duckrun 0.2.19.dev1__tar.gz → 0.2.19.dev8__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {duckrun-0.2.19.dev1 → duckrun-0.2.19.dev8}/PKG-INFO +1 -1
- {duckrun-0.2.19.dev1 → duckrun-0.2.19.dev8}/duckrun/__init__.py +2 -1
- {duckrun-0.2.19.dev1 → duckrun-0.2.19.dev8}/duckrun/core.py +201 -0
- duckrun-0.2.19.dev8/duckrun/rle.py +940 -0
- {duckrun-0.2.19.dev1 → duckrun-0.2.19.dev8}/duckrun.egg-info/PKG-INFO +1 -1
- {duckrun-0.2.19.dev1 → duckrun-0.2.19.dev8}/duckrun.egg-info/SOURCES.txt +4 -1
- {duckrun-0.2.19.dev1 → duckrun-0.2.19.dev8}/pyproject.toml +1 -1
- duckrun-0.2.19.dev8/tests/test_register.py +275 -0
- duckrun-0.2.19.dev8/tests/test_rle.py +16 -0
- {duckrun-0.2.19.dev1 → duckrun-0.2.19.dev8}/LICENSE +0 -0
- {duckrun-0.2.19.dev1 → duckrun-0.2.19.dev8}/README.md +0 -0
- {duckrun-0.2.19.dev1 → duckrun-0.2.19.dev8}/duckrun/auth.py +0 -0
- {duckrun-0.2.19.dev1 → duckrun-0.2.19.dev8}/duckrun/files.py +0 -0
- {duckrun-0.2.19.dev1 → duckrun-0.2.19.dev8}/duckrun/lakehouse.py +0 -0
- {duckrun-0.2.19.dev1 → duckrun-0.2.19.dev8}/duckrun/notebook.py +0 -0
- {duckrun-0.2.19.dev1 → duckrun-0.2.19.dev8}/duckrun/runner.py +0 -0
- {duckrun-0.2.19.dev1 → duckrun-0.2.19.dev8}/duckrun/semantic_model.py +0 -0
- {duckrun-0.2.19.dev1 → duckrun-0.2.19.dev8}/duckrun/stats.py +0 -0
- {duckrun-0.2.19.dev1 → duckrun-0.2.19.dev8}/duckrun/writer.py +0 -0
- {duckrun-0.2.19.dev1 → duckrun-0.2.19.dev8}/duckrun.egg-info/dependency_links.txt +0 -0
- {duckrun-0.2.19.dev1 → duckrun-0.2.19.dev8}/duckrun.egg-info/requires.txt +0 -0
- {duckrun-0.2.19.dev1 → duckrun-0.2.19.dev8}/duckrun.egg-info/top_level.txt +0 -0
- {duckrun-0.2.19.dev1 → duckrun-0.2.19.dev8}/setup.cfg +0 -0
|
@@ -2,10 +2,11 @@
|
|
|
2
2
|
|
|
3
3
|
from duckrun.core import Duckrun
|
|
4
4
|
from duckrun.notebook import import_notebook_from_web, import_notebook
|
|
5
|
+
from duckrun import rle
|
|
5
6
|
|
|
6
7
|
__version__ = "0.2.18"
|
|
7
8
|
|
|
8
9
|
# Expose unified connect method at module level
|
|
9
10
|
connect = Duckrun.connect
|
|
10
11
|
|
|
11
|
-
__all__ = ["Duckrun", "connect", "import_notebook_from_web", "import_notebook"]
|
|
12
|
+
__all__ = ["Duckrun", "connect", "import_notebook_from_web", "import_notebook", "rle"]
|
|
@@ -1035,6 +1035,21 @@ class Duckrun(WorkspaceOperationsMixin):
|
|
|
1035
1035
|
"""Get underlying DuckDB connection"""
|
|
1036
1036
|
return self.con
|
|
1037
1037
|
|
|
1038
|
+
def register(self, name: str, df):
|
|
1039
|
+
"""
|
|
1040
|
+
Register a pandas DataFrame as a virtual table in DuckDB.
