duckrun 0.2.18.dev1__tar.gz → 0.2.18.dev5__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of duckrun might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: duckrun
3
- Version: 0.2.18.dev1
3
+ Version: 0.2.18.dev5
4
4
  Summary: Helper library for Fabric Python using duckdb, arrow and delta_rs (orchestration, queries, etc.)
5
5
  Author: mim
6
6
  License: MIT
@@ -3,7 +3,7 @@
3
3
  from duckrun.core import Duckrun
4
4
  from duckrun.notebook import import_notebook_from_web, import_notebook
5
5
 
6
- __version__ = "0.2.18.dev1"
6
+ __version__ = "0.2.18.dev2"
7
7
 
8
8
  # Expose unified connect method at module level
9
9
  connect = Duckrun.connect
@@ -1035,12 +1035,13 @@ class Duckrun(WorkspaceOperationsMixin):
1035
1035
  """Get underlying DuckDB connection"""
1036
1036
  return self.con
1037
1037
 
1038
- def get_stats(self, source: str):
1038
+ def get_stats(self, source: str = None):
1039
1039
  """
1040
1040
  Get comprehensive statistics for Delta Lake tables.
1041
1041
 
1042
1042
  Args:
1043
- source: Can be one of:
1043
+ source: Optional. Can be one of:
1044
+ - None: Use all tables in the connection's schema (default)
1044
1045
  - Table name: 'table_name' (uses current schema)
1045
1046
  - Schema.table: 'schema.table_name' (specific table in schema)
1046
1047
  - Schema only: 'schema' (all tables in schema)
@@ -1052,6 +1053,9 @@ class Duckrun(WorkspaceOperationsMixin):
1052
1053
  Examples:
1053
1054
  con = duckrun.connect("tmp/data.lakehouse/aemo")
1054
1055
 
1056
+ # All tables in current schema (aemo)
1057
+ stats = con.get_stats()
1058
+
1055
1059
  # Single table in current schema
1056
1060
  stats = con.get_stats('price')
1057
1061
 
@@ -1175,7 +1179,7 @@ class Duckrun(WorkspaceOperationsMixin):
1175
1179
  return False
1176
1180
 
1177
1181
  def deploy(self, bim_url: str, dataset_name: Optional[str] = None,
1178
- wait_seconds: int = 5) -> int:
1182
+ wait_seconds: int = 5, refresh: str = "full") -> int:
1179
1183
  """
1180
1184
  Deploy a semantic model from a BIM file using DirectLake mode.
1181
1185
 
@@ -1184,8 +1188,11 @@ class Duckrun(WorkspaceOperationsMixin):
1184
1188
  - URL: "https://raw.githubusercontent.com/.../model.bim"
1185
1189
  - Local file: "model.bim"
1186
1190
  - Workspace/Model: "workspace_name/model_name"
1187
- dataset_name: Name for the semantic model (default: source model name if workspace/model format, else lakehouse_schema)
1191
+ dataset_name: Name for the semantic model (default: schema name)
1188
1192
  wait_seconds: Seconds to wait for permission propagation (default: 5)
1193
+ refresh: Refresh strategy:
1194
+ - "full": Clear values and process full refresh (default)
1195
+ - "ignore": Skip refresh entirely
1189
1196
 
1190
1197
  Returns:
1191
1198
  1 for success, 0 for failure
@@ -1193,14 +1200,17 @@ class Duckrun(WorkspaceOperationsMixin):
1193
1200
  Examples:
1194
1201
  dr = Duckrun.connect("My Workspace/My Lakehouse.lakehouse/dbo")
1195
1202
 
1203
+ # Deploy with schema name as dataset name (dbo)
1204
+ dr.deploy("https://github.com/.../model.bim")
1205
+
1196
1206
  # Deploy from workspace/model (uses same name by default)
1197
1207
  dr.deploy("Source Workspace/Source Model") # Creates "Source Model"
1198
1208
 
