duckrun 0.2.18.dev3__tar.gz → 0.2.19.dev0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of duckrun might be problematic. Click here for more details.
- {duckrun-0.2.18.dev3 → duckrun-0.2.19.dev0}/PKG-INFO +1 -1
- {duckrun-0.2.18.dev3 → duckrun-0.2.19.dev0}/duckrun/__init__.py +1 -1
- {duckrun-0.2.18.dev3 → duckrun-0.2.19.dev0}/duckrun/core.py +22 -8
- {duckrun-0.2.18.dev3 → duckrun-0.2.19.dev0}/duckrun/notebook.py +2 -0
- {duckrun-0.2.18.dev3 → duckrun-0.2.19.dev0}/duckrun/semantic_model.py +27 -9
- {duckrun-0.2.18.dev3 → duckrun-0.2.19.dev0}/duckrun/stats.py +227 -67
- {duckrun-0.2.18.dev3 → duckrun-0.2.19.dev0}/duckrun.egg-info/PKG-INFO +1 -1
- {duckrun-0.2.18.dev3 → duckrun-0.2.19.dev0}/pyproject.toml +1 -1
- {duckrun-0.2.18.dev3 → duckrun-0.2.19.dev0}/LICENSE +0 -0
- {duckrun-0.2.18.dev3 → duckrun-0.2.19.dev0}/README.md +0 -0
- {duckrun-0.2.18.dev3 → duckrun-0.2.19.dev0}/duckrun/auth.py +0 -0
- {duckrun-0.2.18.dev3 → duckrun-0.2.19.dev0}/duckrun/files.py +0 -0
- {duckrun-0.2.18.dev3 → duckrun-0.2.19.dev0}/duckrun/lakehouse.py +0 -0
- {duckrun-0.2.18.dev3 → duckrun-0.2.19.dev0}/duckrun/runner.py +0 -0
- {duckrun-0.2.18.dev3 → duckrun-0.2.19.dev0}/duckrun/writer.py +0 -0
- {duckrun-0.2.18.dev3 → duckrun-0.2.19.dev0}/duckrun.egg-info/SOURCES.txt +0 -0
- {duckrun-0.2.18.dev3 → duckrun-0.2.19.dev0}/duckrun.egg-info/dependency_links.txt +0 -0
- {duckrun-0.2.18.dev3 → duckrun-0.2.19.dev0}/duckrun.egg-info/requires.txt +0 -0
- {duckrun-0.2.18.dev3 → duckrun-0.2.19.dev0}/duckrun.egg-info/top_level.txt +0 -0
- {duckrun-0.2.18.dev3 → duckrun-0.2.19.dev0}/setup.cfg +0 -0
|
@@ -1035,7 +1035,7 @@ class Duckrun(WorkspaceOperationsMixin):
|
|
|
1035
1035
|
"""Get underlying DuckDB connection"""
|
|
1036
1036
|
return self.con
|
|
1037
1037
|
|
|
1038
|
-
def get_stats(self, source: str = None):
|
|
1038
|
+
def get_stats(self, source: str = None, detailed = False):
|
|
1039
1039
|
"""
|
|
1040
1040
|
Get comprehensive statistics for Delta Lake tables.
|
|
1041
1041
|
|
|
@@ -1045,27 +1045,34 @@ class Duckrun(WorkspaceOperationsMixin):
|
|
|
1045
1045
|
- Table name: 'table_name' (uses current schema)
|
|
1046
1046
|
- Schema.table: 'schema.table_name' (specific table in schema)
|
|
1047
1047
|
- Schema only: 'schema' (all tables in schema)
|
|
1048
|
+
detailed: Optional. Controls the level of detail in statistics:
|
|
1049
|
+
- False (default): Aggregated table-level stats
|
|
1050
|
+
- True: Row group level statistics with compression details
|
|
1048
1051
|
|
|
1049
1052
|
Returns:
|
|
1050
|
-
|
|
1051
|
-
|
|
1053
|
+
DataFrame with statistics based on detailed parameter:
|
|
1054
|
+
- If detailed=False: Aggregated table-level summary
|
|
1055
|
+
- If detailed=True: Granular file and row group level stats
|
|
1052
1056
|
|
|
1053
1057
|
Examples:
|
|
1054
1058
|
con = duckrun.connect("tmp/data.lakehouse/aemo")
|
|
1055
1059
|
|
|
1056
|
-
# All tables in current schema (aemo)
|
|
1060
|
+
# All tables in current schema (aemo) - aggregated
|
|
1057
1061
|
stats = con.get_stats()
|
|
1058
1062
|
|
|
1059
|
-
# Single table in current schema
|
|
1063
|
+
# Single table in current schema - aggregated
|
|
1060
1064
|
stats = con.get_stats('price')
|
|
1061
1065
|
|
|
1066
|
+
# Single table with detailed row group statistics
|
|
1067
|
+
stats_detailed = con.get_stats('price', detailed=True)
|
|
1068
|
+
|
|
1062
1069
|
# Specific table in different schema
|
|
1063
1070
|
stats = con.get_stats('aemo.price')
|
|
1064
1071
|
|
|
1065
1072
|
# All tables in a schema
|
|
1066
1073
|
stats = con.get_stats('aemo')
|
|
1067
1074
|
"""
|
|
1068
|
-
return _get_stats(self, source)
|
|
1075
|
+
return _get_stats(self, source, detailed)
|
|
1069
1076
|
|
|
1070
1077
|
def list_lakehouses(self) -> List[str]:
|
|
1071
1078
|
"""
|
|
@@ -1179,7 +1186,7 @@ class Duckrun(WorkspaceOperationsMixin):
|
|
|
1179
1186
|
return False
|
|
1180
1187
|
|
|
1181
1188
|
def deploy(self, bim_url: str, dataset_name: Optional[str] = None,
|
|
1182
|
-
wait_seconds: int = 5) -> int:
|
|
1189
|
+
wait_seconds: int = 5, refresh: str = "full") -> int:
|
|
1183
1190
|
"""
|
|
1184
1191
|
Deploy a semantic model from a BIM file using DirectLake mode.