|
|
1041
|
+
|
|
1042
|
+
Args:
|
|
1043
|
+
name: Name for the virtual table
|
|
1044
|
+
df: pandas DataFrame to register
|
|
1045
|
+
|
|
1046
|
+
Example:
|
|
1047
|
+
con = duckrun.connect("workspace/lakehouse.lakehouse")
|
|
1048
|
+
con.register("tb", df)
|
|
1049
|
+
con.sql("SELECT * FROM tb").show()
|
|
1050
|
+
"""
|
|
1051
|
+
self.con.register(name, df)
|
|
1052
|
+
|
|
1038
1053
|
def get_stats(self, source: str = None, detailed = False):
|
|
1039
1054
|
"""
|
|
1040
1055
|
Get comprehensive statistics for Delta Lake tables.
|
|
@@ -1244,8 +1259,194 @@ class Duckrun(WorkspaceOperationsMixin):
|
|
|
1244
1259
|
refresh=refresh
|
|
1245
1260
|
)
|
|
1246
1261
|
|
|
1262
|
+
def rle(self, table_name: str = None, mode = "natural",
|
|
1263
|
+
min_distinct_threshold: int = 2, max_cardinality_pct: float = 0.01,
|
|
1264
|
+
max_ordering_depth: int = 3, limit: int = None):
|
|
1265
|
+
"""
|
|
1266
|
+
Analyze RLE (Run-Length Encoding) compression potential for Delta Lake tables.
|
|
1267
|
+
|
|
1268
|
+
Args:
|
|
1269
|
+
table_name: Name of the table to analyze. Can be:
|
|
1270
|
+
- 'table_name' (uses current schema)
|
|
1271
|
+
- 'schema.table_name' (specific schema)
|
|
1272
|
+
mode: Analysis mode or column ordering:
|
|
1273
|
+
- "natural": Calculate RLE for natural order only (fastest)
|
|
1274
|
+
- "auto": Natural order + cardinality-based ordering (recommended)
|
|
1275
|
+
- "advanced": Natural + cardinality + greedy incremental search (most thorough)
|
|
1276
|
+
- List[str]: Specific column ordering to test, e.g., ['date', 'duid']
|
|
1277
|
+
min_distinct_threshold: Exclude columns with fewer distinct values (default: 2)
|
|
1278
|
+
max_cardinality_pct: Exclude columns with cardinality above this % (default: 0.01 = 1%)
|
|
1279
|
+
max_ordering_depth: Maximum depth for greedy search in "advanced" mode (default: 3)
|
|
1280
|
+
limit: Optional row limit for testing/development (default: None, analyzes all rows)
|
|
1281
|
+
|
|
1282
|
+
Returns:
|
|
1283
|
+
DataFrame with RLE analysis results
|
|
1284
|
+
|
|
1285
|
+
Examples:
|
|
1286
|
+
# Natural order only (baseline)
|
|
1287
|
+
con = duckrun.connect("workspace/lakehouse.lakehouse/schema")
|
|
1288
|
+
con.rle("mytable") # same as con.rle("mytable", "natural")
|
|
1289
|
+
|
|
1290
|
+
# Auto optimization (natural + cardinality-based)
|
|
1291
|
+
con.rle("mytable", "auto")
|
|
1292
|
+
|
|
1293
|
+
# Advanced optimization (greedy incremental search)
|
|
1294
|
+
con.rle("mytable", "advanced")
|
|
1295
|
+
|
|
1296
|
+
# Test specific column ordering
|
|
1297
|
+
con.rle("mytable", ["date", "duid"])
|
|
1298
|
+
con.rle("mytable", ["cutoff", "time", "DUID", "date"])
|
|
1299
|
+
|
|
1300
|
+
# Advanced with custom depth
|
|
1301
|
+
con.rle("mytable", "advanced", max_ordering_depth=4)
|
|
1302
|
+
|
|
1303
|
+
# Analyze table from different schema
|
|
1304
|
+
con.rle("otherschema.mytable", "auto")
|
|
1305
|
+
|
|
1306
|
+
# Custom thresholds for small tables
|
|
1307
|
+
con.rle("mytable", "auto", max_cardinality_pct=0.05)
|
|
1308
|
+
|
|
1309
|
+
# Limit rows for testing
|
|
1310
|
+
con.rle("mytable", "auto", limit=10000)
|
|
1311
|
+
"""
|
|
1312
|
+
from .rle import (
|
|
1313
|
+
calculate_cardinality_ratio,
|
|
1314
|
+
test_column_orderings_smart,
|
|
1315
|
+
calculate_rle_for_columns
|
|
1316
|
+
)
|
|
1317
|
+
from deltalake import DeltaTable
|
|
1318
|
+
|
|
1319
|
+
# Parse table name and construct path
|
|
1320
|
+
if table_name is None:
|
|
1321
|
+
if mode != "summary":
|
|
1322
|
+
print("⚠️ Table name is required for 'smart' and 'full' modes")
|
|
1323
|
+
return None
|
|
1324
|
+
# TODO: Implement all-tables summary
|
|
1325
|
+
print("⚠️ All-tables summary not yet implemented. Please specify a table name.")
