14
|
+
class TestComputeRollingOLS:
|
15
|
+
def test_main_self(self) -> None:
|
16
|
+
df = self._df.with_columns(
|
17
|
+
compute_rolling_ols(
|
18
|
+
"y", "x1", "x2", window_size=5, min_periods=5, add_intercept=True
|
19
|
+
)
|
20
|
+
)
|
21
|
+
self._assert_series(df["ols"])
|
22
|
+
|
23
|
+
def test_main_series(self) -> None:
|
24
|
+
ols = compute_rolling_ols(
|
25
|
+
self._df["y"],
|
26
|
+
self._df["x1"],
|
27
|
+
self._df["x2"],
|
28
|
+
window_size=5,
|
29
|
+
min_periods=5,
|
30
|
+
add_intercept=True,
|
31
|
+
)
|
32
|
+
self._assert_series(ols)
|
33
|
+
|
34
|
+
@given(
|
35
|
+
case=sampled_from([
|
36
|
+
(
|
37
|
+
slice(-7, -2),
|
38
|
+
[0.3619563208480195, 0.6583229512154678],
|
39
|
+
-1.386023798329262,
|
40
|
+
7.434533329394103,
|
41
|
+
0.994253238813284,
|
42
|
+
),
|
43
|
+
(
|
44
|
+
slice(-6, -1),
|
45
|
+
[0.35564162435283264, 0.6656931556738643],
|
46
|
+
-0.5626805730005437,
|
47
|
+
-51.903154626050124,
|
48
|
+
0.9979752966843768,
|
49
|
+
),
|
50
|
+
(
|
51
|
+
slice(-5, None),
|
52
|
+
[0.3100421300754358, 0.6753578168818635],
|
53
|
+
0.48493124625502837,
|
54
|
+
-36.70039604095908,
|
55
|
+
0.9977272526713715,
|
56
|
+
),
|
57
|
+
])
|
58
|
+
)
|
59
|
+
def test_tail(
|
60
|
+
self, *, case: tuple[slice, list[float], float, float, float]
|
61
|
+
) -> None:
|
62
|
+
slice_, coeffs, intercept, prediction, r2 = case
|
63
|
+
df = self._df[slice_]
|
64
|
+
X = df.select("x1", "x2").to_numpy() # noqa: N806
|
65
|
+
y = df.select("y").to_numpy()
|
66
|
+
model = LinearRegression()
|
67
|
+
model = model.fit(X, y)
|
68
|
+
assert isclose(model.coef_, coeffs).all()
|
69
|
+
assert isclose(model.intercept_, intercept)
|
70
|
+
assert isclose(model.predict(X)[-1], prediction).all()
|
71
|
+
assert isclose(model.score(X, y), r2)
|
72
|
+
|
73
|
+
@property
|
74
|
+
def _df(self) -> DataFrame:
|
75
|
+
n = 20
|
76
|
+
return concat_series(
|
77
|
+
integers(n, -100, high=100, seed=0).alias("x1"),
|
78
|
+
integers(n, -100, high=100, seed=1).alias("x2"),
|
79
|
+
).with_columns(
|
80
|
+
((col("x1") + 2 * col("x2") + normal(n, scale=10.0, seed=2)) / 3).alias("y")
|
81
|
+
)
|
82
|
+
|
83
|
+
def _assert_series(self, series: Series, /) -> None:
|
84
|
+
df = series.struct.unnest()
|
85
|
+
tail = df[-10:]
|
86
|
+
# fmt: off
|
87
|
+
data = [
|
88
|
+
({"x1": 0.333396198442681, "x2": 0.6845517746145712, "const": 0.2808021232120448}, 59.921571424913495, 1.67032007883995, 0.9955364659986504),
|
89
|
+
({"x1": 0.322785525889542, "x2": 0.6896341527044252, "const": 0.5401793852579858}, 15.974446064929626, -0.3429678871268038, 0.9961762567103958),
|
90
|
+
({"x1": 0.31042868991153927, "x2": 0.7055685710743383, "const": 1.145326562525439}, -31.310827706894123, -0.45191863996575066, 0.998022262986332),
|
91
|
+
({"x1": 0.33311466967931097, "x2": 0.684137842579758, "const": -0.7961518480794516}, 50.66821598287034, -2.975371834066671, 0.9974533939791341),
