dukascript 0.0.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- dukascript-0.0.0/LICENSE +21 -0
- dukascript-0.0.0/PKG-INFO +44 -0
- dukascript-0.0.0/README.md +3 -0
- dukascript-0.0.0/dukascript/__init__.py +423 -0
- dukascript-0.0.0/dukascript/_instrument_generator.py +278 -0
- dukascript-0.0.0/dukascript/instruments.py +1380 -0
- dukascript-0.0.0/dukascript.egg-info/PKG-INFO +44 -0
- dukascript-0.0.0/dukascript.egg-info/SOURCES.txt +11 -0
- dukascript-0.0.0/dukascript.egg-info/dependency_links.txt +1 -0
- dukascript-0.0.0/dukascript.egg-info/requires.txt +6 -0
- dukascript-0.0.0/dukascript.egg-info/top_level.txt +1 -0
- dukascript-0.0.0/pyproject.toml +36 -0
- dukascript-0.0.0/setup.cfg +4 -0
dukascript-0.0.0/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
1
|
+
MIT License
|
2
|
+
|
3
|
+
Copyright (c) 2024 drui9
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
7
|
+
in the Software without restriction, including without limitation the rights
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
10
|
+
furnished to do so, subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
13
|
+
copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21
|
+
SOFTWARE.
|
@@ -0,0 +1,44 @@
|
|
1
|
+
Metadata-Version: 2.4
|
2
|
+
Name: dukascript
|
3
|
+
Version: 0.0.0
|
4
|
+
Summary: Download tick data from Dukascopy Bank SA to local cache, and simulate time-ordered price streams
|
5
|
+
Author-email: Eghosa Osayande <osayandeeghosam@gmail.com>
|
6
|
+
License: MIT License
|
7
|
+
|
8
|
+
Copyright (c) 2024 drui9
|
9
|
+
|
10
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
11
|
+
of this software and associated documentation files (the "Software"), to deal
|
12
|
+
in the Software without restriction, including without limitation the rights
|
13
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
14
|
+
copies of the Software, and to permit persons to whom the Software is
|
15
|
+
furnished to do so, subject to the following conditions:
|
16
|
+
|
17
|
+
The above copyright notice and this permission notice shall be included in all
|
18
|
+
copies or substantial portions of the Software.
|
19
|
+
|
20
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
21
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
22
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
23
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
24
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
25
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
26
|
+
SOFTWARE.
|
27
|
+
Project-URL: Homepage, https://github.com/Eghosa-Osayande/dukascript
|
28
|
+
Keywords: tick-data,forex-data,tick-api,ticks,dukascopy
|
29
|
+
Classifier: License :: OSI Approved :: MIT License
|
30
|
+
Classifier: Programming Language :: Python
|
31
|
+
Classifier: Programming Language :: Python :: 3
|
32
|
+
Requires-Python: >=3.10
|
33
|
+
Description-Content-Type: text/markdown
|
34
|
+
License-File: LICENSE
|
35
|
+
Requires-Dist: pandas
|
36
|
+
Requires-Dist: requests
|
37
|
+
Provides-Extra: dev
|
38
|
+
Requires-Dist: build; extra == "dev"
|
39
|
+
Requires-Dist: twine; extra == "dev"
|
40
|
+
Dynamic: license-file
|
41
|
+
|
42
|
+
# dukascript
|
43
|
+
|
44
|
+
Download and stream historical data from Dukascopy Bank SA.