|
|
1185
1192
|
|
|
@@ -1190,6 +1197,9 @@ class Duckrun(WorkspaceOperationsMixin):
|
|
|
1190
1197
|
- Workspace/Model: "workspace_name/model_name"
|
|
1191
1198
|
dataset_name: Name for the semantic model (default: schema name)
|
|
1192
1199
|
wait_seconds: Seconds to wait for permission propagation (default: 5)
|
|
1200
|
+
refresh: Refresh strategy:
|
|
1201
|
+
- "full": Clear values and process full refresh (default)
|
|
1202
|
+
- "ignore": Skip refresh entirely
|
|
1193
1203
|
|
|
1194
1204
|
Returns:
|
|
1195
1205
|
1 for success, 0 for failure
|
|
@@ -1205,6 +1215,9 @@ class Duckrun(WorkspaceOperationsMixin):
|
|
|
1205
1215
|
|
|
1206
1216
|
# Deploy with custom name
|
|
1207
1217
|
dr.deploy("https://github.com/.../model.bim", dataset_name="Sales Model")
|
|
1218
|
+
|
|
1219
|
+
# Deploy without refresh
|
|
1220
|
+
dr.deploy("https://github.com/.../model.bim", refresh="ignore")
|
|
1208
1221
|
"""
|
|
1209
1222
|
from .semantic_model import deploy_semantic_model
|
|
1210
1223
|
|
|
@@ -1227,7 +1240,8 @@ class Duckrun(WorkspaceOperationsMixin):
|
|
|
1227
1240
|
schema_name=self.schema,
|
|
1228
1241
|
dataset_name=dataset_name,
|
|
1229
1242
|
bim_url_or_path=bim_url,
|
|
1230
|
-
wait_seconds=wait_seconds
|
|
1243
|
+
wait_seconds=wait_seconds,
|
|
1244
|
+
refresh=refresh
|
|
1231
1245
|
)
|
|
1232
1246
|
|
|
1233
1247
|
def close(self):
|
|
@@ -160,6 +160,7 @@ def import_notebook_from_web(
|
|
|
160
160
|
update_url = f"{base_url}/workspaces/{workspace_id}/notebooks/{notebook_id}/updateDefinition"
|
|
161
161
|
payload = {
|
|
162
162
|
"definition": {
|
|
163
|
+
"format": "ipynb",
|
|
163
164
|
"parts": [
|
|
164
165
|
{
|
|
165
166
|
"path": "notebook-content.py",
|
|
@@ -192,6 +193,7 @@ def import_notebook_from_web(
|
|
|
192
193
|
payload = {
|
|
193
194
|
"displayName": notebook_name,
|
|
194
195
|
"definition": {
|
|
196
|
+
"format": "ipynb",
|
|
195
197
|
"parts": [
|
|
196
198
|
{
|
|
197
199
|
"path": "notebook-content.py",
|
|
@@ -129,16 +129,21 @@ def check_dataset_exists(dataset_name, workspace_id, client):
|
|
|
129
129
|
return False
|
|
130
130
|
|
|
131
131
|
|
|
132
|
-
def refresh_dataset(dataset_name, workspace_id, client, dataset_id=None):
|
|
132
|
+
def refresh_dataset(dataset_name, workspace_id, client, dataset_id=None, refresh="full"):
|
|
133
133
|
"""Refresh a dataset and monitor progress using Power BI API
|
|
134
134
|
|
|
135
|
-
For DirectLake models, performs
|
|
136
|
-
|
|
137
|
-
|
|
135
|
+
For DirectLake models, performs refresh based on refresh parameter:
|
|
136
|
+
- refresh="full": Two-step refresh (clearValues + full reframe)
|
|
137
|
+
- refresh="ignore": Skip refresh entirely
|
|
138
138
|
|
|
139
139
|
If a refresh is already in progress, waits for it to complete before starting a new one.