|
92
|
+
({"x1": 0.35299385150914864, "x2": 0.6758890569593843, "const": -0.9377907849336107}, -0.8749325340834626, 1.0581261048863142, 0.9973453833170313),
|
93
|
+
({"x1": 0.351300641938209, "x2": 0.6456834722890913, "const": -1.859577387752822}, 1.6809655259738476, 0.3217076349681922, 0.9951571413022856),
|
94
|
+
({"x1": 0.3583378199895871, "x2": 0.6588347796692774, "const": -1.109675446287481}, 26.65448170418155, 2.496480675700724, 0.9933751737130443),
|
95
|
+
({"x1": 0.36195632084801765, "x2": 0.658322951215466, "const": -1.3860237983291754}, 7.43453332939416, -0.791818995629618, 0.9905085882663488),
|
96
|
+
({"x1": 0.35564162435283225, "x2": 0.6656931556738634, "const": -0.562680573000551}, -51.90315462605006, 0.6592474497562932, 0.9973576833556038),
|
97
|
+
({"x1": 0.3100421300754357, "x2": 0.675357816881863, "const": 0.48493124625501927}, -36.70039604095908, -0.6071841038068868, 0.9978541580643828),
|
98
|
+
]
|
99
|
+
# fmt: on
|
100
|
+
expected = DataFrame(
|
101
|
+
data=data,
|
102
|
+
schema={
|
103
|
+
"coefficients": Struct({
|
104
|
+
"x1": Float64,
|
105
|
+
"x2": Float64,
|
106
|
+
"const": Float64,
|
107
|
+
}),
|
108
|
+
"predictions": Float64,
|
109
|
+
"residuals": Float64,
|
110
|
+
"R2": Float64,
|
111
|
+
},
|
112
|
+
orient="row",
|
113
|
+
)
|
114
|
+
assert_frame_equal(tail, expected)
|
@@ -1,19 +1,22 @@
|
|
1
1
|
from __future__ import annotations
|
2
2
|
|
3
3
|
from dataclasses import dataclass
|
4
|
-
from functools import reduce
|
4
|
+
from functools import partial, reduce
|
5
5
|
from itertools import repeat
|
6
6
|
from typing import TYPE_CHECKING, Any, overload, override
|
7
7
|
|
8
8
|
import numpy as np
|
9
9
|
from numpy import (
|
10
|
+
argsort,
|
10
11
|
array,
|
11
12
|
bool_,
|
13
|
+
complex128,
|
12
14
|
digitize,
|
13
15
|
dtype,
|
14
16
|
errstate,
|
15
17
|
flatnonzero,
|
16
18
|
float64,
|
19
|
+
floating,
|
17
20
|
full_like,
|
18
21
|
inf,
|
19
22
|
int64,
|
@@ -30,6 +33,7 @@ from numpy import (
|
|
30
33
|
roll,
|
31
34
|
where,
|
32
35
|
)
|
36
|
+
from numpy.fft import fft, fftfreq, ifft
|
33
37
|
from numpy.linalg import det, eig
|
34
38
|
from numpy.random import default_rng
|
35
39
|
from numpy.typing import NDArray
|
@@ -37,7 +41,7 @@ from numpy.typing import NDArray
|
|
37
41
|
from utilities.iterables import is_iterable_not_str
|
38
42
|
|
39
43
|
if TYPE_CHECKING:
|
40
|
-
from collections.abc import Iterable
|
44
|
+
from collections.abc import Callable, Iterable
|
41
45
|
|
42
46
|
|
43
47
|
##
|
@@ -160,6 +164,33 @@ def fillna(array: NDArrayF, /, *, value: float = 0.0) -> NDArrayF:
|
|
160
164
|
##
|
161
165
|
|
162
166
|
|
167
|
+
def filter_frequencies(
|
168
|
+
array: NDArrayF,
|
169
|
+
/,
|
170
|
+
*filters: Callable[[NDArray[floating[Any]]], NDArrayB],
|
171
|
+
d: int = 1,
|
172
|
+
) -> NDArrayF:
|
173
|
+
"""Filter an array by the frequencies of its FFT."""
