dtflow 0.4.2__tar.gz → 0.5.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (48) hide show
  1. {dtflow-0.4.2 → dtflow-0.5.0}/PKG-INFO +117 -1
  2. {dtflow-0.4.2 → dtflow-0.5.0}/README.md +116 -0
  3. {dtflow-0.4.2 → dtflow-0.5.0}/dtflow/__init__.py +34 -1
  4. {dtflow-0.4.2 → dtflow-0.5.0}/dtflow/__main__.py +28 -3
  5. dtflow-0.5.0/dtflow/cli/clean.py +486 -0
  6. dtflow-0.5.0/dtflow/cli/commands.py +61 -0
  7. dtflow-0.5.0/dtflow/cli/common.py +384 -0
  8. dtflow-0.5.0/dtflow/cli/io_ops.py +385 -0
  9. dtflow-0.5.0/dtflow/cli/lineage.py +49 -0
  10. dtflow-0.5.0/dtflow/cli/pipeline.py +54 -0
  11. dtflow-0.5.0/dtflow/cli/sample.py +294 -0
  12. dtflow-0.5.0/dtflow/cli/stats.py +589 -0
  13. dtflow-0.5.0/dtflow/cli/transform.py +486 -0
  14. dtflow-0.5.0/dtflow/cli/validate.py +152 -0
  15. {dtflow-0.4.2 → dtflow-0.5.0}/dtflow/core.py +189 -0
  16. dtflow-0.5.0/dtflow/framework.py +610 -0
  17. dtflow-0.5.0/dtflow/schema.py +508 -0
  18. {dtflow-0.4.2 → dtflow-0.5.0}/dtflow/storage/io.py +49 -6
  19. {dtflow-0.4.2 → dtflow-0.5.0}/dtflow/streaming.py +25 -4
  20. dtflow-0.5.0/tests/test_framework.py +204 -0
  21. dtflow-0.5.0/tests/test_schema.py +547 -0
  22. {dtflow-0.4.2 → dtflow-0.5.0}/tests/test_transformer.py +33 -4
  23. dtflow-0.4.2/dtflow/cli/commands.py +0 -2640
  24. {dtflow-0.4.2 → dtflow-0.5.0}/.gitignore +0 -0
  25. {dtflow-0.4.2 → dtflow-0.5.0}/dtflow/cli/__init__.py +0 -0
  26. {dtflow-0.4.2 → dtflow-0.5.0}/dtflow/converters.py +0 -0
  27. {dtflow-0.4.2 → dtflow-0.5.0}/dtflow/lineage.py +0 -0
  28. {dtflow-0.4.2 → dtflow-0.5.0}/dtflow/mcp/__init__.py +0 -0
  29. {dtflow-0.4.2 → dtflow-0.5.0}/dtflow/mcp/__main__.py +0 -0
  30. {dtflow-0.4.2 → dtflow-0.5.0}/dtflow/mcp/cli.py +0 -0
  31. {dtflow-0.4.2 → dtflow-0.5.0}/dtflow/mcp/docs.py +0 -0
  32. {dtflow-0.4.2 → dtflow-0.5.0}/dtflow/mcp/server.py +0 -0
  33. {dtflow-0.4.2 → dtflow-0.5.0}/dtflow/pipeline.py +0 -0
  34. {dtflow-0.4.2 → dtflow-0.5.0}/dtflow/presets.py +0 -0
  35. {dtflow-0.4.2 → dtflow-0.5.0}/dtflow/storage/__init__.py +0 -0
  36. {dtflow-0.4.2 → dtflow-0.5.0}/dtflow/tokenizers.py +0 -0
  37. {dtflow-0.4.2 → dtflow-0.5.0}/dtflow/utils/__init__.py +0 -0
  38. {dtflow-0.4.2 → dtflow-0.5.0}/dtflow/utils/display.py +0 -0
  39. {dtflow-0.4.2 → dtflow-0.5.0}/dtflow/utils/field_path.py +0 -0
  40. {dtflow-0.4.2 → dtflow-0.5.0}/pyproject.toml +0 -0
  41. {dtflow-0.4.2 → dtflow-0.5.0}/tests/benchmark_io.py +0 -0