1199
1209
  # Deploy with custom name
1200
- dr.deploy("Source Workspace/Source Model", dataset_name="Sales Model Copy")
1210
+ dr.deploy("https://github.com/.../model.bim", dataset_name="Sales Model")
1201
1211
 
1202
- # Deploy from URL or local file
1203
- dr.deploy("https://raw.githubusercontent.com/.../model.bim", dataset_name="My Model")
1212
+ # Deploy without refresh
1213
+ dr.deploy("https://github.com/.../model.bim", refresh="ignore")
1204
1214
  """
1205
1215
  from .semantic_model import deploy_semantic_model
1206
1216
 
@@ -1212,9 +1222,9 @@ class Duckrun(WorkspaceOperationsMixin):
1212
1222
  if len(parts) == 2:
1213
1223
  dataset_name = parts[1] # Use the model name
1214
1224
  else:
1215
- dataset_name = f"{self.lakehouse_name}_{self.schema}"
1225
+ dataset_name = self.schema # Use schema name
1216
1226
  else:
1217
- dataset_name = f"{self.lakehouse_name}_{self.schema}"
1227
+ dataset_name = self.schema # Use schema name
1218
1228
 
1219
1229
  # Call the deployment function (DirectLake only)
1220
1230
  return deploy_semantic_model(
@@ -1223,7 +1233,8 @@ class Duckrun(WorkspaceOperationsMixin):
1223
1233
  schema_name=self.schema,
1224
1234
  dataset_name=dataset_name,
1225
1235
  bim_url_or_path=bim_url,
1226
- wait_seconds=wait_seconds
1236
+ wait_seconds=wait_seconds,
1237
+ refresh=refresh
1227
1238
  )
1228
1239
 
1229
1240
  def close(self):
@@ -129,14 +129,72 @@ def check_dataset_exists(dataset_name, workspace_id, client):
129
129
  return False
130
130
 
131
131
 
132
- def refresh_dataset(dataset_name, workspace_id, client, dataset_id=None):
133
- """Refresh a dataset and monitor progress using Power BI API"""
132
+ def refresh_dataset(dataset_name, workspace_id, client, dataset_id=None, refresh="full"):
133
+ """Refresh a dataset and monitor progress using Power BI API
134
+
135
+ For DirectLake models, performs refresh based on refresh parameter:
136
+ - refresh="full": Two-step refresh (clearValues + full reframe)
137
+ - refresh="ignore": Skip refresh entirely
138
+
139
+ If a refresh is already in progress, waits for it to complete before starting a new one.
140
+ """
141
+
142
+ # Skip refresh entirely if refresh is "ignore"
143
+ if refresh == "ignore":
144
+ print(" Ignoring refresh - skipping refresh")
145
+ return
134
146
 
135
147
  # If dataset_id not provided, look it up by name
136
148
  if not dataset_id:
137
149
  dataset_id = get_dataset_id(dataset_name, workspace_id, client)
138
150
 
