duckrun 0.1.5.3__tar.gz → 0.1.5.5__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: duckrun
3
- Version: 0.1.5.3
3
+ Version: 0.1.5.5
4
4
  Summary: Lakehouse task runner powered by DuckDB for Microsoft Fabric
5
5
  Author: mim
6
6
  License-Expression: MIT
@@ -39,11 +39,10 @@ pip install duckrun
39
39
  import duckrun
40
40
 
41
41
  # Connect to your Fabric lakehouse
42
- con = duckrun.connect(
43
- workspace="my_workspace",
44
- lakehouse_name="my_lakehouse",
45
- schema="dbo"
46
- )
42
+ con = duckrun.connect("my_workspace/my_lakehouse.lakehouse/dbo")
43
+
44
+ # Schema defaults to 'dbo' if not specified
45
+ con = duckrun.connect("my_workspace/my_lakehouse.lakehouse")
47
46
 
48
47
  # Explore data
49
48
  con.sql("SELECT * FROM my_table LIMIT 10").show()
@@ -54,6 +53,21 @@ con.sql("SELECT * FROM source").write.mode("overwrite").saveAsTable("target")
54
53
 
55
54
  That's it! No `sql_folder` needed for data exploration.
56
55
 
56
+ ## Connection Format
57
+
58
+ ```python
59
+ # With schema
60
+ con = duckrun.connect("workspace/lakehouse.lakehouse/schema")
61
+
62
+ # Without schema (uses 'dbo' by default)
63
+ con = duckrun.connect("workspace/lakehouse.lakehouse")
64
+
65
+ # With options
66
+ con = duckrun.connect("workspace/lakehouse.lakehouse/dbo", sql_folder="./sql")
67
+ ```
68
+
69
+ **Note:** When schema is not specified, Duckrun defaults to `dbo`. Multi-schema scanning will be added in a future update.
70
+
57
71
  ## Two Ways to Use Duckrun
58
72
 
59
73
  ### 1. Data Exploration (Spark-Style API)
@@ -61,7 +75,7 @@ That's it! No `sql_folder` needed for data exploration.
61
75
  Perfect for ad-hoc analysis and interactive notebooks:
62
76
 
63
77
  ```python
64
- con = duckrun.connect("workspace", "lakehouse", "dbo")
78
+ con = duckrun.connect("workspace/lakehouse.lakehouse/dbo")
65
79
 
66
80
  # Query existing tables
67
81
  con.sql("SELECT * FROM sales WHERE year = 2024").show()
@@ -90,9 +104,7 @@ For production workflows with reusable SQL and Python tasks:
90
104
 
91
105
  ```python
92
106
  con = duckrun.connect(
93
- workspace="my_workspace",
94
- lakehouse_name="my_lakehouse",
95
- schema="dbo",
107
+ "my_workspace/my_lakehouse.lakehouse/dbo",
96
108
  sql_folder="./sql" # folder with .sql and .py files
97
109
  )
98
110
 
@@ -185,9 +197,7 @@ Load tasks from GitHub or any URL:
185
197
 
186
198
  ```python
187
199
  con = duckrun.connect(
188
- workspace="Analytics",
189
- lakehouse_name="Sales",
190
- schema="dbo",
200
+ "Analytics/Sales.lakehouse/dbo",
191
201
  sql_folder="https://raw.githubusercontent.com/user/repo/main/sql"
192
202
  )
193
203
  ```
@@ -242,9 +252,7 @@ Customize compaction threshold:
242
252
 
243
253
  ```python
244
254
  con = duckrun.connect(
245
- workspace="workspace",
246
- lakehouse_name="lakehouse",
247
- schema="dbo",
255
+ "workspace/lakehouse.lakehouse/dbo",
248
256
  compaction_threshold=50 # compact after 50 files
249
257
  )
250
258
  ```
@@ -255,7 +263,7 @@ con = duckrun.connect(
255
263
  import duckrun
256
264
 
257
265
  # Connect
258
- con = duckrun.connect("Analytics", "Sales", "dbo", "./sql")
266
+ con = duckrun.connect("Analytics/Sales.lakehouse/dbo", sql_folder="./sql")
259
267
 
260
268
  # Pipeline with mixed tasks
261
269
  pipeline = [
@@ -22,11 +22,10 @@ pip install duckrun
22
22
  import duckrun
23
23
 