  42. {dtflow-0.4.2 → dtflow-0.5.0}/tests/test_converters.py +0 -0
  43. {dtflow-0.4.2 → dtflow-0.5.0}/tests/test_field_path.py +0 -0
  44. {dtflow-0.4.2 → dtflow-0.5.0}/tests/test_io.py +0 -0
  45. {dtflow-0.4.2 → dtflow-0.5.0}/tests/test_lineage.py +0 -0
  46. {dtflow-0.4.2 → dtflow-0.5.0}/tests/test_pipeline.py +0 -0
  47. {dtflow-0.4.2 → dtflow-0.5.0}/tests/test_streaming.py +0 -0
  48. {dtflow-0.4.2 → dtflow-0.5.0}/tests/test_tokenizers.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dtflow
3
- Version: 0.4.2
3
+ Version: 0.5.0
4
4
  Summary: A flexible data transformation tool for ML training formats (SFT, RLHF, Pretrain)
5
5
  Project-URL: Homepage, https://github.com/yourusername/DataTransformer
6
6
  Project-URL: Documentation, https://github.com/yourusername/DataTransformer#readme
@@ -126,6 +126,64 @@ dt.filter(lambda x: x.score > 0.8)
126
126
  dt.filter(lambda x: x.language == "zh")
127
127
  ```
128
128
 
129
+ ### 数据验证
130
+
131
+ ```python
132
+ # 简单验证,返回不通过的记录列表
133
+ errors = dt.validate(lambda x: len(x.messages) >= 2)
134
+
135
+ if errors:
136
+ for e in errors[:5]:
137
+ print(f"第 {e.index} 行: {e.error}")
138
+ ```
139
+
140
+ ### Schema 验证
141
+
142
+ 使用 Schema 进行结构化数据验证:
143
+
144
+ ```python
145
+ from dtflow import Schema, Field, openai_chat_schema
146
+
147
+ # 使用预设 Schema
148
+ result = dt.validate_schema(openai_chat_schema)
149
+ print(result) # ValidationResult(valid=950, invalid=50, errors=[...])
150
+
151
+ # 自定义 Schema
152
+ schema = Schema({
153
+ "messages": Field(type="list", required=True, min_length=1),
154
+ "messages[*].role": Field(type="str", choices=["user", "assistant", "system"]),
155
+ "messages[*].content": Field(type="str", min_length=1),
156
+ "score": Field(type="float", min=0, max=1),
157
+ })
158
+
159
+ result = dt.validate_schema(schema)
160
+
161
+ # 过滤出有效数据
162
+ valid_dt = dt.validate_schema(schema, filter_invalid=True)
163
+ valid_dt.save("valid.jsonl")
164
+ ```
165
+
166
+ **预设 Schema**:
167
+
168
+ | Schema 名称 | 用途 |
169
+ |------------|------|
170
+ | `openai_chat_schema` | OpenAI messages 格式验证 |
171
+ | `alpaca_schema` | Alpaca instruction/output 格式 |
172
+ | `sharegpt_schema` | ShareGPT conversations 格式 |
173
+ | `dpo_schema` | DPO prompt/chosen/rejected 格式 |
174
+
175
+ **Field 参数**:
176
+
177
+ | 参数 | 说明 | 示例 |
178
+ |------|------|------|
179
+ | `type` | 类型验证 | `"str"`, `"int"`, `"float"`, `"bool"`, `"list"`, `"dict"` |