|
@@ -0,0 +1,423 @@
|
|
1
|
+
import pandas as pd
|
2
|
+
import requests
|
3
|
+
from datetime import datetime, timedelta
|
4
|
+
import json
|
5
|
+
import random
|
6
|
+
import string
|
7
|
+
from time import sleep
|
8
|
+
import logging
|
9
|
+
|
10
|
+
from .instruments import *
|
11
|
+
|
12
|
+
TIME_UNIT_MONTH = "MONTH"
|
13
|
+
TIME_UNIT_WEEK = "WEEK"
|
14
|
+
TIME_UNIT_DAY = "DAY"
|
15
|
+
TIME_UNIT_HOUR = "HOUR"
|
16
|
+
TIME_UNIT_MIN = "MIN"
|
17
|
+
TIME_UNIT_SEC = "SEC"
|
18
|
+
TIME_UNIT_TICK = "TICK"
|
19
|
+
|
20
|
+
INTERVAL_MONTH_1 = f"1{TIME_UNIT_MONTH}"
|
21
|
+
INTERVAL_WEEK_1 = f"1{TIME_UNIT_WEEK}"
|
22
|
+
INTERVAL_DAY_1 = f"1{TIME_UNIT_DAY}"
|
23
|
+
INTERVAL_HOUR_4 = f"4{TIME_UNIT_HOUR}"
|
24
|
+
INTERVAL_HOUR_1 = f"1{TIME_UNIT_HOUR}"
|
25
|
+
INTERVAL_MIN_30 = f"30{TIME_UNIT_MIN}"
|
26
|
+
INTERVAL_MIN_15 = f"15{TIME_UNIT_MIN}"
|
27
|
+
INTERVAL_MIN_10 = f"10{TIME_UNIT_MIN}"
|
28
|
+
INTERVAL_MIN_5 = f"5{TIME_UNIT_MIN}"
|
29
|
+
INTERVAL_MIN_1 = f"1{TIME_UNIT_MIN}"
|
30
|
+
INTERVAL_SEC_30 = f"30{TIME_UNIT_SEC}"
|
31
|
+
INTERVAL_SEC_10 = f"10{TIME_UNIT_SEC}"
|
32
|
+
INTERVAL_SEC_1 = f"1{TIME_UNIT_SEC}"
|
33
|
+
INTERVAL_TICK = TIME_UNIT_TICK
|
34
|
+
|
35
|
+
INTERVALS_SET = {
|
36
|
+
INTERVAL_MONTH_1,
|
37
|
+
INTERVAL_WEEK_1,
|
38
|
+
INTERVAL_DAY_1,
|
39
|
+
INTERVAL_HOUR_4,
|
40
|
+
INTERVAL_HOUR_1,
|
41
|
+
INTERVAL_MIN_30,
|
42
|
+
INTERVAL_MIN_15,
|
43
|
+
INTERVAL_MIN_10,
|
44
|
+
INTERVAL_MIN_5,
|
45
|
+
INTERVAL_MIN_1,
|
46
|
+
INTERVAL_SEC_30,
|
47
|
+
INTERVAL_SEC_10,
|
48
|
+
INTERVAL_SEC_1,
|
49
|
+
}
|
50
|
+
|
51
|
+
OFFER_SIDE_BID = "B"
|
52
|
+
OFFER_SIDE_ASK = "A"
|
53
|
+
|
54
|
+
|
55
|
+
def _get_custom_logger(debug=False):
|
56
|
+
logger = logging.getLogger("DUKASCRIPT")
|
57
|
+
logger.setLevel(logging.DEBUG if debug else logging.INFO)
|
58
|
+
|
59
|
+
if not logger.handlers:
|
60
|
+
# Formatter
|
61
|
+
formatter = logging.Formatter("[%(levelname)s] %(message)s")
|
62
|
+
|
63
|
+
# Console Handler
|
64
|
+
ch = logging.StreamHandler()
|
65
|
+
ch.setLevel(logging.DEBUG if debug else logging.INFO)
|
66
|
+
ch.setFormatter(formatter)
|
67
|
+
|
68
|
+
logger.addHandler(ch)
|
69
|
+
|
70
|
+
return logger
|
71
|
+
|
72
|
+
|
73
|
+
def _is_valid_api_interval(interval):
|
74
|
+
return True if interval in INTERVALS_SET else False
|
75
|
+
|
76
|
+
|
77
|
+
def _resample_to_nearest(
|
78
|
+
timestamp: datetime,
|
79
|
+
time_unit: str,
|
80
|
+
interval_value: int,
|
81
|
+
) -> datetime:
|
82
|
+
# Round to the nearest time unit based on the interval value
|
83
|
+
if time_unit == TIME_UNIT_SEC:
|
84
|
+
subtraction = timestamp.second % interval_value
|
85
|
+
