duckrun 0.1.0__tar.gz → 0.1.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- duckrun-0.1.2/LICENSE +21 -0
- duckrun-0.1.2/PKG-INFO +168 -0
- {duckrun-0.1.0 → duckrun-0.1.2}/README.md +25 -35
- {duckrun-0.1.0 → duckrun-0.1.2}/duckrun/core.py +15 -1
- duckrun-0.1.2/duckrun.egg-info/PKG-INFO +168 -0
- {duckrun-0.1.0 → duckrun-0.1.2}/duckrun.egg-info/SOURCES.txt +1 -0
- duckrun-0.1.2/duckrun.egg-info/requires.txt +3 -0
- {duckrun-0.1.0 → duckrun-0.1.2}/pyproject.toml +7 -1
- duckrun-0.1.0/LICENSE +0 -1
- duckrun-0.1.0/PKG-INFO +0 -11
- duckrun-0.1.0/duckrun.egg-info/PKG-INFO +0 -11
- {duckrun-0.1.0 → duckrun-0.1.2}/duckrun/__init__.py +0 -0
- {duckrun-0.1.0 → duckrun-0.1.2}/duckrun.egg-info/dependency_links.txt +0 -0
- {duckrun-0.1.0 → duckrun-0.1.2}/duckrun.egg-info/top_level.txt +0 -0
- {duckrun-0.1.0 → duckrun-0.1.2}/setup.cfg +0 -0
duckrun-0.1.2/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
1
|
+
MIT License
|
2
|
+
|
3
|
+
Copyright (c) 2025 Mimoune
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
7
|
+
in the Software without restriction, including without limitation the rights
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
10
|
+
furnished to do so, subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
13
|
+
copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21
|
+
SOFTWARE.
|
duckrun-0.1.2/PKG-INFO
ADDED
@@ -0,0 +1,168 @@
|
|
1
|
+
Metadata-Version: 2.4
|
2
|
+
Name: duckrun
|
3
|
+
Version: 0.1.2
|
4
|
+
Summary: Lakehouse task runner powered by DuckDB for Microsoft Fabric
|
5
|
+
License-Expression: MIT
|
6
|
+
Project-URL: Homepage, https://github.com/djouallah/duckrun
|
7
|
+
Project-URL: Repository, https://github.com/djouallah/duckrun
|
8
|
+
Project-URL: Issues, https://github.com/djouallah/duckrun/issues
|
9
|
+
Requires-Python: >=3.9
|
10
|
+
Description-Content-Type: text/markdown
|
11
|
+
License-File: LICENSE
|
12
|
+
Requires-Dist: duckdb>=1.2.0
|
13
|
+
Requires-Dist: deltalake>=0.18.2
|
14
|
+
Requires-Dist: requests>=2.28.0
|
15
|
+
Dynamic: license-file
|
16
|
+
|
17
|
+
|
18
|
+
<img src="duckrun.png" width="400" alt="Duckrun">
|
19
|
+
|
20
|
+
Simple task runner for Microsoft Fabric Python notebook, powered by DuckDB and Delta_rs.
|
21
|
+
|
22
|
+
|
23
|
+
## Known Limitation
|
24
|
+
|
25
|
+
Support only Lakehouse with schema, Workspace and lakehouse names should not contains space
|
26
|
+
|
27
|
+
## Installation
|
28
|
+
|
29
|
+
```bash
|
30
|
+
pip install duckrun
|
31
|
+
```
|
32
|
+
|
33
|
+
|
34
|
+
|
35
|
+
## Quick Start
|
36
|
+
|
37
|
+
```python
|
38
|
+
import duckrun as dr
|
39
|
+
|
40
|
+
# Connect to your Fabric lakehouse
|
41
|
+
lakehouse = dr.connect(
|
42
|
+
workspace="my_workspace",
|
43
|
+
lakehouse_name="my_lakehouse",
|
44
|
+
schema="dbo",
|
45
|
+
sql_folder="./sql" # folder containing your .sql and .py files
|
46
|
+
)
|
47
|
+
|
48
|
+
# Define your pipeline
|
49
|
+
pipeline = [
|
50
|
+
('load_data', (url, path)), # Python task
|
51
|
+
('clean_data', 'overwrite'), # SQL task
|
52
|
+
('aggregate', 'append') # SQL task
|
53
|
+
]
|
54
|
+
|
55
|
+
# Run it
|
56
|
+
lakehouse.run(pipeline)
|
57
|
+
```
|
58
|
+
|
59
|
+
## Early Exit
|
60
|
+
|
61
|
+
In a pipeline run, if a task fails, the pipeline will stop without running the subsequent tasks.