180
+ | `required` | 是否必填 | `True` / `False` |
181
+ | `min` / `max` | 数值范围 | `min=0, max=1` |
182
+ | `min_length` / `max_length` | 长度范围 | `min_length=1` |
183
+ | `choices` | 枚举值 | `choices=["user", "assistant"]` |
184
+ | `pattern` | 正则匹配 | `pattern=r"^\d{4}-\d{2}-\d{2}$"` |
185
+ | `custom` | 自定义验证 | `custom=lambda x: x > 0` |
186
+
129
187
  ### 数据转换
130
188
 
131
189
  ```python
@@ -275,6 +333,58 @@ dt.transform(to_swift_vlm(images_field="images")).save("swift_vlm.jsonl")
275
333
  # 输出: {"messages": [...], "images": ["/path/to/img.jpg"]}
276
334
  ```
277
335
 
336
+ ### 训练框架一键导出
337
+
338
+ 将数据导出为目标训练框架可直接使用的格式,自动生成配置文件:
339
+
340
+ ```python
341
+ from dtflow import DataTransformer
342
+
343
+ dt = DataTransformer.load("data.jsonl")
344
+
345
+ # 1. 检查框架兼容性
346
+ result = dt.check_compatibility("llama-factory")
347
+ print(result)
348
+ # ✅ 兼容 - LLaMA-Factory (openai_chat)
349
+ # 或
350
+ # ❌ 不兼容 - 错误: xxx
351
+
352
+ # 2. 一键导出到 LLaMA-Factory
353
+ files = dt.export_for("llama-factory", "./llama_ready/")
354
+ # 生成文件:
355
+ # - ./llama_ready/custom_dataset.json # 数据文件
356
+ # - ./llama_ready/dataset_info.json # 数据集配置
357
+ # - ./llama_ready/train_args.yaml # 训练参数模板
358
+
359
+ # 3. 导出到 ms-swift
360
+ files = dt.export_for("swift", "./swift_ready/")
361
+ # 生成: data.jsonl + train_swift.sh
362
+
363
+ # 4. 导出到 Axolotl
364
+ files = dt.export_for("axolotl", "./axolotl_ready/")
365
+ # 生成: data.jsonl + config.yaml
366
+
367
+ # 指定数据集名称
368
+ dt.export_for("llama-factory", "./output/", dataset_name="my_sft_data")
369
+ ```
370
+
371
+ **支持的框架**:
372
+
373
+ | 框架 | 导出内容 | 使用方式 |
374
+ |------|---------|---------|
375
+ | `llama-factory` | data.json + dataset_info.json + train_args.yaml | `llamafactory-cli train train_args.yaml` |
376
+ | `swift` | data.jsonl + train_swift.sh | `bash train_swift.sh` |
377
+ | `axolotl` | data.jsonl + config.yaml | `accelerate launch -m axolotl.cli.train config.yaml` |
378
+
379
+ **自动格式检测**:
380
+
381
+ | 检测到的格式 | 数据结构 |
382
+ |------------|---------|
383
+ | `openai_chat` | `{"messages": [{"role": "user", ...}]}` |
384
+ | `alpaca` | `{"instruction": ..., "output": ...}` |
385
+ | `sharegpt` | `{"conversations": [{"from": "human", ...}]}` |
386
+ | `dpo` | `{"prompt": ..., "chosen": ..., "rejected": ...}` |
387
+
278
388
  ### 其他操作
279
389
 
280
390
  ```python
@@ -350,6 +460,12 @@ dt concat a.jsonl b.jsonl -o merged.jsonl
350
460
 