139
- payload = {
151
+ # Use Power BI API for refresh (not Fabric API)
152
+ powerbi_url = f"https://api.powerbi.com/v1.0/myorg/datasets/{dataset_id}/refreshes"
153
+ headers = client._get_headers()
154
+
155
+ # Check for in-progress refreshes
156
+ print(" Checking for in-progress refreshes...")
157
+ try:
158
+ status_response = requests.get(f"{powerbi_url}?$top=1", headers=headers)
159
+ if status_response.status_code == 200:
160
+ refreshes = status_response.json().get('value', [])
161
+ if refreshes:
162
+ latest_refresh = refreshes[0]
163
+ status = latest_refresh.get('status')
164
+ if status in ['InProgress', 'Unknown']:
165
+ refresh_id = latest_refresh.get('requestId')
166
+ print(f" ⚠️ Found in-progress refresh (ID: {refresh_id})")
167
+ print(f" Waiting for current refresh to complete...")
168
+
169
+ # Wait for the in-progress refresh to complete
170
+ max_wait_attempts = 60
171
+ for attempt in range(max_wait_attempts):
172
+ time.sleep(5)
173
+ check_response = requests.get(f"{powerbi_url}/{refresh_id}", headers=headers)
174
+ if check_response.status_code == 200:
175
+ current_status = check_response.json().get('status')
176
+
177
+ if current_status == 'Completed':
178
+ print(f" ✓ Previous refresh completed")
179
+ break
180
+ elif current_status == 'Failed':
181
+ print(f" ⚠️ Previous refresh failed, continuing with new refresh")
182
+ break
183
+ elif current_status == 'Cancelled':
184
+ print(f" ⚠️ Previous refresh was cancelled, continuing with new refresh")
185
+ break
186
+
187
+ if attempt % 6 == 0:
188
+ print(f" Still waiting... (status: {current_status})")
189
+ else:
190
+ print(f" ⚠️ Timeout waiting for previous refresh, will attempt new refresh anyway")
191
+ except Exception as e:
192
+ print(f" ⚠️ Could not check refresh status: {e}")
193
+ print(f" Continuing with refresh attempt...")
194
+
195
+ # Step 1: clearValues - Purge data from memory
196
+ print(" Step 1: Clearing values from memory...")
197
+ clearvalues_payload = {
140
198
  "type": "clearValues",
141
199
  "commitMode": "transactional",
142
200
  "maxParallelism": 10,
@@ -144,14 +202,63 @@ def refresh_dataset(dataset_name, workspace_id, client, dataset_id=None):
144
202
  "objects": []
145
203
  }
146
204
 
147
- # Use Power BI API for refresh (not Fabric API)
148
- powerbi_url = f"https://api.powerbi.com/v1.0/myorg/datasets/{dataset_id}/refreshes"
149
- headers = client._get_headers()
205
+ response = requests.post(powerbi_url, headers=headers, json=clearvalues_payload)
150
206
 
151
- response = requests.post(powerbi_url, headers=headers, json=payload)
207
+ if response.status_code in [200, 202]:
208
+ # For 202, monitor the clearValues operation
209
+ if response.status_code == 202:
210
+ location = response.headers.get('Location')
211
+ if location:
212
+ clear_refresh_id = location.split('/')[-1]
213
+ print(" ✓ Clear values initiated, monitoring progress...")
214
+
215
+ max_attempts = 60
216
+ for attempt in range(max_attempts):
217
+ time.sleep(2)
218
+
219
+ status_url = f"https://api.powerbi.com/v1.0/myorg/datasets/{dataset_id}/refreshes/{clear_refresh_id}"
220
+ status_response = requests.get(status_url, headers=headers)
221
+ status_response.raise_for_status()
222
+ status = status_response.json().get('status')
223
+
224
+ if status == 'Completed':
225
+ print(f" ✓ Clear values completed")
226
+ break
227
+ elif status == 'Failed':
228
+ error = status_response.json().get('serviceExceptionJson', '')
229
+ raise Exception(f"Clear values failed: {error}")
230
+ elif status == 'Cancelled':
231
+ raise Exception("Clear values was cancelled")
232
+
233
+ if attempt % 10 == 0 and attempt > 0:
234
+ print(f" Clear values status: {status}...")
235
+ else:
236
+ raise Exception(f"Clear values timed out")
237
+ else:
238
+ print(" ✓ Clear values completed")
239
+ else:
240
+ # Provide detailed error message
241
+ try:
242
+ error_details = response.json()
243
+ error_message = error_details.get('error', {}).get('message', response.text)
244
+ raise Exception(f"Clear values failed with status {response.status_code}: {error_message}")
245
+ except (json.JSONDecodeError, ValueError):
246
+ response.raise_for_status()
247
+
248
+ # Step 2: full refresh - Reframe data from Delta tables
249
+ print(" Step 2: Full refresh to reframe data...")
250
+ full_payload = {
251
+ "type": "full",
252
+ "commitMode": "transactional",
253
+ "maxParallelism": 10,
254
+ "retryCount": 2,
255
+ "objects": []
256
+ }
257
+
258
+ response = requests.post(powerbi_url, headers=headers, json=full_payload)
152
259
 