|
174
|
+
(n,) = array.shape
|
175
|
+
fft_vals = fft(array)
|
176
|
+
freqs = fftfreq(n, d=d)
|
177
|
+
reduced = reduce(partial(_filter_frequencies_one, freqs=freqs), filters, fft_vals)
|
178
|
+
return ifft(reduced).real
|
179
|
+
|
180
|
+
|
181
|
+
def _filter_frequencies_one(
|
182
|
+
acc: NDArray[complex128],
|
183
|
+
el: Callable[[NDArray[floating[Any]]], NDArrayB],
|
184
|
+
/,
|
185
|
+
*,
|
186
|
+
freqs: NDArray[floating[Any]],
|
187
|
+
) -> NDArray[complex128]:
|
188
|
+
return where(el(freqs), acc, 0.0)
|
189
|
+
|
190
|
+
|
191
|
+
##
|
192
|
+
|
193
|
+
|
163
194
|
def flatn0(array: NDArrayB, /) -> int:
|
164
195
|
"""Return the index of the unique True element."""
|
165
196
|
if not array.any():
|
@@ -193,6 +224,19 @@ class FlatN0MultipleError(FlatN0Error):
|
|
193
224
|
##
|
194
225
|
|
195
226
|
|
227
|
+
def get_frequency_spectrum(array: NDArrayF, /, *, d: int = 1) -> NDArray[floating[Any]]:
|
228
|
+
"""Get the frequency spectrum."""
|
229
|
+
(n,) = array.shape
|
230
|
+
fft_vals = fft(array)
|
231
|
+
freqs = fftfreq(n, d=d)
|
232
|
+
amplitudes = np.abs(fft_vals)
|
233
|
+
data = np.hstack([freqs.reshape(-1, 1), amplitudes.reshape(-1, 1)])
|
234
|
+
return data[argsort(data[:, 0])]
|
235
|
+
|
236
|
+
|
237
|
+
##
|
238
|
+
|
239
|
+
|
196
240
|
def has_dtype(x: Any, dtype: Any, /) -> bool:
|
197
241
|
"""Check if an object has the required dtype."""
|
198
242
|
if is_iterable_not_str(dtype):
|
@@ -851,7 +895,9 @@ __all__ = [
|
|
851
895
|
"datetime64us",
|
852
896
|
"discretize",
|
853
897
|
"fillna",
|
898
|
+
"filter_frequencies",
|
854
899
|
"flatn0",
|
900
|
+
"get_frequency_spectrum",
|
855
901
|
"has_dtype",
|
856
902
|
"is_at_least",
|
857
903
|
"is_at_least_or_nan",
|
@@ -0,0 +1,171 @@
|
|
1
|
+
from __future__ import annotations
|
2
|
+
|
3
|
+
from typing import TYPE_CHECKING, overload
|
4
|
+
|
5
|
+
from polars import Expr, Series, struct
|
6
|
+
from polars_ols import RollingKwargs, compute_rolling_least_squares
|
7
|
+
|
8
|
+
from utilities.errors import ImpossibleCaseError
|
9
|
+
from utilities.functions import is_sequence_of
|
10
|
+
from utilities.polars import concat_series, ensure_expr_or_series
|
11
|
+
|
12
|
+
if TYPE_CHECKING:
|
13
|
+
from polars._typing import IntoExprColumn
|
14
|
+
from polars_ols import NullPolicy
|
15
|
+
|
16
|
+
from utilities.polars import ExprLike
|
17
|
+
|
18
|
+
|
19
|
+
@overload
|
20
|
+
def compute_rolling_ols(
|
21
|
+
target: ExprLike,
|
22
|
+
*features: ExprLike,
|
23
|
+
sample_weights: ExprLike | None = None,
|
24
|
+
add_intercept: bool = False,
|
25
|
+
null_policy: NullPolicy = "drop_window",
|
26
|
+
window_size: int = 1000000,
|
27
|
+
min_periods: int | None = None,
|
28
|
+
use_woodbury: bool | None = None,
|
29
|
+
alpha: float | None = None,
|
30
|
+
) -> Expr: ...
|
31
|
+
@overload
|
32
|
+
def compute_rolling_ols(
|
33
|
+
target: Series,
|
34
|
+
*features: Series,
|
35
|
+
sample_weights: Series | None = None,
|
36
|
+
add_intercept: bool = False,
|
37
|
+
null_policy: NullPolicy = "drop_window",
|
38
|
+
window_size: int = 1000000,
|
39
|
+
min_periods: int | None = None,
|
40
|
+
use_woodbury: bool | None = None,
|
41
|
+
alpha: float | None = None,
|
42
|
+
) -> Series: ...