351
461
  # 数据统计
352
462
  dt stats data.jsonl
463
+
464
+ # 数据验证
465
+ dt validate data.jsonl --preset=openai_chat # 使用预设 schema 验证
466
+ dt validate data.jsonl --preset=alpaca --verbose # 详细输出
467
+ dt validate data.jsonl --preset=sharegpt --filter-invalid -o valid.jsonl # 过滤出有效数据
468
+ dt validate data.jsonl --preset=dpo --max-errors=100 # 限制错误输出数量
353
469
  ```
354
470
 
355
471
  ### 字段路径语法
@@ -50,6 +50,64 @@ dt.filter(lambda x: x.score > 0.8)
50
50
  dt.filter(lambda x: x.language == "zh")
51
51
  ```
52
52
 
53
+ ### 数据验证
54
+
55
+ ```python
56
+ # 简单验证,返回不通过的记录列表
57
+ errors = dt.validate(lambda x: len(x.messages) >= 2)
58
+
59
+ if errors:
60
+ for e in errors[:5]:
61
+ print(f"第 {e.index} 行: {e.error}")
62
+ ```
63
+
64
+ ### Schema 验证
65
+
66
+ 使用 Schema 进行结构化数据验证:
67
+
68
+ ```python
69
+ from dtflow import Schema, Field, openai_chat_schema
70
+
71
+ # 使用预设 Schema
72
+ result = dt.validate_schema(openai_chat_schema)
73
+ print(result) # ValidationResult(valid=950, invalid=50, errors=[...])
74
+
75
+ # 自定义 Schema
76
+ schema = Schema({
77
+ "messages": Field(type="list", required=True, min_length=1),
78
+ "messages[*].role": Field(type="str", choices=["user", "assistant", "system"]),
79
+ "messages[*].content": Field(type="str", min_length=1),
80
+ "score": Field(type="float", min=0, max=1),
81
+ })
82
+
83
+ result = dt.validate_schema(schema)
84
+
85
+ # 过滤出有效数据
86
+ valid_dt = dt.validate_schema(schema, filter_invalid=True)
87
+ valid_dt.save("valid.jsonl")
88
+ ```
89
+
90
+ **预设 Schema**:
91
+
92
+ | Schema 名称 | 用途 |
93
+ |------------|------|
94
+ | `openai_chat_schema` | OpenAI messages 格式验证 |
95
+ | `alpaca_schema` | Alpaca instruction/output 格式 |
96
+ | `sharegpt_schema` | ShareGPT conversations 格式 |
97
+ | `dpo_schema` | DPO prompt/chosen/rejected 格式 |
98
+
99
+ **Field 参数**:
100
+
101
+ | 参数 | 说明 | 示例 |
102
+ |------|------|------|
103
+ | `type` | 类型验证 | `"str"`, `"int"`, `"float"`, `"bool"`, `"list"`, `"dict"` |
104
+ | `required` | 是否必填 | `True` / `False` |
105
+ | `min` / `max` | 数值范围 | `min=0, max=1` |
106
+ | `min_length` / `max_length` | 长度范围 | `min_length=1` |
107
+ | `choices` | 枚举值 | `choices=["user", "assistant"]` |
108
+ | `pattern` | 正则匹配 | `pattern=r"^\d{4}-\d{2}-\d{2}$"` |
109
+ | `custom` | 自定义验证 | `custom=lambda x: x > 0` |
110
+
53
111
  ### 数据转换
54
112
 