return timestamp - timedelta(
|
86
|
+
seconds=subtraction,
|
87
|
+
microseconds=timestamp.microsecond,
|
88
|
+
)
|
89
|
+
elif time_unit == TIME_UNIT_MIN:
|
90
|
+
subtraction = timestamp.minute % interval_value
|
91
|
+
return timestamp - timedelta(
|
92
|
+
minutes=subtraction,
|
93
|
+
seconds=timestamp.second,
|
94
|
+
microseconds=timestamp.microsecond,
|
95
|
+
)
|
96
|
+
elif time_unit == TIME_UNIT_HOUR:
|
97
|
+
subtraction = timestamp.hour % interval_value
|
98
|
+
return timestamp - timedelta(
|
99
|
+
hours=subtraction,
|
100
|
+
minutes=timestamp.minute,
|
101
|
+
seconds=timestamp.second,
|
102
|
+
microseconds=timestamp.microsecond,
|
103
|
+
)
|
104
|
+
elif time_unit == TIME_UNIT_DAY:
|
105
|
+
subtraction = timestamp.day % interval_value
|
106
|
+
return timestamp - timedelta(
|
107
|
+
days=subtraction,
|
108
|
+
hours=timestamp.hour,
|
109
|
+
minutes=timestamp.minute,
|
110
|
+
seconds=timestamp.second,
|
111
|
+
microseconds=timestamp.microsecond,
|
112
|
+
)
|
113
|
+
elif time_unit == TIME_UNIT_WEEK:
|
114
|
+
subtraction = (timestamp.weekday() + 1) % (interval_value * 7)
|
115
|
+
return timestamp - timedelta(
|
116
|
+
days=subtraction,
|
117
|
+
hours=timestamp.hour,
|
118
|
+
minutes=timestamp.minute,
|
119
|
+
seconds=timestamp.second,
|
120
|
+
microseconds=timestamp.microsecond,
|
121
|
+
)
|
122
|
+
elif time_unit == TIME_UNIT_MONTH:
|
123
|
+
month = (timestamp.month // interval_value) + 1
|
124
|
+
return datetime(timestamp.year, month, 1, 0, 0, 0, 0, timestamp.tzinfo)
|
125
|
+
elif time_unit == TIME_UNIT_TICK:
|
126
|
+
return timestamp
|
127
|
+
|
128
|
+
raise NotImplementedError(f"resampling not implemented for {time_unit}")
|
129
|
+
|
130
|
+
|
131
|
+
def _get_dataframe_columns_for_timeunit(time_unit: str) -> list[str]:
|
132
|
+
|
133
|
+
ohlc_df = ["timestamp", "open", "high", "low", "close", "volume"]
|
134
|
+
tick_df = ["timestamp", "bidPrice", "askPrice", "bidVolume", "askVolume"]
|
135
|
+
|
136
|
+
df = {
|
137
|
+
TIME_UNIT_DAY: ohlc_df,
|
138
|
+
TIME_UNIT_HOUR: ohlc_df,
|
139
|
+
TIME_UNIT_MIN: ohlc_df,
|
140
|
+
TIME_UNIT_MONTH: ohlc_df,
|
141
|
+
TIME_UNIT_SEC: ohlc_df,
|
142
|
+
TIME_UNIT_TICK: tick_df,
|
143
|
+
TIME_UNIT_WEEK: ohlc_df,
|
144
|
+
}[time_unit]
|
145
|
+
|
146
|
+
return df
|
147
|
+
|
148
|
+
|
149
|
+
def _fetch(
|
150
|
+
instrument: str,
|
151
|
+
interval: str,
|
152
|
+
offer_side: str,
|
153
|
+
last_update: int,
|
154
|
+
logger: logging.Logger = logging.getLogger(),
|
155
|
+
limit: int = None,
|
156
|
+
):
|
157
|
+
characters = string.ascii_letters + string.digits
|
158
|
+
jsonp = f"_callbacks____{''.join(random.choices(characters, k=9))}"