|
62
|
+
|
63
|
+
## How It Works
|
64
|
+
|
65
|
+
Duckrun runs two types of tasks:
|
66
|
+
|
67
|
+
### 1. Python Tasks
|
68
|
+
Format: `('function_name', (arg1, arg2, ...))`
|
69
|
+
|
70
|
+
Create a file `sql_folder/function_name.py` with a function matching the name:
|
71
|
+
|
72
|
+
```python
|
73
|
+
# sql_folder/load_data.py
|
74
|
+
def load_data(url, path):
|
75
|
+
# your code here
|
76
|
+
# IMPORTANT: Must return 1 for success, 0 for failure
|
77
|
+
return 1
|
78
|
+
```
|
79
|
+
|
80
|
+
### 2. SQL Tasks
|
81
|
+
Format: `('table_name', 'mode')` or `('table_name', 'mode', {params})`
|
82
|
+
|
83
|
+
Create a file `sql_folder/table_name.sql`:
|
84
|
+
|
85
|
+
```sql
|
86
|
+
-- sql_folder/clean_data.sql
|
87
|
+
SELECT
|
88
|
+
id,
|
89
|
+
TRIM(name) as name,
|
90
|
+
date
|
91
|
+
FROM raw_data
|
92
|
+
WHERE date >= '2024-01-01'
|
93
|
+
```
|
94
|
+
|
95
|
+
**Modes:**
|
96
|
+
- `overwrite` - Replace table completely
|
97
|
+
- `append` - Add to existing table
|
98
|
+
- `ignore` - Create only if doesn't exist
|
99
|
+
|
100
|
+
## Task Files
|
101
|
+
|
102
|
+
The `sql_folder` can contain a mixture of both `.sql` and `.py` files. This allows you to combine SQL transformations and Python logic in your pipelines.
|
103
|
+
|
104
|
+
### SQL Files
|
105
|
+
Your SQL files automatically have access to:
|
106
|
+
- `$ws` - workspace name
|
107
|
+
- `$lh` - lakehouse name
|
108
|
+
- `$schema` - schema name
|
109
|
+
|
110
|
+
Pass custom parameters:
|
111
|
+
|
112
|
+
```python
|
113
|
+
pipeline = [
|
114
|
+
('sales', 'append', {'start_date': '2024-01-01', 'end_date': '2024-12-31'})
|
115
|
+
]
|
116
|
+
```
|
117
|
+
|
118
|
+
```sql
|
119
|
+
-- sql_folder/sales.sql
|
120
|
+
SELECT * FROM transactions
|
121
|
+
WHERE date BETWEEN '$start_date' AND '$end_date'
|
122
|
+
```
|
123
|
+
|
124
|
+
## Table Name Convention
|
125
|
+
|
126
|
+
Use `__` to create variants of the same table:
|
127
|
+
|
128
|
+
```python
|
129
|
+
pipeline = [
|
130
|
+
('sales__initial', 'overwrite'), # writes to 'sales' table
|
131
|
+
('sales__incremental', 'append'), # appends to 'sales' table
|
132
|
+
]
|
133
|
+
```
|
134
|
+
|
135
|
+
Both write to the same `sales` table, but use different SQL files.
|
136
|
+
|
137
|
+
## Query Data
|
138
|
+
|
139
|
+
```python
|
140
|
+
# Run queries
|
141
|
+
lakehouse.sql("SELECT * FROM my_table LIMIT 10").show()
|
142
|
+
|
143
|
+
# Get as DataFrame
|
144
|
+
df = lakehouse.sql("SELECT COUNT(*) FROM sales").df()
|
145
|
+
```
|
146
|
+
|
147
|
+
|
148
|
+
|
149
|
+
## Remote SQL Files
|
150
|
+
|
151
|
+
You can load SQL/Python files from a URL:
|
152
|
+
|
153
|
+
```python
|
154
|
+
lakehouse = dr.connect(
|
155
|
+
workspace="Analytics",
|
156
|
+
lakehouse_name="Sales",
|
157
|
+
schema="dbo",
|
158
|
+
sql_folder="https://raw.githubusercontent.com/user/repo/main/sql"
|
159
|
+
)
|
160
|
+
```
|
161
|
+
|
162
|
+
## Real-Life Usage
|
163
|
+
|
164
|
+
For a complete, production-style example, see [fabric_demo](https://github.com/djouallah/fabric_demo).