55
113
  ```python
@@ -199,6 +257,58 @@ dt.transform(to_swift_vlm(images_field="images")).save("swift_vlm.jsonl")
199
257
  # 输出: {"messages": [...], "images": ["/path/to/img.jpg"]}
200
258
  ```
201
259
 
260
+ ### 训练框架一键导出
261
+
262
+ 将数据导出为目标训练框架可直接使用的格式,自动生成配置文件:
263
+
264
+ ```python
265
+ from dtflow import DataTransformer
266
+
267
+ dt = DataTransformer.load("data.jsonl")
268
+
269
+ # 1. 检查框架兼容性
270
+ result = dt.check_compatibility("llama-factory")
271
+ print(result)
272
+ # ✅ 兼容 - LLaMA-Factory (openai_chat)
273
+ # 或
274
+ # ❌ 不兼容 - 错误: xxx
275
+
276
+ # 2. 一键导出到 LLaMA-Factory
277
+ files = dt.export_for("llama-factory", "./llama_ready/")
278
+ # 生成文件:
279
+ # - ./llama_ready/custom_dataset.json # 数据文件
280
+ # - ./llama_ready/dataset_info.json # 数据集配置
281
+ # - ./llama_ready/train_args.yaml # 训练参数模板
282
+
283
+ # 3. 导出到 ms-swift
284
+ files = dt.export_for("swift", "./swift_ready/")
285
+ # 生成: data.jsonl + train_swift.sh
286
+
287
+ # 4. 导出到 Axolotl
288
+ files = dt.export_for("axolotl", "./axolotl_ready/")
289
+ # 生成: data.jsonl + config.yaml
290
+
291
+ # 指定数据集名称
292
+ dt.export_for("llama-factory", "./output/", dataset_name="my_sft_data")
293
+ ```
294
+
295
+ **支持的框架**:
296
+
297
+ | 框架 | 导出内容 | 使用方式 |
298
+ |------|---------|---------|
299
+ | `llama-factory` | data.json + dataset_info.json + train_args.yaml | `llamafactory-cli train train_args.yaml` |
300
+ | `swift` | data.jsonl + train_swift.sh | `bash train_swift.sh` |
301
+ | `axolotl` | data.jsonl + config.yaml | `accelerate launch -m axolotl.cli.train config.yaml` |
302
+
303
+ **自动格式检测**:
304
+
305
+ | 检测到的格式 | 数据结构 |
306
+ |------------|---------|
307
+ | `openai_chat` | `{"messages": [{"role": "user", ...}]}` |
308
+ | `alpaca` | `{"instruction": ..., "output": ...}` |
309
+ | `sharegpt` | `{"conversations": [{"from": "human", ...}]}` |
310
+ | `dpo` | `{"prompt": ..., "chosen": ..., "rejected": ...}` |
311
+
202
312
  ### 其他操作
203
313
 
204
314
  ```python
@@ -274,6 +384,12 @@ dt concat a.jsonl b.jsonl -o merged.jsonl
274
384
 
275
385
  # 数据统计
276
386
  dt stats data.jsonl
387
+
388
+ # 数据验证
389
+ dt validate data.jsonl --preset=openai_chat # 使用预设 schema 验证
390
+ dt validate data.jsonl --preset=alpaca --verbose # 详细输出
391
+ dt validate data.jsonl --preset=sharegpt --filter-invalid -o valid.jsonl # 过滤出有效数据
392
+ dt validate data.jsonl --preset=dpo --max-errors=100 # 限制错误输出数量
277
393
  ```
278
394
 
279
395
  ### 字段路径语法
@@ -4,6 +4,7 @@ DataTransformer: 简洁的数据格式转换工具
4
4
  核心功能:
5
5
  - DataTransformer: 数据加载、转换、保存
6
6
  - presets: 预设转换模板 (openai_chat, alpaca, sharegpt, dpo_pair, simple_qa)
7
+ - schema: 数据结构验证 (Schema, Field)
7
8
  - tokenizers: Token 统计和过滤
8
9
  - converters: HuggingFace/OpenAI 等格式转换
9
10
  """
@@ -26,6 +27,23 @@ from .converters import ( # LLaMA-Factory 扩展; ms-swift
26
27
  )
27
28
  from .core import DataTransformer, DictWrapper, TransformError, TransformErrors
28
29
  from .presets import get_preset, list_presets
30
+ from .schema import (
31
+ Field,
32
+ Schema,
33
+ ValidationError,
34
+ ValidationResult,
35
+ alpaca_schema,
36
+ dpo_schema,
37
+ openai_chat_schema,
38
+ sharegpt_schema,
39
+ validate_data,
40
+ )
41
+ from .framework import (
42
+ CompatibilityResult,
43
+ check_compatibility,
44
+ detect_format,
45
+ export_for,
46
+ )
29
47
  from .storage import load_data, sample_file, save_data
30
48
  from .streaming import StreamingTransformer, load_sharded, load_stream, process_shards
31
49
  from .tokenizers import (
@@ -42,7 +60,7 @@ from .tokenizers import (
42
60
  token_stats,
43
61
  )
44
62
 