|
43
|
+
@overload
|
44
|
+
def compute_rolling_ols(
|
45
|
+
target: IntoExprColumn,
|
46
|
+
*features: IntoExprColumn,
|
47
|
+
sample_weights: IntoExprColumn | None = None,
|
48
|
+
add_intercept: bool = False,
|
49
|
+
null_policy: NullPolicy = "drop_window",
|
50
|
+
window_size: int = 1000000,
|
51
|
+
min_periods: int | None = None,
|
52
|
+
use_woodbury: bool | None = None,
|
53
|
+
alpha: float | None = None,
|
54
|
+
) -> Expr | Series: ...
|
55
|
+
def compute_rolling_ols(
|
56
|
+
target: IntoExprColumn,
|
57
|
+
*features: IntoExprColumn,
|
58
|
+
sample_weights: IntoExprColumn | None = None,
|
59
|
+
add_intercept: bool = False,
|
60
|
+
null_policy: NullPolicy = "drop_window",
|
61
|
+
window_size: int = 1000000,
|
62
|
+
min_periods: int | None = None,
|
63
|
+
use_woodbury: bool | None = None,
|
64
|
+
alpha: float | None = None,
|
65
|
+
) -> Expr | Series:
|
66
|
+
"""Compute a rolling OLS."""
|
67
|
+
target = ensure_expr_or_series(target)
|
68
|
+
features2 = tuple(map(ensure_expr_or_series, features))
|
69
|
+
sample_weights = (
|
70
|
+
None if sample_weights is None else ensure_expr_or_series(sample_weights)
|
71
|
+
)
|
72
|
+
if (
|
73
|
+
isinstance(target, Expr)
|
74
|
+
and is_sequence_of(features2, Expr)
|
75
|
+
and ((sample_weights is None) or isinstance(sample_weights, Expr))
|
76
|
+
):
|
77
|
+
return _compute_rolling_ols_expr(
|
78
|
+
target,
|
79
|
+
*features2,
|
80
|
+
sample_weights=sample_weights,
|
81
|
+
add_intercept=add_intercept,
|
82
|
+
null_policy=null_policy,
|
83
|
+
window_size=window_size,
|
84
|
+
min_periods=min_periods,
|
85
|
+
use_woodbury=use_woodbury,
|
86
|
+
alpha=alpha,
|
87
|
+
)
|
88
|
+
if (
|
89
|
+
isinstance(target, Series)
|
90
|
+
and is_sequence_of(features2, Series)
|
91
|
+
and ((sample_weights is None) or isinstance(sample_weights, Series))
|
92
|
+
):
|
93
|
+
return concat_series(
|
94
|
+
target, *features2, *([] if sample_weights is None else [sample_weights])
|
95
|
+
).with_columns(
|
96
|
+
_compute_rolling_ols_expr(
|
97
|
+
target.name,
|
98
|
+
*(f.name for f in features2),
|
99
|
+
sample_weights=None if sample_weights is None else sample_weights.name,
|
100
|
+
add_intercept=add_intercept,
|
101
|
+
null_policy=null_policy,
|
102
|
+
window_size=window_size,
|
103
|
+
min_periods=min_periods,
|
104
|
+
use_woodbury=use_woodbury,
|
105
|
+
alpha=alpha,
|
106
|
+
)
|
107
|
+
)["ols"]
|
108
|
+
raise ImpossibleCaseError( # pragma: no cover
|
109
|
+
case=[f"{target=}", f"{features2=}", f"{sample_weights=}"]
|
110
|
+
)
|
111
|
+
|
112
|
+
|
113
|
+
def _compute_rolling_ols_expr(
|
114
|
+
target: ExprLike,
|
115
|
+
*features: ExprLike,
|
116
|
+
sample_weights: ExprLike | None = None,
|
117
|
+
add_intercept: bool = False,
|
118
|
+
null_policy: NullPolicy = "drop_window",
|
119
|
+
window_size: int = 1000000,
|
120
|
+
min_periods: int | None = None,
|
121
|
+
use_woodbury: bool | None = None,
|
122
|
+
alpha: float | None = None,
|
123
|
+
) -> Expr:
|
124
|
+
"""Compute a rolling OLS."""