|
|
1326
|
+
return None
|
|
1327
|
+
|
|
1328
|
+
# Parse schema.table or just table
|
|
1329
|
+
if '.' in table_name:
|
|
1330
|
+
schema_name, tbl = table_name.split('.', 1)
|
|
1331
|
+
else:
|
|
1332
|
+
schema_name = self.schema
|
|
1333
|
+
tbl = table_name
|
|
1334
|
+
|
|
1335
|
+
# Construct the full table path using the same logic as get_stats
|
|
1336
|
+
table_path = f"{self.table_base_url}{schema_name}/{tbl}"
|
|
1337
|
+
|
|
1338
|
+
# Verify table exists and is not empty
|
|
1339
|
+
print(f"📊 Analyzing table: {schema_name}.{tbl}")
|
|
1340
|
+
|
|
1341
|
+
try:
|
|
1342
|
+
dt = DeltaTable(table_path)
|
|
1343
|
+
delta_files = dt.files()
|
|
1344
|
+
|
|
1345
|
+
if not delta_files:
|
|
1346
|
+
print("⚠️ Table is empty (no files)")
|
|
1347
|
+
return None
|
|
1348
|
+
|
|
1349
|
+
except Exception as e:
|
|
1350
|
+
print(f"❌ Error accessing Delta table: {e}")
|
|
1351
|
+
return None
|
|
1352
|
+
|
|
1353
|
+
# Check if mode is a list of columns (custom ordering)
|
|
1354
|
+
if isinstance(mode, list):
|
|
1355
|
+
# User wants to test a specific column ordering
|
|
1356
|
+
print(f"Testing custom column ordering: {', '.join(mode)}")
|
|
1357
|
+
|
|
1358
|
+
# Calculate cardinality for NDV values
|
|
1359
|
+
card_stats = calculate_cardinality_ratio(self.con, table_name if table_name else f"delta_scan('{table_path}')", is_parquet=False)
|
|
1360
|
+
|
|
1361
|
+
# Calculate RLE for the specified ordering
|
|
1362
|
+
rle_counts = calculate_rle_for_columns(self.con, table_path, mode, limit)
|
|
1363
|
+
|
|
1364
|
+
total_rle_all = sum(rle_counts.values())
|
|
1365
|
+
|
|
1366
|
+
print(f"\nResults:")
|
|
1367
|
+
print(f" Custom ordering: [{', '.join(mode)}]")
|
|
1368
|
+
print(f" Total RLE (all columns): {total_rle_all:,} runs")
|
|
1369
|
+
|
|
1370
|
+
# Return as DataFrame for consistency
|
|
1371
|
+
import pandas as pd
|
|
1372
|
+
results = [{
|
|
1373
|
+
'schema': schema_name,
|
|
1374
|
+
'table': tbl,
|
|
1375
|
+
'sort_order': 'custom',
|
|
1376
|
+
'columns_used': ', '.join(mode),
|
|
1377
|
+
'total_rle_all': total_rle_all,
|
|
1378
|
+
**rle_counts
|
|
1379
|
+
}]
|
|
1380
|
+
|
|
1381
|
+
df = pd.DataFrame(results)
|
|
1382
|
+
|
|
1383
|
+
# Transform to long format
|
|
1384
|
+
long_format_results = []
|
|
1385
|
+
|
|
1386
|
+
for _, row in df.iterrows():
|
|
1387
|
+
schema_val = row['schema']
|
|
1388
|
+
table_val = row['table']
|
|
1389
|
+
sort_order = row['sort_order']
|
|
1390
|
+
columns_used = row['columns_used']
|
|
1391
|
+
total_rle_all_val = row['total_rle_all']
|
|
1392
|
+
|
|