|
165
|
+
|
166
|
+
## License
|
167
|
+
|
168
|
+
MIT
|
@@ -1,6 +1,12 @@
|
|
1
|
-
# 🦆 Duckrun
|
2
1
|
|
3
|
-
|
2
|
+
<img src="duckrun.png" width="400" alt="Duckrun">
|
3
|
+
|
4
|
+
Simple task runner for Microsoft Fabric Python notebook, powered by DuckDB and Delta_rs.
|
5
|
+
|
6
|
+
|
7
|
+
## Known Limitation
|
8
|
+
|
9
|
+
Support only Lakehouse with schema, Workspace and lakehouse names should not contains space
|
4
10
|
|
5
11
|
## Installation
|
6
12
|
|
@@ -8,10 +14,7 @@ Simple lakehouse task runner for Microsoft Fabric, powered by DuckDB.
|
|
8
14
|
pip install duckrun
|
9
15
|
```
|
10
16
|
|
11
|
-
|
12
|
-
```bash
|
13
|
-
pip install duckrun[local]
|
14
|
-
```
|
17
|
+
|
15
18
|
|
16
19
|
## Quick Start
|
17
20
|
|
@@ -37,6 +40,10 @@ pipeline = [
|
|
37
40
|
lakehouse.run(pipeline)
|
38
41
|
```
|
39
42
|
|
43
|
+
## Early Exit
|
44
|
+
|
45
|
+
In a pipeline run, if a task fails, the pipeline will stop without running the subsequent tasks.
|
46
|
+
|
40
47
|
## How It Works
|
41
48
|
|
42
49
|
Duckrun runs two types of tasks:
|
@@ -50,7 +57,8 @@ Create a file `sql_folder/function_name.py` with a function matching the name:
|
|
50
57
|
# sql_folder/load_data.py
|
51
58
|
def load_data(url, path):
|
52
59
|
# your code here
|
53
|
-
return
|
60
|
+
# IMPORTANT: Must return 1 for success, 0 for failure
|
61
|
+
return 1
|
54
62
|
```
|
55
63
|
|
56
64
|
### 2. SQL Tasks
|
@@ -73,8 +81,11 @@ WHERE date >= '2024-01-01'
|
|
73
81
|
- `append` - Add to existing table
|
74
82
|
- `ignore` - Create only if doesn't exist
|
75
83
|
|
76
|
-
##
|
84
|
+
## Task Files
|
85
|
+
|
86
|
+
The `sql_folder` can contain a mixture of both `.sql` and `.py` files. This allows you to combine SQL transformations and Python logic in your pipelines.
|
77
87
|
|
88
|
+
### SQL Files
|
78
89
|
Your SQL files automatically have access to:
|
79
90
|
- `$ws` - workspace name
|
80
91
|
- `$lh` - lakehouse name
|
@@ -100,8 +111,8 @@ Use `__` to create variants of the same table:
|
|
100
111
|
|
101
112
|
```python
|
102
113
|
pipeline = [
|
103
|
-
('sales__initial', 'overwrite'
|
104
|
-
('sales__incremental', 'append'
|
114
|
+
('sales__initial', 'overwrite'), # writes to 'sales' table
|
115
|
+
('sales__incremental', 'append'), # appends to 'sales' table
|
105
116
|
]
|
106
117
|
```
|
107
118
|
|
@@ -117,32 +128,7 @@ lakehouse.sql("SELECT * FROM my_table LIMIT 10").show()
|
|
117
128
|
df = lakehouse.sql("SELECT COUNT(*) FROM sales").df()
|
118
129
|
```
|
119
130
|
|
120
|
-
## Real-World Example
|
121
131
|
|
122
|
-
```python
|
123
|
-
import duckrun as dr
|
124
|
-
|
125
|
-
lakehouse = dr.connect(
|
126
|
-
workspace="Analytics",
|
127
|
-
lakehouse_name="Sales",
|
128
|
-
schema="dbo",
|
129
|
-
sql_folder="./etl"
|
130
|
-
)
|
131
|
-
|
132
|
-
# Daily pipeline
|
133
|
-
daily = [
|
134
|
-
('download_files', (api_url, local_path)),
|
135
|
-
('staging_orders', 'overwrite', {'run_date': '2024-06-01'}),
|
136
|
-
('staging_customers', 'overwrite', {'run_date': '2024-06-01'}),
|
137
|
-
('fact_sales', 'append'),
|
138
|
-
('dim_customer', 'overwrite')
|
139
|
-
]
|
140
|
-
|
141
|
-
lakehouse.run(daily)
|
142
|
-
|
143
|
-
# Check results
|
144
|
-
lakehouse.sql("SELECT COUNT(*) FROM fact_sales").show()
|
145
|
-
```
|
146
132
|
|
147
133
|
## Remote SQL Files
|
148
134
|
|
@@ -157,6 +143,10 @@ lakehouse = dr.connect(
|
|
157
143
|
)
|
158
144
|
```
|
159
145
|
|
146
|
+
## Real-Life Usage
|
147
|
+
|
148
|
+
For a complete, production-style example, see [fabric_demo](https://github.com/djouallah/fabric_demo).