|
125
|
+
target = ensure_expr_or_series(target)
|
126
|
+
features2 = tuple(map(ensure_expr_or_series, features))
|
127
|
+
sample_weights = (
|
128
|
+
None if sample_weights is None else ensure_expr_or_series(sample_weights)
|
129
|
+
)
|
130
|
+
rolling_kwargs = RollingKwargs(
|
131
|
+
null_policy=null_policy,
|
132
|
+
window_size=window_size,
|
133
|
+
min_periods=min_periods,
|
134
|
+
use_woodbury=use_woodbury,
|
135
|
+
alpha=alpha,
|
136
|
+
)
|
137
|
+
coefficients = compute_rolling_least_squares(
|
138
|
+
target,
|
139
|
+
*features2,
|
140
|
+
sample_weights=sample_weights,
|
141
|
+
add_intercept=add_intercept,
|
142
|
+
mode="coefficients",
|
143
|
+
rolling_kwargs=rolling_kwargs,
|
144
|
+
).alias("coefficients")
|
145
|
+
predictions = compute_rolling_least_squares(
|
146
|
+
target,
|
147
|
+
*features2,
|
148
|
+
sample_weights=sample_weights,
|
149
|
+
add_intercept=add_intercept,
|
150
|
+
mode="predictions",
|
151
|
+
rolling_kwargs=rolling_kwargs,
|
152
|
+
).alias("predictions")
|
153
|
+
residuals = compute_rolling_least_squares(
|
154
|
+
target,
|
155
|
+
*features2,
|
156
|
+
sample_weights=sample_weights,
|
157
|
+
add_intercept=add_intercept,
|
158
|
+
mode="residuals",
|
159
|
+
rolling_kwargs=rolling_kwargs,
|
160
|
+
).alias("residuals")
|
161
|
+
ssr = (residuals**2).rolling_sum(window_size, min_samples=min_periods).alias("SSR")
|
162
|
+
sst = (
|
163
|
+
((target - target.rolling_mean(window_size, min_samples=min_periods)) ** 2)
|
164
|
+
.rolling_sum(window_size, min_samples=min_periods)
|
165
|
+
.alias("SST")
|
166
|
+
)
|
167
|
+
r2 = (1 - ssr / sst).alias("R2")
|
168
|
+
return struct(coefficients, predictions, residuals, r2).alias("ols")
|
169
|
+
|
170
|
+
|
171
|
+
__all__ = ["compute_rolling_ols"]
|
@@ -1,103 +0,0 @@
|
|
1
|
-
from __future__ import annotations
|
2
|
-
|
3
|
-
from hypothesis import given
|
4
|
-
from hypothesis.strategies import sampled_from
|
5
|
-
from numpy import isclose
|
6
|
-
from polars import DataFrame, Float64, Struct, UInt32, col
|
7
|
-
from polars.testing import assert_frame_equal
|
8
|
-
from sklearn.linear_model import LinearRegression
|
9
|
-
|
10
|
-
from utilities.polars import concat_series, integers, normal
|
11
|
-
from utilities.polars_ols import compute_rolling_ols
|
12
|
-
|
13
|
-
|
14
|
-
class TestComputeRollingOLS:
|
15
|
-
def test_ols_results(self) -> None:
|
16
|
-
result = self._df["ols"].struct.unnest().with_row_index()
|
17
|
-
# fmt: off
|
18
|
-
exp_values = [
|
19
|
-
(10, {"x1": 0.333396198442681, "x2": 0.6845517746145712, "const": 0.2808021232120448}, 59.921571424913495, 1.67032007883995, 0.9955364659986504),
|
20
|
-
(11, {"x1": 0.322785525889542, "x2": 0.6896341527044252, "const": 0.5401793852579858}, 15.974446064929626, -0.3429678871268038, 0.9961762567103958),
|
21
|
-
(12, {"x1": 0.31042868991153927, "x2": 0.7055685710743383, "const": 1.145326562525439}, -31.310827706894123, -0.45191863996575066, 0.998022262986332),
|
22
|
-