24
24
  # Connect to your Fabric lakehouse
25
- con = duckrun.connect(
26
- workspace="my_workspace",
27
- lakehouse_name="my_lakehouse",
28
- schema="dbo"
29
- )
25
+ con = duckrun.connect("my_workspace/my_lakehouse.lakehouse/dbo")
26
+
27
+ # Schema defaults to 'dbo' if not specified
28
+ con = duckrun.connect("my_workspace/my_lakehouse.lakehouse")
30
29
 
31
30
  # Explore data
32
31
  con.sql("SELECT * FROM my_table LIMIT 10").show()
@@ -37,6 +36,21 @@ con.sql("SELECT * FROM source").write.mode("overwrite").saveAsTable("target")
37
36
 
38
37
  That's it! No `sql_folder` needed for data exploration.
39
38
 
39
+ ## Connection Format
40
+
41
+ ```python
42
+ # With schema
43
+ con = duckrun.connect("workspace/lakehouse.lakehouse/schema")
44
+
45
+ # Without schema (uses 'dbo' by default)
46
+ con = duckrun.connect("workspace/lakehouse.lakehouse")
47
+
48
+ # With options
49
+ con = duckrun.connect("workspace/lakehouse.lakehouse/dbo", sql_folder="./sql")
50
+ ```
51
+
52
+ **Note:** When schema is not specified, Duckrun defaults to `dbo`. Multi-schema scanning will be added in a future update.
53
+
40
54
  ## Two Ways to Use Duckrun
41
55
 
42
56
  ### 1. Data Exploration (Spark-Style API)
@@ -44,7 +58,7 @@ That's it! No `sql_folder` needed for data exploration.
44
58
  Perfect for ad-hoc analysis and interactive notebooks:
45
59
 
46
60
  ```python
47
- con = duckrun.connect("workspace", "lakehouse", "dbo")
61
+ con = duckrun.connect("workspace/lakehouse.lakehouse/dbo")
48
62
 
49
63
  # Query existing tables
50
64
  con.sql("SELECT * FROM sales WHERE year = 2024").show()
@@ -73,9 +87,7 @@ For production workflows with reusable SQL and Python tasks:
73
87
 
74
88
  ```python
75
89
  con = duckrun.connect(
76
- workspace="my_workspace",
77
- lakehouse_name="my_lakehouse",
78
- schema="dbo",
90
+ "my_workspace/my_lakehouse.lakehouse/dbo",
79
91
  sql_folder="./sql" # folder with .sql and .py files
80
92
  )
81
93
 
@@ -168,9 +180,7 @@ Load tasks from GitHub or any URL:
168
180
 
169
181
  ```python
170
182
  con = duckrun.connect(
171
- workspace="Analytics",
172
- lakehouse_name="Sales",
173
- schema="dbo",
183
+ "Analytics/Sales.lakehouse/dbo",
174
184
  sql_folder="https://raw.githubusercontent.com/user/repo/main/sql"
175
185
  )
176
186
  ```
@@ -225,9 +235,7 @@ Customize compaction threshold:
225
235
 
226
236
  ```python
227
237
  con = duckrun.connect(
228
- workspace="workspace",
229
- lakehouse_name="lakehouse",
230
- schema="dbo",
238
+ "workspace/lakehouse.lakehouse/dbo",
231
239
  compaction_threshold=50 # compact after 50 files
232
240
  )
233
241
  ```
@@ -238,7 +246,7 @@ con = duckrun.connect(
238
246
  import duckrun
239
247
 
240
248
  # Connect
241
- con = duckrun.connect("Analytics", "Sales", "dbo", "./sql")
249
+ con = duckrun.connect("Analytics/Sales.lakehouse/dbo", sql_folder="./sql")
242
250
 
243
251
  # Pipeline with mixed tasks
244
252
  pipeline = [
@@ -162,6 +162,9 @@ class Duckrun:
162
162
  # Format: "ws/lh.lakehouse" (schema will use default)
163
163
  workspace, lakehouse_name = parts
164
164
  # schema already has default value "dbo"
165
+ print(f"ℹ️ No schema specified. Using default schema 'dbo'.")
166
+ print(f" To specify a schema, use: {workspace}/{lakehouse_name}.lakehouse/schema")
167
+ print(f" Note: Scanning all schemas will be added in a future update.\n")
165
168
  elif len(parts) == 3:
166
169
  # Format: "ws/lh.lakehouse/schema"
167
170
  workspace, lakehouse_name, schema = parts
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: duckrun
3
- Version: 0.1.5.3
3
+ Version: 0.1.5.5
4
4
  Summary: Lakehouse task runner powered by DuckDB for Microsoft Fabric
5
5
  Author: mim
6
6
  License-Expression: MIT
@@ -39,11 +39,10 @@ pip install duckrun
39
39
  import duckrun
40
40
 