|
|
140
140
|
"""
|
|
141
141
|
|
|
142
|
+
# Skip refresh entirely if refresh is "ignore"
|
|
143
|
+
if refresh == "ignore":
|
|
144
|
+
print(" Ignoring refresh - skipping refresh")
|
|
145
|
+
return
|
|
146
|
+
|
|
142
147
|
# If dataset_id not provided, look it up by name
|
|
143
148
|
if not dataset_id:
|
|
144
149
|
dataset_id = get_dataset_id(dataset_name, workspace_id, client)
|
|
@@ -539,7 +544,7 @@ def create_dataset_from_bim(dataset_name, bim_content, workspace_id, client):
|
|
|
539
544
|
|
|
540
545
|
|
|
541
546
|
def deploy_semantic_model(workspace_name_or_id, lakehouse_name_or_id, schema_name, dataset_name,
|
|
542
|
-
bim_url_or_path, wait_seconds=5):
|
|
547
|
+
bim_url_or_path, wait_seconds=5, refresh="full"):
|
|
543
548
|
"""
|
|
544
549
|
Deploy a semantic model using DirectLake mode.
|
|
545
550
|
|
|
@@ -550,6 +555,9 @@ def deploy_semantic_model(workspace_name_or_id, lakehouse_name_or_id, schema_nam
|
|
|
550
555
|
dataset_name: Name for the semantic model
|
|
551
556
|
bim_url_or_path: URL to the BIM file or local file path (e.g., 'model.bim' or 'https://...')
|
|
552
557
|
wait_seconds: Seconds to wait before refresh (default: 5)
|
|
558
|
+
refresh: Refresh strategy (default: "full")
|
|
559
|
+
- "full": Clear values and process full refresh
|
|
560
|
+
- "ignore": Skip refresh entirely
|
|
553
561
|
|
|
554
562
|
Returns:
|
|
555
563
|
1 for success, 0 for failure
|
|
@@ -562,6 +570,9 @@ def deploy_semantic_model(workspace_name_or_id, lakehouse_name_or_id, schema_nam
|
|
|
562
570
|
# Using a local file
|
|
563
571
|
dr.deploy("./my_model.bim")
|
|
564
572
|
dr.deploy("C:/path/to/model.bim")
|
|
573
|
+
|
|
574
|
+
# Deploy without refresh
|
|
575
|
+
dr.deploy("./my_model.bim", refresh="ignore")
|
|
565
576
|
"""
|
|
566
577
|
print("=" * 70)
|
|
567
578
|
print("Semantic Model Deployment (DirectLake)")
|
|
@@ -586,7 +597,7 @@ def deploy_semantic_model(workspace_name_or_id, lakehouse_name_or_id, schema_nam
|
|
|
586
597
|
time.sleep(wait_seconds)
|
|
587
598
|
|
|
588
599
|
print("\n[Step 3/3] Refreshing existing semantic model...")
|
|
589
|
-
refresh_dataset(dataset_name, workspace_id, client)
|
|
600
|
+
refresh_dataset(dataset_name, workspace_id, client, refresh=refresh)
|
|
590
601
|
|
|
591
602
|
print("\n" + "=" * 70)
|
|
592
603
|
print("🎉 Refresh Completed!")
|
|
@@ -618,7 +629,7 @@ def deploy_semantic_model(workspace_name_or_id, lakehouse_name_or_id, schema_nam
|
|
|
618
629
|
|
|
619
630
|
# Step 6: Refresh using the dataset ID returned from creation
|
|
620
631
|
print("\n[Step 6/6] Refreshing semantic model...")
|
|
621
|
-
refresh_dataset(dataset_name, workspace_id, client, dataset_id=dataset_id)
|
|
632
|
+
refresh_dataset(dataset_name, workspace_id, client, dataset_id=dataset_id, refresh=refresh)
|
|
622
633
|
|
|
623
634
|
print("\n" + "=" * 70)
|
|
624
635
|
print("🎉 Deployment Completed!")
|
|
@@ -645,7 +656,7 @@ def deploy_semantic_model(workspace_name_or_id, lakehouse_name_or_id, schema_nam
|
|
|
645
656
|
return 0
|
|
646
657
|
|
|
647
658
|
|
|
648
|
-
def copy_model(ws_source, model_name, destination, new_model_name=None, wait_seconds=5):
|
|
659
|
+
def copy_model(ws_source, model_name, destination, new_model_name=None, wait_seconds=5, refresh="full"):
|
|
649
660
|
"""
|
|
650
661
|
Copy a semantic model from one workspace to another.