|
149
|
+
|
160
150
|
## License
|
161
151
|
|
162
152
|
MIT
|
@@ -64,9 +64,14 @@ class Duckrun:
|
|
64
64
|
def _attach_lakehouse(self):
|
65
65
|
self._create_onelake_secret()
|
66
66
|
try:
|
67
|
+
# Exclude Iceberg metadata folders when scanning for Delta tables
|
67
68
|
list_tables_query = f"""
|
68
69
|
SELECT DISTINCT(split_part(file, '_delta_log', 1)) as tables
|
69
70
|
FROM glob ("abfss://{self.workspace}@onelake.dfs.fabric.microsoft.com/{self.lakehouse_name}.Lakehouse/Tables/*/*/_delta_log/*.json")
|
71
|
+
WHERE file NOT LIKE '%/metadata/%'
|
72
|
+
AND file NOT LIKE '%/iceberg/%'
|
73
|
+
AND split_part(file, '_delta_log', 1) NOT LIKE '%/metadata'
|
74
|
+
AND split_part(file, '_delta_log', 1) NOT LIKE '%/iceberg'
|
70
75
|
"""
|
71
76
|
list_tables_df = self.con.sql(list_tables_query).df()
|
72
77
|
list_tables = list_tables_df['tables'].tolist() if not list_tables_df.empty else []
|
@@ -82,18 +87,27 @@ class Duckrun:
|
|
82
87
|
if len(parts) >= 2:
|
83
88
|
potential_schema = parts[-2]
|
84
89
|
table = parts[-1]
|
90
|
+
|
91
|
+
# Skip Iceberg-related folders
|
92
|
+
if table in ('metadata', 'iceberg') or potential_schema in ('metadata', 'iceberg'):
|
93
|
+
continue
|
94
|
+
|
85
95
|
if potential_schema == self.schema:
|
86
96
|
try:
|
87
97
|
self.con.sql(f"""
|
88
98
|
CREATE OR REPLACE VIEW {table}
|
89
99
|
AS SELECT * FROM delta_scan('{self.table_base_url}{self.schema}/{table}');
|
90
100
|
""")
|
101
|
+
print(f" ✓ Attached: {table}")
|
91
102
|
except Exception as e:
|
92
|
-
print(f"
|
103
|
+
print(f" ⚠ Skipped {table}: {str(e)[:100]}")
|
104
|
+
continue
|
105
|
+
|
93
106
|
print("\nAttached tables (views) in DuckDB:")
|
94
107
|
self.con.sql("SELECT name FROM (SHOW ALL TABLES) WHERE database='memory'").show()
|
95
108
|
except Exception as e:
|
96
109
|
print(f"Error attaching lakehouse: {e}")
|
110
|
+
print("Continuing without pre-attached tables.")
|
97
111
|
|
98
112
|
def _normalize_table_name(self, name: str) -> str:
|
99
113
|
"""Extract base table name before first '__'"""
|
@@ -0,0 +1,168 @@
|
|
1
|
+
Metadata-Version: 2.4
|
2
|
+
Name: duckrun
|
3
|
+
Version: 0.1.2
|
4
|
+
Summary: Lakehouse task runner powered by DuckDB for Microsoft Fabric
|
5
|
+
License-Expression: MIT
|
6
|
+
Project-URL: Homepage, https://github.com/djouallah/duckrun
|
7
|
+
Project-URL: Repository, https://github.com/djouallah/duckrun
|
8
|
+
Project-URL: Issues, https://github.com/djouallah/duckrun/issues
|
9
|
+
Requires-Python: >=3.9
|
10
|
+
Description-Content-Type: text/markdown
|
11
|
+
License-File: LICENSE
|
12
|
+
Requires-Dist: duckdb>=1.2.0
|
13
|
+
Requires-Dist: deltalake>=0.18.2
|
14
|
+
Requires-Dist: requests>=2.28.0
|
15
|
+
Dynamic: license-file
|
16
|
+
|
17
|
+
|
18
|
+
<img src="duckrun.png" width="400" alt="Duckrun">
|
19
|
+
|
20
|
+
Simple task runner for Microsoft Fabric Python notebook, powered by DuckDB and Delta_rs.