153
260
  if response.status_code in [200, 202]:
154
- print(f"✓ Refresh initiated")
261
+ print(f" ✓ Refresh initiated")
155
262
 
156
263
  # For 202, get the refresh_id from the Location header
157
264
  if response.status_code == 202:
@@ -183,7 +290,13 @@ def refresh_dataset(dataset_name, workspace_id, client, dataset_id=None):
183
290
 
184
291
  raise Exception(f"Refresh timed out")
185
292
  else:
186
- response.raise_for_status()
293
+ # Provide detailed error message
294
+ try:
295
+ error_details = response.json()
296
+ error_message = error_details.get('error', {}).get('message', response.text)
297
+ raise Exception(f"Refresh request failed with status {response.status_code}: {error_message}")
298
+ except (json.JSONDecodeError, ValueError):
299
+ response.raise_for_status()
187
300
 
188
301
 
189
302
  def download_bim_from_github(url_or_path):
@@ -431,7 +544,7 @@ def create_dataset_from_bim(dataset_name, bim_content, workspace_id, client):
431
544
 
432
545
 
433
546
  def deploy_semantic_model(workspace_name_or_id, lakehouse_name_or_id, schema_name, dataset_name,
434
- bim_url_or_path, wait_seconds=5):
547
+ bim_url_or_path, wait_seconds=5, refresh="full"):
435
548
  """
436
549
  Deploy a semantic model using DirectLake mode.
437
550
 
@@ -442,6 +555,9 @@ def deploy_semantic_model(workspace_name_or_id, lakehouse_name_or_id, schema_nam
442
555
  dataset_name: Name for the semantic model
443
556
  bim_url_or_path: URL to the BIM file or local file path (e.g., 'model.bim' or 'https://...')
444
557
  wait_seconds: Seconds to wait before refresh (default: 5)
558
+ refresh: Refresh strategy (default: "full")
559
+ - "full": Clear values and process full refresh
560
+ - "ignore": Skip refresh entirely
445
561
 
446
562
  Returns:
447
563
  1 for success, 0 for failure
@@ -454,6 +570,9 @@ def deploy_semantic_model(workspace_name_or_id, lakehouse_name_or_id, schema_nam
454
570
  # Using a local file
455
571
  dr.deploy("./my_model.bim")
456
572
  dr.deploy("C:/path/to/model.bim")
573
+
574
+ # Deploy without refresh
575
+ dr.deploy("./my_model.bim", refresh="ignore")
457
576
  """
458
577
  print("=" * 70)
459
578
  print("Semantic Model Deployment (DirectLake)")
@@ -471,14 +590,14 @@ def deploy_semantic_model(workspace_name_or_id, lakehouse_name_or_id, schema_nam
471
590
  dataset_exists = check_dataset_exists(dataset_name, workspace_id, client)
472
591
 
473
592
  if dataset_exists:
474
- print(f"\n✓ Dataset exists - refreshing...")
593
+ print(f"✓ Dataset '{dataset_name}' already exists - skipping deployment")
475
594
 
476
595
  if wait_seconds > 0:
477
596
  print(f" Waiting {wait_seconds} seconds...")
478
597
  time.sleep(wait_seconds)
479
598
 
480
- print("\n[Step 6/6] Refreshing semantic model...")
481
- refresh_dataset(dataset_name, workspace_id, client)
599
+ print("\n[Step 3/3] Refreshing existing semantic model...")
600
+ refresh_dataset(dataset_name, workspace_id, client, refresh=refresh)
482
601
 
483
602
  print("\n" + "=" * 70)
484
603
  print("🎉 Refresh Completed!")
@@ -510,7 +629,7 @@ def deploy_semantic_model(workspace_name_or_id, lakehouse_name_or_id, schema_nam
510
629
 