|
|
651
662
|
|
|
@@ -658,6 +669,9 @@ def copy_model(ws_source, model_name, destination, new_model_name=None, wait_sec
|
|
|
658
669
|
destination: Destination in format "workspace/lakehouse.lakehouse/schema"
|
|
659
670
|
new_model_name: Name for the new semantic model (default: same as source)
|
|
660
671
|
wait_seconds: Seconds to wait before refresh (default: 5)
|
|
672
|
+
refresh: Refresh strategy (default: "full")
|
|
673
|
+
- "full": Clear values and process full refresh
|
|
674
|
+
- "ignore": Skip refresh entirely
|
|
661
675
|
|
|
662
676
|
Returns:
|
|
663
677
|
1 for success, 0 for failure
|
|
@@ -670,6 +684,9 @@ def copy_model(ws_source, model_name, destination, new_model_name=None, wait_sec
|
|
|
670
684
|
copy_model("Source WS", "Production Model", "Target WS/Data Lake.lakehouse/analytics",
|
|
671
685
|
new_model_name="Production Model - Copy")
|
|
672
686
|
|
|
687
|
+
# Copy without refresh
|
|
688
|
+
copy_model("Source WS", "Model", "Target WS/LH.lakehouse/dbo", refresh="ignore")
|
|
689
|
+
|
|
673
690
|
# Using the connect pattern
|
|
674
691
|
import duckrun
|
|
675
692
|
duckrun.semantic_model.copy_model("Source", "Model", "Target/LH.lakehouse/dbo")
|
|
@@ -796,7 +813,8 @@ def copy_model(ws_source, model_name, destination, new_model_name=None, wait_sec
|
|
|
796
813
|
schema_name=schema,
|
|
797
814
|
dataset_name=new_model_name,
|
|
798
815
|
bim_url_or_path=temp_bim_path,
|
|
799
|
-
wait_seconds=wait_seconds
|
|
816
|
+
wait_seconds=wait_seconds,
|
|
817
|
+
refresh=refresh
|
|
800
818
|
)
|
|
801
819
|
|
|
802
820
|
# Clean up temp file
|
|
@@ -60,7 +60,50 @@ def _get_existing_tables_in_schema(duckrun_instance, schema_name: str) -> list:
|
|
|
60
60
|
return []
|
|
61
61
|
|
|
62
62
|
|
|
63
|
-
def
|
|
63
|
+
def _match_tables_by_pattern(duckrun_instance, pattern: str) -> dict:
|
|
64
|
+
"""Match tables across all schemas using a wildcard pattern.
|
|
65
|
+
Pattern can be:
|
|
66
|
+
- '*.summary' - matches 'summary' table in all schemas
|
|
67
|
+
- '*summary' - matches any table ending with 'summary'
|
|
68
|
+
- 'schema.*' - matches all tables in 'schema'
|
|
69
|
+
Returns a dict mapping schema names to lists of matching table names."""
|
|
70
|
+
import fnmatch
|
|
71
|
+
|
|
72
|
+
try:
|
|
73
|
+
# Query all schemas and tables in one go
|
|
74
|
+
query = """
|
|
75
|
+
SELECT table_schema, table_name
|
|
76
|
+
FROM information_schema.tables
|
|
77
|
+
WHERE table_schema NOT LIKE 'pg_%'
|
|
78
|
+
AND table_schema != 'information_schema'
|
|
79
|
+
AND table_name NOT LIKE 'tbl_%'
|
|
80
|
+
"""
|
|
81
|
+
result = duckrun_instance.con.execute(query).fetchall()
|
|
82
|
+
|
|
83
|
+
matched = {}
|
|
84
|
+
|
|
85
|
+
# Check if pattern contains a dot (schema.table pattern)
|
|
86
|
+
if '.' in pattern:
|
|
87
|
+
schema_pattern, table_pattern = pattern.split('.', 1)
|
|
88
|
+
for schema, table in result:
|
|
89
|
+
if fnmatch.fnmatch(schema, schema_pattern) and fnmatch.fnmatch(table, table_pattern):
|
|
90
|
+
if schema not in matched:
|
|
91
|
+
matched[schema] = []
|
|
92
|
+
matched[schema].append(table)
|
|
93
|
+
else:
|
|
94
|
+
# Pattern matches only table names
|
|
95
|
+
for schema, table in result:
|
|
96
|
+
if fnmatch.fnmatch(table, pattern):
|
|
97
|
+
if schema not in matched:
|
|
98
|
+
matched[schema] = []
|
|
99
|
+
matched[schema].append(table)
|
|
100
|
+
|
|
101
|
+
return matched
|
|
102
|
+
except:
|
|
103
|
+
return {}
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
def get_stats(duckrun_instance, source: str = None, detailed = False):
|
|
64
107
|
"""
|
|
65
108
|
Get comprehensive statistics for Delta Lake tables.