|
21
|
+
|
22
|
+
|
23
|
+
## Known Limitation
|
24
|
+
|
25
|
+
Support only Lakehouse with schema, Workspace and lakehouse names should not contains space
|
26
|
+
|
27
|
+
## Installation
|
28
|
+
|
29
|
+
```bash
|
30
|
+
pip install duckrun
|
31
|
+
```
|
32
|
+
|
33
|
+
|
34
|
+
|
35
|
+
## Quick Start
|
36
|
+
|
37
|
+
```python
|
38
|
+
import duckrun as dr
|
39
|
+
|
40
|
+
# Connect to your Fabric lakehouse
|
41
|
+
lakehouse = dr.connect(
|
42
|
+
workspace="my_workspace",
|
43
|
+
lakehouse_name="my_lakehouse",
|
44
|
+
schema="dbo",
|
45
|
+
sql_folder="./sql" # folder containing your .sql and .py files
|
46
|
+
)
|
47
|
+
|
48
|
+
# Define your pipeline
|
49
|
+
pipeline = [
|
50
|
+
('load_data', (url, path)), # Python task
|
51
|
+
('clean_data', 'overwrite'), # SQL task
|
52
|
+
('aggregate', 'append') # SQL task
|
53
|
+
]
|
54
|
+
|
55
|
+
# Run it
|
56
|
+
lakehouse.run(pipeline)
|
57
|
+
```
|
58
|
+
|
59
|
+
## Early Exit
|
60
|
+
|
61
|
+
In a pipeline run, if a task fails, the pipeline will stop without running the subsequent tasks.
|
62
|
+
|
63
|
+
## How It Works
|
64
|
+
|
65
|
+
Duckrun runs two types of tasks:
|
66
|
+
|
67
|
+
### 1. Python Tasks
|
68
|
+
Format: `('function_name', (arg1, arg2, ...))`
|
69
|
+
|
70
|
+
Create a file `sql_folder/function_name.py` with a function matching the name:
|
71
|
+
|
72
|
+
```python
|
73
|
+
# sql_folder/load_data.py
|
74
|
+
def load_data(url, path):
|
75
|
+
# your code here
|
76
|
+
# IMPORTANT: Must return 1 for success, 0 for failure
|
77
|
+
return 1
|
78
|
+
```
|
79
|
+
|
80
|
+
### 2. SQL Tasks
|
81
|
+
Format: `('table_name', 'mode')` or `('table_name', 'mode', {params})`
|
82
|
+
|
83
|
+
Create a file `sql_folder/table_name.sql`:
|
84
|
+
|
85
|
+
```sql
|
86
|
+
-- sql_folder/clean_data.sql
|
87
|
+
SELECT
|
88
|
+
id,
|
89
|
+
TRIM(name) as name,
|
90
|
+
date
|
91
|
+
FROM raw_data
|
92
|
+
WHERE date >= '2024-01-01'
|
93
|
+
```
|
94
|
+
|
95
|
+
**Modes:**
|
96
|
+
- `overwrite` - Replace table completely
|
97
|
+
- `append` - Add to existing table
|
98
|
+
- `ignore` - Create only if doesn't exist
|
99
|
+
|
100
|
+
## Task Files
|
101
|
+
|
102
|
+
The `sql_folder` can contain a mixture of both `.sql` and `.py` files. This allows you to combine SQL transformations and Python logic in your pipelines.
|
103
|
+
|
104
|
+
### SQL Files
|
105
|
+
Your SQL files automatically have access to:
|
106
|
+
- `$ws` - workspace name
|
107
|
+
- `$lh` - lakehouse name
|
108
|
+
- `$schema` - schema name
|
109
|
+
|
110
|
+
Pass custom parameters:
|
111
|
+
|
112
|
+
```python
|
113
|
+
pipeline = [
|
114
|
+
('sales', 'append', {'start_date': '2024-01-01', 'end_date': '2024-12-31'})
|
115
|
+
]
|
116
|
+
```
|
117
|
+
|
118
|
+
```sql
|
119
|
+
-- sql_folder/sales.sql
|
120
|
+
SELECT * FROM transactions
|
121
|
+
WHERE date BETWEEN '$start_date' AND '$end_date'
|
122
|
+
```
|
123
|
+
|
124
|
+
## Table Name Convention
|
125
|
+
|
126
|
+
Use `__` to create variants of the same table:
|
127
|
+
|
128
|
+
```python
|
129
|
+
pipeline = [
|
130
|
+
('sales__initial', 'overwrite'), # writes to 'sales' table
|
131
|
+
('sales__incremental', 'append'), # appends to 'sales' table
|
132
|
+
]
|
133
|
+
```
|
134
|
+
|
135
|
+
Both write to the same `sales` table, but use different SQL files.