511
630
  # Step 6: Refresh using the dataset ID returned from creation
512
631
  print("\n[Step 6/6] Refreshing semantic model...")
513
- refresh_dataset(dataset_name, workspace_id, client, dataset_id=dataset_id)
632
+ refresh_dataset(dataset_name, workspace_id, client, dataset_id=dataset_id, refresh=refresh)
514
633
 
515
634
  print("\n" + "=" * 70)
516
635
  print("🎉 Deployment Completed!")
@@ -537,7 +656,7 @@ def deploy_semantic_model(workspace_name_or_id, lakehouse_name_or_id, schema_nam
537
656
  return 0
538
657
 
539
658
 
540
- def copy_model(ws_source, model_name, destination, new_model_name=None, wait_seconds=5):
659
+ def copy_model(ws_source, model_name, destination, new_model_name=None, wait_seconds=5, refresh="full"):
541
660
  """
542
661
  Copy a semantic model from one workspace to another.
543
662
 
@@ -550,6 +669,9 @@ def copy_model(ws_source, model_name, destination, new_model_name=None, wait_sec
550
669
  destination: Destination in format "workspace/lakehouse.lakehouse/schema"
551
670
  new_model_name: Name for the new semantic model (default: same as source)
552
671
  wait_seconds: Seconds to wait before refresh (default: 5)
672
+ refresh: Refresh strategy (default: "full")
673
+ - "full": Clear values and process full refresh
674
+ - "ignore": Skip refresh entirely
553
675
 
554
676
  Returns:
555
677
  1 for success, 0 for failure
@@ -562,6 +684,9 @@ def copy_model(ws_source, model_name, destination, new_model_name=None, wait_sec
562
684
  copy_model("Source WS", "Production Model", "Target WS/Data Lake.lakehouse/analytics",
563
685
  new_model_name="Production Model - Copy")
564
686
 
687
+ # Copy without refresh
688
+ copy_model("Source WS", "Model", "Target WS/LH.lakehouse/dbo", refresh="ignore")
689
+
565
690
  # Using the connect pattern
566
691
  import duckrun
567
692
  duckrun.semantic_model.copy_model("Source", "Model", "Target/LH.lakehouse/dbo")
@@ -688,7 +813,8 @@ def copy_model(ws_source, model_name, destination, new_model_name=None, wait_sec
688
813
  schema_name=schema,
689
814
  dataset_name=new_model_name,
690
815
  bim_url_or_path=temp_bim_path,
691
- wait_seconds=wait_seconds
816
+ wait_seconds=wait_seconds,
817
+ refresh=refresh
692
818
  )
693
819
 
694
820
  # Clean up temp file
@@ -60,16 +60,61 @@ def _get_existing_tables_in_schema(duckrun_instance, schema_name: str) -> list:
60
60
  return []
61
61
 
62
62
 
63
- def get_stats(duckrun_instance, source: str):
63
+ def _match_tables_by_pattern(duckrun_instance, pattern: str) -> dict:
64
+ """Match tables across all schemas using a wildcard pattern.
65
+ Pattern can be:
66
+ - '*.summary' - matches 'summary' table in all schemas
67
+ - '*summary' - matches any table ending with 'summary'
68
+ - 'schema.*' - matches all tables in 'schema'
69
+ Returns a dict mapping schema names to lists of matching table names."""
70
+ import fnmatch
71
+
72
+ try:
73
+ # Query all schemas and tables in one go
74
+ query = """
75
+ SELECT table_schema, table_name
76
+ FROM information_schema.tables
77
+ WHERE table_schema NOT LIKE 'pg_%'
78
+ AND table_schema != 'information_schema'
79
+ AND table_name NOT LIKE 'tbl_%'
80
+ """
81
+ result = duckrun_instance.con.execute(query).fetchall()
82
+
83
+ matched = {}
84
+
85
+ # Check if pattern contains a dot (schema.table pattern)
86
+ if '.' in pattern:
87
+ schema_pattern, table_pattern = pattern.split('.', 1)
88
+ for schema, table in result:
89
+ if fnmatch.fnmatch(schema, schema_pattern) and fnmatch.fnmatch(table, table_pattern):
90
+ if schema not in matched:
91
+ matched[schema] = []
92
+ matched[schema].append(table)
93
+ else:
94
+ # Pattern matches only table names
95
+ for schema, table in result:
96
+ if fnmatch.fnmatch(table, pattern):
97
+ if schema not in matched:
98
+ matched[schema] = []
99
+ matched[schema].append(table)
100
+
101
+ return matched
102
+ except:
103
+ return {}
104
+
105
+
106
+ def get_stats(duckrun_instance, source: str = None):
64
107
  """
65
108
  Get comprehensive statistics for Delta Lake tables.
66
109
 