|
|
66
109
|
|
|
@@ -71,25 +114,35 @@ def get_stats(duckrun_instance, source: str = None):
|
|
|
71
114
|
- Table name: 'table_name' (uses main schema in DuckDB)
|
|
72
115
|
- Schema.table: 'schema.table_name' (specific table in schema, if multi-schema)
|
|
73
116
|
- Schema only: 'schema' (all tables in schema, if multi-schema)
|
|
117
|
+
- Wildcard pattern: '*.summary' (matches tables across all schemas)
|
|
118
|
+
detailed: Optional. Controls the level of detail in statistics:
|
|
119
|
+
- False (default): Aggregated table-level stats (total rows, file count,
|
|
120
|
+
row groups, average row group size, file sizes, VORDER status)
|
|
121
|
+
- True: Row group level statistics with compression details, row group sizes,
|
|
122
|
+
and parquet metadata
|
|
74
123
|
|
|
75
124
|
Returns:
|
|
76
|
-
|
|
77
|
-
|
|
125
|
+
DataFrame with statistics based on detailed parameter:
|
|
126
|
+
- If detailed=False: Aggregated table-level summary
|
|
127
|
+
- If detailed=True: Granular file and row group level stats
|
|
78
128
|
|
|
79
129
|
Examples:
|
|
80
130
|
con = duckrun.connect("tmp/data.lakehouse/test")
|
|
81
131
|
|
|
82
|
-
# All tables in the connection's schema
|
|
132
|
+
# All tables in the connection's schema (aggregated)
|
|
83
133
|
stats = con.get_stats()
|
|
84
134
|
|
|
85
|
-
# Single table
|
|
86
|
-
|
|
135
|
+
# Single table with detailed row group statistics
|
|
136
|
+
stats_detailed = con.get_stats('price_today', detailed=True)
|
|
87
137
|
|
|
88
138
|
# Specific table in different schema (only if multi-schema enabled)
|
|
89
139
|
stats = con.get_stats('aemo.price')
|
|
90
140
|
|
|
91
141
|
# All tables in a schema (only if multi-schema enabled)
|
|
92
142
|
stats = con.get_stats('aemo')
|
|
143
|
+
|
|
144
|
+
# Wildcard pattern across all schemas (only if multi-schema enabled)
|
|
145
|
+
stats = con.get_stats('*.summary')
|
|
93
146
|
"""
|
|
94
147
|
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
|
|
95
148
|
|
|
@@ -101,8 +154,27 @@ def get_stats(duckrun_instance, source: str = None):
|
|
|
101
154
|
if source is None:
|
|
102
155
|
source = url_schema
|
|
103
156
|
|
|
157
|
+
# Check if source contains wildcard characters
|
|
158
|
+
if '*' in source or '?' in source:
|
|
159
|
+
# Wildcard pattern mode - only valid if multi-schema is enabled
|
|
160
|
+
if not duckrun_instance.scan_all_schemas:
|
|
161
|
+
raise ValueError(f"Wildcard pattern '{source}' not supported. Connection was made to a specific schema '{url_schema}'. Enable multi-schema mode to use wildcards.")
|
|
162
|
+
|
|
163
|
+
matched_tables = _match_tables_by_pattern(duckrun_instance, source)
|
|
164
|
+
|
|
165
|
+
if not matched_tables:
|
|
166
|
+
raise ValueError(f"No tables found matching pattern '{source}'")
|
|
167
|
+
|
|
168
|
+
# Flatten the matched tables into a list with schema info
|
|
169
|
+
tables_with_schemas = []
|
|
170
|
+
for schema, tables in matched_tables.items():
|
|
171
|
+
for table in tables:
|
|
172
|
+
tables_with_schemas.append((schema, table))
|
|
173
|
+
|
|
174
|
+
print(f"Found {len(tables_with_schemas)} tables matching pattern '{source}'")
|
|
175
|
+
|
|
104
176
|
# Parse the source and validate existence
|
|
105
|
-
|
|
177
|
+
elif '.' in source:
|
|
106
178
|
# Format: schema.table - only valid if multi-schema is enabled
|
|
107
179
|
schema_name, table_name = source.split('.', 1)
|
|
108
180
|
|
|
@@ -113,46 +185,45 @@ def get_stats(duckrun_instance, source: str = None):
|
|
|
113
185
|
if not _table_exists(duckrun_instance, schema_name, table_name):
|
|
114
186
|
raise ValueError(f"Table '{table_name}' does not exist in schema '{schema_name}'")
|
|
115
187
|
|
|
116
|
-
|
|
188
|
+
tables_with_schemas = [(schema_name, table_name)]
|
|
117
189
|
else:
|
|
118
190
|
# Could be just table name or schema name
|
|
119
191
|
if duckrun_instance.scan_all_schemas:
|
|
120
192
|
# Multi-schema mode: DuckDB has actual schemas
|