41
41
  # Connect to your Fabric lakehouse
42
- con = duckrun.connect(
43
- workspace="my_workspace",
44
- lakehouse_name="my_lakehouse",
45
- schema="dbo"
46
- )
42
+ con = duckrun.connect("my_workspace/my_lakehouse.lakehouse/dbo")
43
+
44
+ # Schema defaults to 'dbo' if not specified
45
+ con = duckrun.connect("my_workspace/my_lakehouse.lakehouse")
47
46
 
48
47
  # Explore data
49
48
  con.sql("SELECT * FROM my_table LIMIT 10").show()
@@ -54,6 +53,21 @@ con.sql("SELECT * FROM source").write.mode("overwrite").saveAsTable("target")
54
53
 
55
54
  That's it! No `sql_folder` needed for data exploration.
56
55
 
56
+ ## Connection Format
57
+
58
+ ```python
59
+ # With schema
60
+ con = duckrun.connect("workspace/lakehouse.lakehouse/schema")
61
+
62
+ # Without schema (uses 'dbo' by default)
63
+ con = duckrun.connect("workspace/lakehouse.lakehouse")
64
+
65
+ # With options
66
+ con = duckrun.connect("workspace/lakehouse.lakehouse/dbo", sql_folder="./sql")
67
+ ```
68
+
69
+ **Note:** When schema is not specified, Duckrun defaults to `dbo`. Multi-schema scanning will be added in a future update.
70
+
57
71
  ## Two Ways to Use Duckrun
58
72
 
59
73
  ### 1. Data Exploration (Spark-Style API)
@@ -61,7 +75,7 @@ That's it! No `sql_folder` needed for data exploration.
61
75
  Perfect for ad-hoc analysis and interactive notebooks:
62
76
 
63
77
  ```python
64
- con = duckrun.connect("workspace", "lakehouse", "dbo")
78
+ con = duckrun.connect("workspace/lakehouse.lakehouse/dbo")
65
79
 
66
80
  # Query existing tables
67
81
  con.sql("SELECT * FROM sales WHERE year = 2024").show()
@@ -90,9 +104,7 @@ For production workflows with reusable SQL and Python tasks:
90
104
 
91
105
  ```python
92
106
  con = duckrun.connect(
93
- workspace="my_workspace",
94
- lakehouse_name="my_lakehouse",
95
- schema="dbo",
107
+ "my_workspace/my_lakehouse.lakehouse/dbo",
96
108
  sql_folder="./sql" # folder with .sql and .py files
97
109
  )
98
110
 
@@ -185,9 +197,7 @@ Load tasks from GitHub or any URL:
185
197
 
186
198
  ```python
187
199
  con = duckrun.connect(
188
- workspace="Analytics",
189
- lakehouse_name="Sales",
190
- schema="dbo",
200
+ "Analytics/Sales.lakehouse/dbo",
191
201
  sql_folder="https://raw.githubusercontent.com/user/repo/main/sql"
192
202
  )
193
203
  ```
@@ -242,9 +252,7 @@ Customize compaction threshold:
242
252
 
243
253
  ```python
244
254
  con = duckrun.connect(
245
- workspace="workspace",
246
- lakehouse_name="lakehouse",
247
- schema="dbo",
255
+ "workspace/lakehouse.lakehouse/dbo",
248
256
  compaction_threshold=50 # compact after 50 files
249
257
  )
250
258
  ```
@@ -255,7 +263,7 @@ con = duckrun.connect(
255
263
  import duckrun
256
264
 
257
265
  # Connect
258
- con = duckrun.connect("Analytics", "Sales", "dbo", "./sql")
266
+ con = duckrun.connect("Analytics/Sales.lakehouse/dbo", sql_folder="./sql")
259
267
 
260
268
  # Pipeline with mixed tasks
261
269
  pipeline = [
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "duckrun"
7
- version = "0.1.5.3"
7
+ version = "0.1.5.5"
8
8
  description = "Lakehouse task runner powered by DuckDB for Microsoft Fabric"
9
9
  readme = "README.md"
10
10
  license = "MIT"
File without changes
File without changes
File without changes