67
110
  Args:
68
111
  duckrun_instance: The Duckrun connection instance
69
- source: Can be one of:
112
+ source: Optional. Can be one of:
113
+ - None: Use all tables in the connection's schema (default)
70
114
  - Table name: 'table_name' (uses main schema in DuckDB)
71
115
  - Schema.table: 'schema.table_name' (specific table in schema, if multi-schema)
72
116
  - Schema only: 'schema' (all tables in schema, if multi-schema)
117
+ - Wildcard pattern: '*.summary' (matches tables across all schemas)
73
118
 
74
119
  Returns:
75
120
  Arrow table with statistics including total rows, file count, row groups,
@@ -78,6 +123,9 @@ def get_stats(duckrun_instance, source: str):
78
123
  Examples:
79
124
  con = duckrun.connect("tmp/data.lakehouse/test")
80
125
 
126
+ # All tables in the connection's schema
127
+ stats = con.get_stats()
128
+
81
129
  # Single table in main schema (DuckDB uses 'main', not 'test')
82
130
  stats = con.get_stats('price_today')
83
131
 
@@ -86,6 +134,9 @@ def get_stats(duckrun_instance, source: str):
86
134
 
87
135
  # All tables in a schema (only if multi-schema enabled)
88
136
  stats = con.get_stats('aemo')
137
+
138
+ # Wildcard pattern across all schemas (only if multi-schema enabled)
139
+ stats = con.get_stats('*.summary')
89
140
  """
90
141
  timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
91
142
 
@@ -93,8 +144,31 @@ def get_stats(duckrun_instance, source: str):
93
144
  duckdb_schema = "main"
94
145
  url_schema = duckrun_instance.schema # This is from the connection URL path
95
146
 
147
+ # If source is not provided, default to all tables in the connection's schema
148
+ if source is None:
149
+ source = url_schema
150
+
151
+ # Check if source contains wildcard characters
152
+ if '*' in source or '?' in source:
153
+ # Wildcard pattern mode - only valid if multi-schema is enabled
154
+ if not duckrun_instance.scan_all_schemas:
155
+ raise ValueError(f"Wildcard pattern '{source}' not supported. Connection was made to a specific schema '{url_schema}'. Enable multi-schema mode to use wildcards.")
156
+
157
+ matched_tables = _match_tables_by_pattern(duckrun_instance, source)
158
+
159
+ if not matched_tables:
160
+ raise ValueError(f"No tables found matching pattern '{source}'")
161
+
162
+ # Flatten the matched tables into a list with schema info
163
+ tables_with_schemas = []
164
+ for schema, tables in matched_tables.items():
165
+ for table in tables:
166
+ tables_with_schemas.append((schema, table))
167
+
168
+ print(f"Found {len(tables_with_schemas)} tables matching pattern '{source}'")
169
+
96
170
  # Parse the source and validate existence
97
- if '.' in source:
171
+ elif '.' in source:
98
172
  # Format: schema.table - only valid if multi-schema is enabled
99
173
  schema_name, table_name = source.split('.', 1)
100
174
 
@@ -105,46 +179,45 @@ def get_stats(duckrun_instance, source: str):
105
179
  if not _table_exists(duckrun_instance, schema_name, table_name):
106
180
  raise ValueError(f"Table '{table_name}' does not exist in schema '{schema_name}'")
107
181
 