|
121
193
|
# First check if it's a table in main schema
|
|
122
194
|
if _table_exists(duckrun_instance, duckdb_schema, source):
|
|
123
|
-
|
|
124
|
-
schema_name = duckdb_schema
|
|
195
|
+
tables_with_schemas = [(duckdb_schema, source)]
|
|
125
196
|
# Otherwise, check if it's a schema name
|
|
126
197
|
elif _schema_exists(duckrun_instance, source):
|
|
127
198
|
schema_name = source
|
|
128
199
|
list_tables = _get_existing_tables_in_schema(duckrun_instance, source)
|
|
129
200
|
if not list_tables:
|
|
130
201
|
raise ValueError(f"Schema '{source}' exists but contains no tables")
|
|
202
|
+
tables_with_schemas = [(schema_name, tbl) for tbl in list_tables]
|
|
131
203
|
else:
|
|
132
204
|
raise ValueError(f"Neither table '{source}' in main schema nor schema '{source}' exists")
|
|
133
205
|
else:
|
|
134
206
|
# Single-schema mode: tables are in DuckDB's main schema, use URL schema for file paths
|
|
135
207
|
if _table_exists(duckrun_instance, duckdb_schema, source):
|
|
136
208
|
# It's a table name
|
|
137
|
-
|
|
138
|
-
schema_name = url_schema # Use URL schema for file path construction
|
|
209
|
+
tables_with_schemas = [(url_schema, source)]
|
|
139
210
|
elif source == url_schema:
|
|
140
211
|
# Special case: user asked for stats on the URL schema name - list all tables
|
|
141
212
|
list_tables = _get_existing_tables_in_schema(duckrun_instance, duckdb_schema)
|
|
142
|
-
schema_name = url_schema # Use URL schema for file path construction
|
|
143
213
|
if not list_tables:
|
|
144
214
|
raise ValueError(f"No tables found in schema '{url_schema}'")
|
|
215
|
+
tables_with_schemas = [(url_schema, tbl) for tbl in list_tables]
|
|
145
216
|
else:
|
|
146
217
|
raise ValueError(f"Table '{source}' does not exist in the current context (schema: {url_schema})")
|
|
147
218
|
|
|
148
219
|
# Use the existing connection
|
|
149
220
|
con = duckrun_instance.con
|
|
150
221
|
|
|
151
|
-
print(f"Processing {len(
|
|
222
|
+
print(f"Processing {len(tables_with_schemas)} tables from {len(set(s for s, t in tables_with_schemas))} schema(s)")
|
|
152
223
|
|
|
153
224
|
successful_tables = []
|
|
154
|
-
for idx, tbl in enumerate(
|
|
155
|
-
print(f"[{idx+1}/{len(
|
|
225
|
+
for idx, (schema_name, tbl) in enumerate(tables_with_schemas):
|
|
226
|
+
print(f"[{idx+1}/{len(tables_with_schemas)}] Processing table '{schema_name}.{tbl}'...")
|
|
156
227
|
# Construct lakehouse path using correct ABFSS URL format (no .Lakehouse suffix)
|
|
157
228
|
table_path = f"{duckrun_instance.table_base_url}{schema_name}/{tbl}"
|
|
158
229
|
|
|
@@ -179,8 +250,18 @@ def get_stats(duckrun_instance, source: str = None):
|
|
|
179
250
|
print(f"Warning: Could not convert RecordBatch for table '{tbl}': Unexpected type {type(add_actions)}")
|
|
180
251
|
xx = {}
|
|
181
252
|
|
|
182
|
-
# Check if VORDER exists
|
|
183
|
-
|
|
253
|
+
# Check if VORDER exists - handle both formats:
|
|
254
|
+
# 1. Flattened format: 'tags.VORDER' or 'tags.vorder' in keys
|
|
255
|
+
# 2. Nested format: check in 'tags' dict for 'VORDER' or 'vorder'
|
|
256
|
+
vorder = False
|
|
257
|
+
if 'tags.VORDER' in xx.keys() or 'tags.vorder' in xx.keys():
|
|
258
|
+
vorder = True
|
|
259
|
+
elif 'tags' in xx.keys() and xx['tags']:
|
|
260
|
+
# Check nested tags dictionary (tags is a list of dicts, one per file)
|
|
261
|
+
for tag_dict in xx['tags']:
|
|
262
|
+
if tag_dict and ('VORDER' in tag_dict or 'vorder' in tag_dict):
|
|
263
|
+
vorder = True
|
|
264
|
+
break
|
|
184
265
|
|
|
185
266
|
# Calculate total size
|
|
186
267
|
total_size = sum(xx['size_bytes']) if xx['size_bytes'] else 0
|
|
@@ -195,6 +276,7 @@ def get_stats(duckrun_instance, source: str = None):
|
|
|
195
276
|
con.execute(f'''
|
|
196
277
|
CREATE OR REPLACE TEMP TABLE tbl_{idx} AS
|
|
197
278
|
SELECT
|
|
279
|
+
'{schema_name}' as schema,
|
|
198
280
|
'{tbl}' as tbl,
|
|
199
281
|
'empty' as file_name,
|
|
200
282
|
0 as num_rows,