(13, {"x1": 0.33311466967931097, "x2": 0.684137842579758, "const": -0.7961518480794516}, 50.66821598287034, -2.975371834066671, 0.9974533939791341),
|
23
|
-
(14, {"x1": 0.35299385150914864, "x2": 0.6758890569593843, "const": -0.9377907849336107}, -0.8749325340834626, 1.0581261048863142, 0.9973453833170313),
|
24
|
-
(15, {"x1": 0.351300641938209, "x2": 0.6456834722890913, "const": -1.859577387752822}, 1.6809655259738476, 0.3217076349681922, 0.9951571413022856),
|
25
|
-
(16, {"x1": 0.3583378199895871, "x2": 0.6588347796692774, "const": -1.109675446287481}, 26.65448170418155, 2.496480675700724, 0.9933751737130443),
|
26
|
-
(17, {"x1": 0.36195632084801765, "x2": 0.658322951215466, "const": -1.3860237983291754}, 7.43453332939416, -0.791818995629618, 0.9905085882663488),
|
27
|
-
(18, {"x1": 0.35564162435283225, "x2": 0.6656931556738634, "const": -0.562680573000551}, -51.90315462605006, 0.6592474497562932, 0.9973576833556038),
|
28
|
-
(19, {"x1": 0.3100421300754357, "x2": 0.675357816881863, "const": 0.48493124625501927}, -36.70039604095908, -0.6071841038068868, 0.9978541580643828),
|
29
|
-
]
|
30
|
-
# fmt: on
|
31
|
-
expected = DataFrame(
|
32
|
-
data=exp_values,
|
33
|
-
schema={
|
34
|
-
"index": UInt32,
|
35
|
-
"coefficients": Struct({
|
36
|
-
"x1": Float64,
|
37
|
-
"x2": Float64,
|
38
|
-
"const": Float64,
|
39
|
-
}),
|
40
|
-
"predictions": Float64,
|
41
|
-
"residuals": Float64,
|
42
|
-
"R2": Float64,
|
43
|
-
},
|
44
|
-
orient="row",
|
45
|
-
)
|
46
|
-
assert_frame_equal(result[-10:], expected)
|
47
|
-
|
48
|
-
@given(
|
49
|
-
case=sampled_from([
|
50
|
-
(
|
51
|
-
slice(-7, -2),
|
52
|
-
[0.3619563208480195, 0.6583229512154678],
|
53
|
-
-1.386023798329262,
|
54
|
-
7.434533329394103,
|
55
|
-
0.994253238813284,
|
56
|
-
),
|
57
|
-
(
|
58
|
-
slice(-6, -1),
|
59
|
-
[0.35564162435283264, 0.6656931556738643],
|
60
|
-
-0.5626805730005437,
|
61
|
-
-51.903154626050124,
|
62
|
-
0.9979752966843768,
|
63
|
-
),
|
64
|
-
(
|
65
|
-
slice(-5, None),
|
66
|
-
[0.3100421300754358, 0.6753578168818635],
|
67
|
-
0.48493124625502837,
|
68
|
-
-36.70039604095908,
|
69
|
-
0.9977272526713715,
|
70
|
-
),
|
71
|
-
])
|
72
|
-
)
|
73
|
-
def test_tail(
|
74
|
-
self, *, case: tuple[slice, list[float], float, float, float]
|
75
|
-
) -> None:
|
76
|
-
slice_, coeffs, intercept, prediction, r2 = case
|
77
|
-
df = self._df[slice_]
|
78
|
-
X = df.select("x1", "x2").to_numpy() # noqa: N806
|
79
|
-
y = df.select("y").to_numpy()
|
80
|
-
model = LinearRegression()
|
81
|
-
model = model.fit(X, y)
|
82
|
-
assert isclose(model.coef_, coeffs).all()
|
83
|
-
assert isclose(model.intercept_, intercept)
|
84
|
-
assert isclose(model.predict(X)[-1], prediction).all()
|
85
|
-
assert isclose(model.score(X, y), r2)
|
86
|
-
|
87
|
-
@property
|
88
|
-
def _df(self) -> DataFrame:
|
89
|
-
n = 20
|
90
|
-
return (
|
91
|
-
concat_series(
|
92
|
-
integers(n, -100, high=100, seed=0).alias("x1"),
|
93
|
-
integers(n, -100, high=100, seed=1).alias("x2"),
|
94
|
-
)
|
95
|
-
.with_columns(
|
96
|
-
y=(col("x1") + 2 * col("x2") + normal(n, scale=10.0, seed=2)) / 3