|
159
|
+
|
160
|
+
query_params = {
|
161
|
+
"path": "chart/json3",
|
162
|
+
"splits": "true",
|
163
|
+
"stocks": "true",
|
164
|
+
"time_direction": "N",
|
165
|
+
"jsonp": jsonp,
|
166
|
+
"last_update": f"{int(last_update)}",
|
167
|
+
"offer_side": f"{offer_side}",
|
168
|
+
"instrument": f"{instrument}",
|
169
|
+
"interval": f"{interval}",
|
170
|
+
}
|
171
|
+
|
172
|
+
if limit is not None:
|
173
|
+
# max limit is 30_000
|
174
|
+
query_params["limit"] = f"{int(limit)}"
|
175
|
+
|
176
|
+
base_url = "https://freeserv.dukascopy.com/2.0/index.php"
|
177
|
+
|
178
|
+
headers = {
|
179
|
+
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/135.0.0.0 Safari/537.36 Edg/135.0.0.0",
|
180
|
+
"Host": "freeserv.dukascopy.com",
|
181
|
+
"Referer": "https://freeserv.dukascopy.com/2.0/?path=chart/index&showUI=true&showTabs=true&showParameterToolbar=true&showOfferSide=true&allowInstrumentChange=true&allowPeriodChange=true&allowOfferSideChange=true&showAdditionalToolbar=true&showExportImportWorkspace=true&allowSocialSharing=true&showUndoRedoButtons=true&showDetachButton=true&presentationType=candle&axisX=true&axisY=true&legend=true&timeline=true&showDateSeparators=true&showZoom=true&showScrollButtons=true&showAutoShiftButton=true&crosshair=true&borders=false&freeMode=false&theme=Pastelle&uiColor=%23000&availableInstruments=l%3A&instrument=EUR/USD&period=5&offerSide=BID&timezone=0&live=true&allowPan=true&width=100%25&height=700&adv=popup&lang=en",
|
182
|
+
}
|
183
|
+
|
184
|
+
logger.debug("query params: %s", query_params)
|
185
|
+
|
186
|
+
response = requests.get(base_url, headers=headers, params=query_params)
|
187
|
+
|
188
|
+
jsonText = response.text.removeprefix(f"{jsonp}(").removesuffix(");")
|
189
|
+
|
190
|
+
return json.loads(jsonText)
|
191
|
+
|
192
|
+
|
193
|
+
def _stream(
|
194
|
+
instrument: str,
|
195
|
+
interval: str,
|
196
|
+
offer_side: str,
|
197
|
+
start: datetime,
|
198
|
+
end: datetime = None,
|
199
|
+
max_retries: int = 7,
|
200
|
+
limit: int = None,
|
201
|
+
logger: logging.Logger = logging.getLogger(),
|
202
|
+
):
|
203
|
+
no_of_retries = 0
|
204
|
+
cursor = int(start.timestamp() * 1000)
|
205
|
+
end_timestamp = None
|
206
|
+
if end is not None:
|
207
|
+
end_timestamp = end.timestamp() * 1000
|
208
|
+
|
209
|
+
is_first_iteration = True
|
210
|
+
|
211
|
+
logging.info(f"Start Date :{start.isoformat()}")
|
212
|
+
logging.info(f"End Date :{'' if end is None else end.isoformat()}")
|
213
|
+
|
214
|
+
while True:
|
215
|
+
try:
|
216
|
+
|
217
|
+
lastUpdates = _fetch(
|
218
|
+
instrument=instrument,
|
219
|
+
interval=interval,
|
220
|
+
offer_side=offer_side,
|
221