108
- list_tables = [table_name]
182
+ tables_with_schemas = [(schema_name, table_name)]
109
183
  else:
110
184
  # Could be just table name or schema name
111
185
  if duckrun_instance.scan_all_schemas:
112
186
  # Multi-schema mode: DuckDB has actual schemas
113
187
  # First check if it's a table in main schema
114
188
  if _table_exists(duckrun_instance, duckdb_schema, source):
115
- list_tables = [source]
116
- schema_name = duckdb_schema
189
+ tables_with_schemas = [(duckdb_schema, source)]
117
190
  # Otherwise, check if it's a schema name
118
191
  elif _schema_exists(duckrun_instance, source):
119
192
  schema_name = source
120
193
  list_tables = _get_existing_tables_in_schema(duckrun_instance, source)
121
194
  if not list_tables:
122
195
  raise ValueError(f"Schema '{source}' exists but contains no tables")
196
+ tables_with_schemas = [(schema_name, tbl) for tbl in list_tables]
123
197
  else:
124
198
  raise ValueError(f"Neither table '{source}' in main schema nor schema '{source}' exists")
125
199
  else:
126
200
  # Single-schema mode: tables are in DuckDB's main schema, use URL schema for file paths
127
201
  if _table_exists(duckrun_instance, duckdb_schema, source):
128
202
  # It's a table name
129
- list_tables = [source]
130
- schema_name = url_schema # Use URL schema for file path construction
203
+ tables_with_schemas = [(url_schema, source)]
131
204
  elif source == url_schema:
132
205
  # Special case: user asked for stats on the URL schema name - list all tables
133
206
  list_tables = _get_existing_tables_in_schema(duckrun_instance, duckdb_schema)
134
- schema_name = url_schema # Use URL schema for file path construction
135
207
  if not list_tables:
136
208
  raise ValueError(f"No tables found in schema '{url_schema}'")
209
+ tables_with_schemas = [(url_schema, tbl) for tbl in list_tables]
137
210
  else:
138
211
  raise ValueError(f"Table '{source}' does not exist in the current context (schema: {url_schema})")
139
212
 
140
213
  # Use the existing connection
141
214
  con = duckrun_instance.con
142
215
 
143
- print(f"Processing {len(list_tables)} tables: {list_tables}")
216
+ print(f"Processing {len(tables_with_schemas)} tables from {len(set(s for s, t in tables_with_schemas))} schema(s)")
144
217
 
145
218
  successful_tables = []
146
- for idx, tbl in enumerate(list_tables):
147
- print(f"[{idx+1}/{len(list_tables)}] Processing table '{tbl}'...")
219
+ for idx, (schema_name, tbl) in enumerate(tables_with_schemas):
220
+ print(f"[{idx+1}/{len(tables_with_schemas)}] Processing table '{schema_name}.{tbl}'...")
148
221
  # Construct lakehouse path using correct ABFSS URL format (no .Lakehouse suffix)
149
222
  table_path = f"{duckrun_instance.table_base_url}{schema_name}/{tbl}"
150
223
 
@@ -171,8 +244,18 @@ def get_stats(duckrun_instance, source: str):
171
244
  print(f"Warning: Could not convert RecordBatch for table '{tbl}': Unexpected type {type(add_actions)}")
172
245
  xx = {}
173
246
 
174
- # Check if VORDER exists
175
- vorder = 'tags.VORDER' in xx.keys()
247
+ # Check if VORDER exists - handle both formats:
248
+ # 1. Flattened format: 'tags.VORDER' or 'tags.vorder' in keys
249
+ # 2. Nested format: check in 'tags' dict for 'VORDER' or 'vorder'
250
+ vorder = False
251
+ if 'tags.VORDER' in xx.keys() or 'tags.vorder' in xx.keys():
252
+ vorder = True
253
+ elif 'tags' in xx.keys() and xx['tags']:
254
+ # Check nested tags dictionary (tags is a list of dicts, one per file)
255
+ for tag_dict in xx['tags']:
256
+ if tag_dict and ('VORDER' in tag_dict or 'vorder' in tag_dict):
257
+ vorder = True
258
+ break
176
259
 