|
97
|
-
)
|
98
|
-
.with_columns(
|
99
|
-
compute_rolling_ols(
|
100
|
-
"y", "x1", "x2", window_size=5, min_periods=5, add_intercept=True
|
101
|
-
)
|
102
|
-
)
|
103
|
-
)
|
@@ -1,71 +0,0 @@
|
|
1
|
-
from __future__ import annotations
|
2
|
-
|
3
|
-
from typing import TYPE_CHECKING
|
4
|
-
|
5
|
-
from polars import struct
|
6
|
-
from polars_ols import RollingKwargs, compute_rolling_least_squares
|
7
|
-
|
8
|
-
from utilities.polars import ensure_expr_or_series
|
9
|
-
|
10
|
-
if TYPE_CHECKING:
|
11
|
-
from polars import Expr
|
12
|
-
from polars_ols import NullPolicy
|
13
|
-
|
14
|
-
from utilities.polars import ExprLike
|
15
|
-
|
16
|
-
|
17
|
-
def compute_rolling_ols(
|
18
|
-
target: ExprLike,
|
19
|
-
*features: ExprLike,
|
20
|
-
sample_weights: ExprLike | None = None,
|
21
|
-
add_intercept: bool = False,
|
22
|
-
null_policy: NullPolicy = "drop_window",
|
23
|
-
window_size: int = 1000000,
|
24
|
-
min_periods: int | None = None,
|
25
|
-
use_woodbury: bool | None = None,
|
26
|
-
alpha: float | None = None,
|
27
|
-
) -> Expr:
|
28
|
-
"""Compute a rolling OLS."""
|
29
|
-
target = ensure_expr_or_series(target)
|
30
|
-
rolling_kwargs = RollingKwargs(
|
31
|
-
null_policy=null_policy,
|
32
|
-
window_size=window_size,
|
33
|
-
min_periods=min_periods,
|
34
|
-
use_woodbury=use_woodbury,
|
35
|
-
alpha=alpha,
|
36
|
-
)
|
37
|
-
coefficients = compute_rolling_least_squares(
|
38
|
-
target,
|
39
|
-
*features,
|
40
|
-
sample_weights=sample_weights,
|
41
|
-
add_intercept=add_intercept,
|
42
|
-
mode="coefficients",
|
43
|
-
rolling_kwargs=rolling_kwargs,
|
44
|
-
).alias("coefficients")
|
45
|
-
predictions = compute_rolling_least_squares(
|
46
|
-
target,
|
47
|
-
*features,
|
48
|
-
sample_weights=sample_weights,
|
49
|
-
add_intercept=add_intercept,
|
50
|
-
mode="predictions",
|
51
|
-
rolling_kwargs=rolling_kwargs,
|
52
|
-
).alias("predictions")
|
53
|
-
residuals = compute_rolling_least_squares(
|
54
|
-
target,
|
55
|
-
*features,
|
56
|
-
sample_weights=sample_weights,
|
57
|
-
add_intercept=add_intercept,
|
58
|
-
mode="residuals",
|
59
|
-
rolling_kwargs=rolling_kwargs,
|
60
|
-
).alias("residuals")
|
61
|
-
ssr = (residuals**2).rolling_sum(window_size, min_samples=min_periods).alias("SSR")
|
62
|
-
sst = (
|
63
|
-
((target - target.rolling_mean(window_size, min_samples=min_periods)) ** 2)
|
64
|
-
.rolling_sum(window_size, min_samples=min_periods)
|
65
|
-
.alias("SST")
|
66
|
-
)
|
67
|
-
r2 = (1 - ssr / sst).alias("R2")
|
68
|
-
return struct(coefficients, predictions, residuals, r2).alias("ols")
|
69
|
-
|
70
|
-
|
71
|
-
__all__ = ["compute_rolling_ols"]
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/modules/package_missing/__init__.py
RENAMED
File without changes
|
{dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/modules/package_missing/module.py
RENAMED
File without changes
|
{dycw_utilities-0.109.14 → dycw_utilities-0.109.16}/src/tests/modules/package_with/__init__.py
RENAMED
File without changes
|