|
+
last_update=cursor,
|
222
|
+
limit=limit,
|
223
|
+
)
|
224
|
+
|
225
|
+
if not is_first_iteration and lastUpdates[0][0] == cursor:
|
226
|
+
lastUpdates = lastUpdates[1:]
|
227
|
+
|
228
|
+
if len(lastUpdates) < 1:
|
229
|
+
if end is not None:
|
230
|
+
break
|
231
|
+
else:
|
232
|
+
continue
|
233
|
+
|
234
|
+
for row in lastUpdates:
|
235
|
+
if end_timestamp is not None and row[0] > end_timestamp:
|
236
|
+
return
|
237
|
+
if interval == INTERVAL_TICK:
|
238
|
+
row[-1] = row[-1] / 1_000_000
|
239
|
+
row[-2] = row[-2] / 1_000_000
|
240
|
+
yield row
|
241
|
+
cursor = row[0]
|
242
|
+
|
243
|
+
logger.info(
|
244
|
+
f"current timestamp :{datetime.fromtimestamp(cursor/1000).isoformat()}"
|
245
|
+
)
|
246
|
+
|
247
|
+
no_of_retries = 0
|
248
|
+
is_first_iteration = False
|
249
|
+
|
250
|
+
except Exception as e:
|
251
|
+
import traceback
|
252
|
+
|
253
|
+
stacktrace = traceback.format_exc()
|
254
|
+
no_of_retries += 1
|
255
|
+
if max_retries is not None and (no_of_retries - 1) > max_retries:
|
256
|
+
logger.debug("error fetching")
|
257
|
+
logger.debug(e, stacktrace)
|
258
|
+
raise e
|
259
|
+
else:
|
260
|
+
logger.debug("an error occured", e)
|
261
|
+
logger.debug(e, stacktrace)
|
262
|
+
logger.debug("retrying")
|
263
|
+
sleep(1)
|
264
|
+
continue
|
265
|
+
|
266
|
+
|
267
|
+
def fetch(
|
268
|
+
instrument: str,
|
269
|
+
interval_value: str,
|
270
|
+
time_unit: str,
|
271
|
+
offer_side: str,
|
272
|
+
start: datetime,
|
273
|
+
end: datetime,
|
274
|
+
max_retries: int = 7,
|
275
|
+
limit: int = 30_000, # max 30_000
|
276
|
+
debug=False,
|
277
|
+
):
|
278
|
+
logger = _get_custom_logger(debug)
|
279
|
+
columns = _get_dataframe_columns_for_timeunit(time_unit)
|
280
|
+
|
281
|
+
data = []
|
282
|
+
|
283
|
+
interval = (
|
284
|
+
time_unit if time_unit == TIME_UNIT_TICK else f"{interval_value}{time_unit}"
|
285
|
+
)
|
286
|
+
|
287
|
+
if not _is_valid_api_interval(interval):
|
288
|
+
raise ValueError("allowed intervals ", INTERVALS_SET)
|
289
|
+
|
290
|
+
datafeed = _stream(
|
291
|
+
instrument=instrument,
|
292
|
+
interval=interval,
|
293
|
+
offer_side=offer_side,
|
294
|
+
start=start,
|
295
|
+
end=end,
|
296
|
+
max_retries=max_retries,
|
297
|
+
limit=limit,
|
298
|
+
logger=logger,
|
299
|
+
)
|
300
|
+
|
301
|
+
for row in datafeed:
|
302
|
+
data.append(row)
|
303
|
+
|
304
|
+
df = pd.DataFrame(data=data, columns=columns)
|
305
|
+
df["timestamp"] = pd.to_datetime(
|
306
|
+
df["timestamp"],
|
307
|
+
unit="ms",
|
308
|
+
utc=True,
|
309
|
+
)
|
310
|
+
df = df.set_index("timestamp")
|
311
|
+
return df
|
312
|
+
|
313
|
+
|
314
|
+
def live_fetch(
|
315
|
+