|
|
@@ -207,21 +289,45 @@ def get_stats(duckrun_instance, source: str = None):
|
|
|
207
289
|
''')
|
|
208
290
|
else:
|
|
209
291
|
# Get parquet metadata and create temp table with compression info
|
|
210
|
-
|
|
211
|
-
|
|
212
|
-
|
|
213
|
-
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
|
|
292
|
+
if detailed == True:
|
|
293
|
+
# Detailed mode: Include row group level statistics
|
|
294
|
+
con.execute(f'''
|
|
295
|
+
CREATE OR REPLACE TEMP TABLE tbl_{idx} AS
|
|
296
|
+
SELECT
|
|
297
|
+
'{schema_name}' as schema,
|
|
298
|
+
'{tbl}' as tbl,
|
|
299
|
+
pm.file_name,
|
|
300
|
+
pm.row_group_id,
|
|
301
|
+
pm.row_group_num_rows,
|
|
302
|
+
pm.row_group_num_columns,
|
|
303
|
+
pm.row_group_bytes,
|
|
304
|
+
{vorder} as vorder,
|
|
305
|
+
pm.compression,
|
|
306
|
+
pm.total_compressed_size,
|
|
307
|
+
pm.total_uncompressed_size,
|
|
308
|
+
ROUND(pm.total_compressed_size::DOUBLE / NULLIF(pm.total_uncompressed_size, 0), 4) as compression_ratio,
|
|
309
|
+
'{timestamp}' as timestamp
|
|
310
|
+
FROM parquet_metadata({delta}) pm
|
|
311
|
+
WHERE pm.column_id = 0 -- Only include first column to avoid duplication per column
|
|
312
|
+
''')
|
|
313
|
+
else:
|
|
314
|
+
# Aggregated mode: Original summary statistics
|
|
315
|
+
con.execute(f'''
|
|
316
|
+
CREATE OR REPLACE TEMP TABLE tbl_{idx} AS
|
|
317
|
+
SELECT
|
|
318
|
+
'{schema_name}' as schema,
|
|
319
|
+
'{tbl}' as tbl,
|
|
320
|
+
fm.file_name,
|
|
321
|
+
fm.num_rows,
|
|
322
|
+
fm.num_row_groups,
|
|
323
|
+
CEIL({total_size}/(1024*1024)) as size,
|
|
324
|
+
{vorder} as vorder,
|
|
325
|
+
COALESCE(STRING_AGG(DISTINCT pm.compression, ', ' ORDER BY pm.compression), 'UNCOMPRESSED') as compression,
|
|
326
|
+
'{timestamp}' as timestamp
|
|
327
|
+
FROM parquet_file_metadata({delta}) fm
|
|
328
|
+
LEFT JOIN parquet_metadata({delta}) pm ON fm.file_name = pm.file_name
|
|
329
|
+
GROUP BY fm.file_name, fm.num_rows, fm.num_row_groups
|
|
330
|
+
''')
|
|
225
331
|
|
|
226
332
|
except Exception as e:
|
|
227
333
|
error_msg = str(e)
|
|
@@ -245,6 +351,7 @@ def get_stats(duckrun_instance, source: str = None):
|
|
|
245
351
|
con.execute(f'''
|
|
246
352
|
CREATE OR REPLACE TEMP TABLE tbl_{idx} AS
|
|
247
353
|
SELECT
|
|
354
|
+
'{schema_name}' as schema,
|
|
248
355
|
'{tbl}' as tbl,
|
|
249
356
|
'empty' as file_name,
|
|
250
357
|
0 as num_rows,
|
|
@@ -269,21 +376,45 @@ def get_stats(duckrun_instance, source: str = None):
|
|
|
269
376
|
filenames.append(table_path + "/" + filename)
|
|
270
377
|
|
|
271
378
|
# Use parquet_file_metadata to get actual parquet stats with compression
|
|
272
|
-
|
|
273
|
-
|
|
274
|
-
|
|
275
|
-
|
|
276
|
-
|
|
277
|
-
|
|
278
|
-
|
|
279
|
-
|
|
280
|
-
|
|
281
|
-
|
|
282
|
-
|
|
283
|
-
|
|
284
|
-
|
|
285
|
-
|
|
286
|
-
|
|
379
|
+
if detailed == True:
|
|
380
|
+
# Detailed mode: Include row group level statistics
|
|
381
|
+
con.execute(f'''
|
|
382
|
+
CREATE OR REPLACE TEMP TABLE tbl_{idx} AS
|
|
383
|
+
SELECT
|
|
384
|
+
'{schema_name}' as schema,
|
|
385
|
+
'{tbl}' as tbl,
|
|
386
|
+
pm.file_name,
|
|
387
|
+
pm.row_group_id,
|
|
388
|
+
pm.row_group_num_rows,
|
|
389
|
+
pm.row_group_num_columns,
|
|
390
|
+
pm.row_group_bytes,
|
|
391
|
+
false as vorder,
|
|
392
|
+
pm.compression,
|
|
393
|
+
pm.total_compressed_size,
|
|
394
|
+
pm.total_uncompressed_size,
|
|
395
|
+
ROUND(pm.total_compressed_size::DOUBLE / NULLIF(pm.total_uncompressed_size, 0), 4) as compression_ratio,
|
|
396
|
+
'{timestamp}' as timestamp
|
|
397
|
+
FROM parquet_metadata({filenames}) pm
|
|
398
|
+
WHERE pm.column_id = 0 -- Only include first column to avoid duplication per column
|
|
399
|
+
''')
|
|
400
|
+
else:
|
|
401
|
+
# Aggregated mode: Original summary statistics
|
|
402
|
+
con.execute(f'''
|
|
403
|
+
CREATE OR REPLACE TEMP TABLE tbl_{idx} AS
|
|
404
|
+
SELECT
|
|
405
|
+
'{schema_name}' as schema,
|
|
406
|
+
'{tbl}' as tbl,
|
|
407
|
+
fm.file_name,