177
260
  # Calculate total size
178
261
  total_size = sum(xx['size_bytes']) if xx['size_bytes'] else 0
@@ -187,6 +270,7 @@ def get_stats(duckrun_instance, source: str):
187
270
  con.execute(f'''
188
271
  CREATE OR REPLACE TEMP TABLE tbl_{idx} AS
189
272
  SELECT
273
+ '{schema_name}' as schema,
190
274
  '{tbl}' as tbl,
191
275
  'empty' as file_name,
192
276
  0 as num_rows,
@@ -202,6 +286,7 @@ def get_stats(duckrun_instance, source: str):
202
286
  con.execute(f'''
203
287
  CREATE OR REPLACE TEMP TABLE tbl_{idx} AS
204
288
  SELECT
289
+ '{schema_name}' as schema,
205
290
  '{tbl}' as tbl,
206
291
  fm.file_name,
207
292
  fm.num_rows,
@@ -237,6 +322,7 @@ def get_stats(duckrun_instance, source: str):
237
322
  con.execute(f'''
238
323
  CREATE OR REPLACE TEMP TABLE tbl_{idx} AS
239
324
  SELECT
325
+ '{schema_name}' as schema,
240
326
  '{tbl}' as tbl,
241
327
  'empty' as file_name,
242
328
  0 as num_rows,
@@ -264,6 +350,7 @@ def get_stats(duckrun_instance, source: str):
264
350
  con.execute(f'''
265
351
  CREATE OR REPLACE TEMP TABLE tbl_{idx} AS
266
352
  SELECT
353
+ '{schema_name}' as schema,
267
354
  '{tbl}' as tbl,
268
355
  fm.file_name,
269
356
  fm.num_rows,
@@ -291,7 +378,7 @@ def get_stats(duckrun_instance, source: str):
291
378
  # No tables were processed successfully - return empty dataframe
292
379
  print("⚠️ No tables could be processed successfully")
293
380
  import pandas as pd
294
- return pd.DataFrame(columns=['tbl', 'total_rows', 'num_files', 'num_row_group',
381
+ return pd.DataFrame(columns=['schema', 'tbl', 'total_rows', 'num_files', 'num_row_group',
295
382
  'average_row_group', 'file_size_MB', 'vorder', 'compression', 'timestamp'])
296
383
 
297
384
  # Union all successfully processed temp tables
@@ -301,6 +388,7 @@ def get_stats(duckrun_instance, source: str):
301
388
  # Generate final summary
302
389
  final_result = con.execute(f'''
303
390
  SELECT
391
+ schema,
304
392
  tbl,
305
393
  SUM(num_rows) as total_rows,
306
394
  COUNT(*) as num_files,
@@ -312,7 +400,7 @@ def get_stats(duckrun_instance, source: str):
312
400
  ANY_VALUE(timestamp) as timestamp
313
401
  FROM ({union_query})
314
402
  WHERE tbl IS NOT NULL
315
- GROUP BY tbl
403
+ GROUP BY schema, tbl
316
404
  ORDER BY total_rows DESC
317
405
  ''').df()
318
406
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: duckrun
3
- Version: 0.2.18.dev1
3
+ Version: 0.2.18.dev5
4
4
  Summary: Helper library for Fabric Python using duckdb, arrow and delta_rs (orchestration, queries, etc.)
5
5
  Author: mim
6
6
  License: MIT
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "duckrun"
7
- version = "0.2.18.dev1"
7
+ version = "0.2.18.dev5"
8
8
  description = "Helper library for Fabric Python using duckdb, arrow and delta_rs (orchestration, queries, etc.)"
9
9
  readme = "README.md"
10
10
  license = {text = "MIT"}
File without changes
File without changes
File without changes