instrument: str,
|
316
|
+
interval_value: int,
|
317
|
+
time_unit: str,
|
318
|
+
offer_side: str,
|
319
|
+
start: datetime,
|
320
|
+
end: datetime,
|
321
|
+
max_retries: int = 7,
|
322
|
+
limit: int = 30_000, # max 30_000
|
323
|
+
debug=False,
|
324
|
+
):
|
325
|
+
logger = _get_custom_logger(debug)
|
326
|
+
|
327
|
+
# validate time unit
|
328
|
+
_resample_to_nearest(
|
329
|
+
datetime.now(),
|
330
|
+
time_unit,
|
331
|
+
interval_value,
|
332
|
+
)
|
333
|
+
|
334
|
+
open, high, low, close, volume = None, 0, 0, 0, 0
|
335
|
+
|
336
|
+
price_index = {
|
337
|
+
OFFER_SIDE_BID: 1,
|
338
|
+
OFFER_SIDE_ASK: 2,
|
339
|
+
}[offer_side]
|
340
|
+
|
341
|
+
volume_index = {
|
342
|
+
OFFER_SIDE_BID: -2,
|
343
|
+
OFFER_SIDE_ASK: -1,
|
344
|
+
}[offer_side]
|
345
|
+
|
346
|
+
last_timestamp = None
|
347
|
+
|
348
|
+
columns = _get_dataframe_columns_for_timeunit(time_unit)
|
349
|
+
df = pd.DataFrame(columns=columns)
|
350
|
+
df["timestamp"] = pd.to_datetime(
|
351
|
+
df["timestamp"],
|
352
|
+
unit="ms",
|
353
|
+
utc=True,
|
354
|
+
)
|
355
|
+
df = df.set_index("timestamp")
|
356
|
+
|
357
|
+
datafeed = _stream(
|
358
|
+
instrument=instrument,
|
359
|
+
interval=INTERVAL_TICK,
|
360
|
+
offer_side=offer_side,
|
361
|
+
start=start,
|
362
|
+
end=end,
|
363
|
+
max_retries=max_retries,
|
364
|
+
limit=limit,
|
365
|
+
logger=logger,
|
366
|
+
)
|
367
|
+
|
368
|
+
for row in datafeed:
|
369
|
+
|
370
|
+
timestamp = _resample_to_nearest(
|
371
|
+
pd.to_datetime(
|
372
|
+
row[0],
|
373
|
+
unit="ms",
|
374
|
+
utc=True,
|
375
|
+
),
|
376
|
+
time_unit,
|
377
|
+
interval_value,
|
378
|
+
)
|
379
|
+
|
380
|
+
if time_unit == TIME_UNIT_TICK:
|
381
|
+
df.loc[timestamp] = [
|
382
|
+
*row[1:],
|
383
|
+
]
|
384
|
+
yield df
|
385
|
+
continue
|
386
|
+
|
387
|
+
if last_timestamp == None:
|
388
|
+
last_timestamp = timestamp.timestamp()
|
389
|
+
|
390
|
+
if timestamp.timestamp() != last_timestamp:
|
391
|
+
if open is not None:
|
392
|
+
df.loc[timestamp] = [
|
393
|
+
open,
|
394
|
+
high,
|
395
|
+
low,
|
396
|
+
close,
|
397
|
+
volume,
|
398
|
+
]
|
399
|
+
|
400
|
+
yield df
|
401
|
+
last_timestamp = timestamp.timestamp()
|
402
|
+
open = None
|
403
|
+
|
404
|
+
if open is None:
|
405
|
+
open = row[price_index]
|
406
|
+
close = open
|
407
|
+
low = open
|
408
|
+
high = open
|
409
|
+
volume = 0
|
410
|
+
|
411
|
+
close = row[price_index]
|
412
|
+
high = max(high, close)
|
413
|
+
low = min(low, close)
|
414
|
+
volume += row[volume_index]
|
415
|
+
|
416
|
+
df.loc[timestamp] = [
|
417
|
+
open,
|
418
|
+
high,
|
419
|
+
low,
|
420
|
+
close,
|
421
|
+
volume,
|
422
|
+
]
|
423
|
+
yield df
|