|
|
408
|
+
fm.num_rows,
|
|
409
|
+
fm.num_row_groups,
|
|
410
|
+
0 as size,
|
|
411
|
+
false as vorder,
|
|
412
|
+
COALESCE(STRING_AGG(DISTINCT pm.compression, ', ' ORDER BY pm.compression), 'UNCOMPRESSED') as compression,
|
|
413
|
+
'{timestamp}' as timestamp
|
|
414
|
+
FROM parquet_file_metadata({filenames}) fm
|
|
415
|
+
LEFT JOIN parquet_metadata({filenames}) pm ON fm.file_name = pm.file_name
|
|
416
|
+
GROUP BY fm.file_name, fm.num_rows, fm.num_row_groups
|
|
417
|
+
''')
|
|
287
418
|
|
|
288
419
|
print(f" ✓ Successfully processed '{tbl}' using DuckDB fallback with parquet metadata")
|
|
289
420
|
except Exception as fallback_error:
|
|
@@ -299,30 +430,59 @@ def get_stats(duckrun_instance, source: str = None):
|
|
|
299
430
|
# No tables were processed successfully - return empty dataframe
|
|
300
431
|
print("⚠️ No tables could be processed successfully")
|
|
301
432
|
import pandas as pd
|
|
302
|
-
|
|
303
|
-
|
|
433
|
+
if detailed == True:
|
|
434
|
+
return pd.DataFrame(columns=['schema', 'tbl', 'file_name', 'row_group_id', 'row_group_num_rows',
|
|
435
|
+
'row_group_num_columns', 'row_group_bytes', 'vorder', 'compression',
|
|
436
|
+
'total_compressed_size', 'total_uncompressed_size', 'compression_ratio', 'timestamp'])
|
|
437
|
+
else:
|
|
438
|
+
return pd.DataFrame(columns=['schema', 'tbl', 'total_rows', 'num_files', 'num_row_group',
|
|
439
|
+
'average_row_group', 'file_size_MB', 'vorder', 'compression', 'timestamp'])
|
|
304
440
|
|
|
305
441
|
# Union all successfully processed temp tables
|
|
306
442
|
union_parts = [f'SELECT * FROM tbl_{i}' for i in successful_tables]
|
|
307
443
|
union_query = ' UNION ALL '.join(union_parts)
|
|
308
444
|
|
|
309
|
-
# Generate final summary
|
|
310
|
-
|
|
311
|
-
|
|
312
|
-
|
|
313
|
-
|
|
314
|
-
|
|
315
|
-
|
|
316
|
-
|
|
317
|
-
|
|
318
|
-
|
|
319
|
-
|
|
320
|
-
|
|
321
|
-
|
|
322
|
-
|
|
323
|
-
|
|
324
|
-
|
|
325
|
-
|
|
445
|
+
# Generate final summary based on detailed flag
|
|
446
|
+
if detailed == True:
|
|
447
|
+
# Detailed mode: Return row group level data without aggregation
|
|
448
|
+
final_result = con.execute(f'''
|
|
449
|
+
SELECT
|
|
450
|
+
schema,
|
|
451
|
+
tbl,
|
|
452
|
+
file_name,
|
|
453
|
+
row_group_id,
|
|
454
|
+
row_group_num_rows,
|
|
455
|
+
row_group_num_columns,
|
|
456
|
+
row_group_bytes,
|
|
457
|
+
vorder,
|
|
458
|
+
compression,
|
|
459
|
+
total_compressed_size,
|
|
460
|
+
total_uncompressed_size,
|
|
461
|
+
compression_ratio,
|
|
462
|
+
timestamp
|
|
463
|
+
FROM ({union_query})
|
|
464
|
+
WHERE tbl IS NOT NULL
|
|
465
|
+
ORDER BY schema, tbl, file_name, row_group_id
|
|
466
|
+
''').df()
|
|
467
|
+
else:
|
|
468
|
+
# Aggregated mode: Original summary statistics
|
|
469
|
+
final_result = con.execute(f'''
|
|
470
|
+
SELECT
|
|
471
|
+
schema,
|
|
472
|
+
tbl,
|
|
473
|
+
SUM(num_rows) as total_rows,
|
|
474
|
+
COUNT(*) as num_files,
|
|
475
|
+
SUM(num_row_groups) as num_row_group,
|
|
476
|
+
CAST(CEIL(SUM(num_rows)::DOUBLE / NULLIF(SUM(num_row_groups), 0)) AS INTEGER) as average_row_group,
|
|
477
|
+
MIN(size) as file_size_MB,
|
|
478
|
+
ANY_VALUE(vorder) as vorder,
|
|
479
|
+
STRING_AGG(DISTINCT compression, ', ' ORDER BY compression) as compression,
|
|
480
|
+
ANY_VALUE(timestamp) as timestamp
|
|
481
|
+
FROM ({union_query})
|
|
482
|
+
WHERE tbl IS NOT NULL
|
|
483
|
+
GROUP BY schema, tbl
|
|
484
|
+
ORDER BY total_rows DESC
|
|
485
|
+
''').df()
|
|
326
486
|
|
|
327
487
|
return final_result
|
|
328
488
|
|
|
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|
|
4
4
|
|
|
5
5
|
[project]
|
|
6
6
|
name = "duckrun"
|
|
7
|
-
version = "0.2.
|
|
7
|
+
version = "0.2.19.dev0"
|
|
8
8
|
description = "Helper library for Fabric Python using duckdb, arrow and delta_rs (orchestration, queries, etc.)"
|
|
9
9
|
readme = "README.md"
|
|
10
10
|
license = {text = "MIT"}
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|