|
136
|
+
|
137
|
+
## Query Data
|
138
|
+
|
139
|
+
```python
|
140
|
+
# Run queries
|
141
|
+
lakehouse.sql("SELECT * FROM my_table LIMIT 10").show()
|
142
|
+
|
143
|
+
# Get as DataFrame
|
144
|
+
df = lakehouse.sql("SELECT COUNT(*) FROM sales").df()
|
145
|
+
```
|
146
|
+
|
147
|
+
|
148
|
+
|
149
|
+
## Remote SQL Files
|
150
|
+
|
151
|
+
You can load SQL/Python files from a URL:
|
152
|
+
|
153
|
+
```python
|
154
|
+
lakehouse = dr.connect(
|
155
|
+
workspace="Analytics",
|
156
|
+
lakehouse_name="Sales",
|
157
|
+
schema="dbo",
|
158
|
+
sql_folder="https://raw.githubusercontent.com/user/repo/main/sql"
|
159
|
+
)
|
160
|
+
```
|
161
|
+
|
162
|
+
## Real-Life Usage
|
163
|
+
|
164
|
+
For a complete, production-style example, see [fabric_demo](https://github.com/djouallah/fabric_demo).
|
165
|
+
|
166
|
+
## License
|
167
|
+
|
168
|
+
MIT
|
@@ -5,10 +5,16 @@ build-backend = "setuptools.build_meta"
|
|
5
5
|
|
6
6
|
[project]
|
7
7
|
name = "duckrun"
|
8
|
-
version = "0.1.
|
8
|
+
version = "0.1.2"
|
9
9
|
description = "Lakehouse task runner powered by DuckDB for Microsoft Fabric"
|
10
|
+
readme = "README.md"
|
10
11
|
license = "MIT"
|
11
12
|
requires-python = ">=3.9"
|
13
|
+
dependencies = [
|
14
|
+
"duckdb>=1.2.0",
|
15
|
+
"deltalake>=0.18.2",
|
16
|
+
"requests>=2.28.0"
|
17
|
+
]
|
12
18
|
|
13
19
|
[project.urls]
|
14
20
|
Homepage = "https://github.com/djouallah/duckrun"
|
duckrun-0.1.0/LICENSE
DELETED
@@ -1 +0,0 @@
|
|
1
|
-
### **5. `LICENSE`**
|
duckrun-0.1.0/PKG-INFO
DELETED
@@ -1,11 +0,0 @@
|
|
1
|
-
Metadata-Version: 2.4
|
2
|
-
Name: duckrun
|
3
|
-
Version: 0.1.0
|
4
|
-
Summary: Lakehouse task runner powered by DuckDB for Microsoft Fabric
|
5
|
-
License-Expression: MIT
|
6
|
-
Project-URL: Homepage, https://github.com/djouallah/duckrun
|
7
|
-
Project-URL: Repository, https://github.com/djouallah/duckrun
|
8
|
-
Project-URL: Issues, https://github.com/djouallah/duckrun/issues
|
9
|
-
Requires-Python: >=3.9
|
10
|
-
License-File: LICENSE
|
11
|
-
Dynamic: license-file
|
@@ -1,11 +0,0 @@
|
|
1
|
-
Metadata-Version: 2.4
|
2
|
-
Name: duckrun
|
3
|
-
Version: 0.1.0
|
4
|
-
Summary: Lakehouse task runner powered by DuckDB for Microsoft Fabric
|
5
|
-
License-Expression: MIT
|
6
|
-
Project-URL: Homepage, https://github.com/djouallah/duckrun
|
7
|
-
Project-URL: Repository, https://github.com/djouallah/duckrun
|
8
|
-
Project-URL: Issues, https://github.com/djouallah/duckrun/issues
|
9
|
-
Requires-Python: >=3.9
|
10
|
-
License-File: LICENSE
|
11
|
-
Dynamic: license-file
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|