1393
|
+
# Get all column names except metadata columns
|
|
1394
|
+
metadata_cols = ['schema', 'table', 'sort_order', 'columns_used', 'total_rle_all']
|
|
1395
|
+
data_columns = [col for col in df.columns if col not in metadata_cols]
|
|
1396
|
+
|
|
1397
|
+
# Get total rows from card_stats if available
|
|
1398
|
+
total_rows = card_stats[data_columns[0]]['total_rows'] if card_stats and data_columns else None
|
|
1399
|
+
|
|
1400
|
+
# Parse the columns_used to get ordering
|
|
1401
|
+
sort_columns_list = [c.strip() for c in columns_used.split(',')]
|
|
1402
|
+
|
|
1403
|
+
# Create one row per data column
|
|
1404
|
+
for col in data_columns:
|
|
1405
|
+
rle_value = row[col]
|
|
1406
|
+
|
|
1407
|
+
# Get NDV from card_stats
|
|
1408
|
+
ndv_value = card_stats[col]['distinct_values'] if card_stats and col in card_stats else None
|
|
1409
|
+
|
|
1410
|
+
# Determine if column was included in the sort and its position
|
|
1411
|
+
is_in_sort = col in sort_columns_list
|
|
1412
|
+
order_position = sort_columns_list.index(col) + 1 if is_in_sort else None
|
|
1413
|
+
comment = '' if is_in_sort else 'not included in the sort'
|
|
1414
|
+
|
|
1415
|
+
long_format_results.append({
|
|
1416
|
+
'schema': schema_val,
|
|
1417
|
+
'table': table_val,
|
|
1418
|
+
'sort_type': sort_order,
|
|
1419
|
+
'column': col,
|
|
1420
|
+
'order': order_position,
|
|
1421
|
+
'RLE': rle_value,
|
|
1422
|
+
'NDV': ndv_value,
|
|
1423
|
+
'total_rows': total_rows,
|
|
1424
|
+
'total_RLE': total_rle_all_val,
|
|
1425
|
+
'comments': comment
|
|
1426
|
+
})
|
|
1427
|
+
|
|
1428
|
+
long_df = pd.DataFrame(long_format_results)
|
|
1429
|
+
|
|
1430
|
+
return long_df
|
|
1431
|
+
|
|
1432
|
+
# All modes now use test_column_orderings_smart with the mode parameter
|
|
1433
|
+
return test_column_orderings_smart(
|
|
1434
|
+
self.con,
|
|
1435
|
+
table_path,
|
|
1436
|
+
table_name=table_name, # Pass table name for cardinality calculation on full dataset
|
|
1437
|
+
mode=mode,
|
|
1438
|
+
limit=limit,
|
|
1439
|
+
min_distinct_threshold=min_distinct_threshold,
|
|
1440
|
+
max_cardinality_pct=max_cardinality_pct,
|
|
1441
|
+
max_ordering_depth=max_ordering_depth,
|
|
1442
|
+
schema_name=schema_name,
|
|
1443
|
+
table_display_name=tbl,
|
|
1444
|
+
duckrun_instance=self # Pass duckrun instance for detailed parquet stats
|
|
1445
|
+
)
|
|
1446
|
+
|
|
1247
1447
|
def close(self):
|
|
1248
1448
|
"""Close DuckDB connection"""
|
|
1449
|
+
|
|
1249
1450
|
if self.con:
|
|
1250
1451
|
self.con.close()
|
|
1251
1452
|
print("Connection closed")
|