45
- __version__ = "0.4.2"
63
+ __version__ = "0.5.0"
46
64
 
47
65
  __all__ = [
48
66
  # core
@@ -53,6 +71,21 @@ __all__ = [
53
71
  # presets
54
72
  "get_preset",
55
73
  "list_presets",
74
+ # schema
75
+ "Schema",
76
+ "Field",
77
+ "ValidationResult",
78
+ "ValidationError",
79
+ "validate_data",
80
+ "openai_chat_schema",
81
+ "alpaca_schema",
82
+ "dpo_schema",
83
+ "sharegpt_schema",
84
+ # framework
85
+ "CompatibilityResult",
86
+ "check_compatibility",
87
+ "detect_format",
88
+ "export_for",
56
89
  # storage
57
90
  "save_data",
58
91
  "load_data",
@@ -18,6 +18,7 @@ Commands:
18
18
  clean 数据清洗
19
19
  run 执行 Pipeline 配置文件
20
20
  history 显示数据血缘历史
21
+ validate 使用 Schema 验证数据格式
21
22
  mcp MCP 服务管理(install/uninstall/status)
22
23
  logs 日志查看工具使用说明
23
24
  """
@@ -40,6 +41,7 @@ from .cli.commands import stats as _stats
40
41
  from .cli.commands import tail as _tail
41
42
  from .cli.commands import token_stats as _token_stats
42
43
  from .cli.commands import transform as _transform
44
+ from .cli.commands import validate as _validate
43
45
 
44
46
  # 创建主应用
45
47
  app = typer.Typer(
@@ -64,10 +66,11 @@ def sample(
64
66
  by: Optional[str] = typer.Option(None, "--by", help="分层采样字段"),
65
67
  uniform: bool = typer.Option(False, "--uniform", help="均匀采样模式"),
66
68
  fields: Optional[str] = typer.Option(None, "--fields", "-f", help="只显示指定字段(逗号分隔)"),
69
+ raw: bool = typer.Option(False, "--raw", "-r", help="输出原始 JSON(不截断)"),
67
70
  ):
68
71
  """从数据文件中采样指定数量的数据"""
69
72
  actual_num = num_arg if num_arg is not None else num
70
- _sample(filename, actual_num, type, output, seed, by, uniform, fields)
73
+ _sample(filename, actual_num, type, output, seed, by, uniform, fields, raw)
71
74
 
72
75
 
73
76
  @app.command()
@@ -77,11 +80,12 @@ def head(
77
80
  num: int = typer.Option(10, "--num", "-n", help="显示数量", show_default=True),
78
81
  output: Optional[str] = typer.Option(None, "--output", "-o", help="输出文件路径"),
79
82
  fields: Optional[str] = typer.Option(None, "--fields", "-f", help="只显示指定字段"),
83
+ raw: bool = typer.Option(False, "--raw", "-r", help="输出原始 JSON(不截断)"),
80
84
  ):
81
85
  """显示文件的前 N 条数据"""
82
86
  # 位置参数优先于选项参数
83
87
  actual_num = num_arg if num_arg is not None else num
84
- _head(filename, actual_num, output, fields)
88
+ _head(filename, actual_num, output, fields, raw)
85
89
 
86
90
 
87
91
  @app.command()
@@ -91,11 +95,12 @@ def tail(
91
95
  num: int = typer.Option(10, "--num", "-n", help="显示数量", show_default=True),
92
96
  output: Optional[str] = typer.Option(None, "--output", "-o", help="输出文件路径"),
93
97
  fields: Optional[str] = typer.Option(None, "--fields", "-f", help="只显示指定字段"),
98
+ raw: bool = typer.Option(False, "--raw", "-r", help="输出原始 JSON(不截断)"),
94
99
  ):
95
100
  """显示文件的后 N 条数据"""
96
101
  # 位置参数优先于选项参数
97
102
  actual_num = num_arg if num_arg is not None else num
98
- _tail(filename, actual_num, output, fields)
103
+ _tail(filename, actual_num, output, fields, raw)
99
104
 
100
105
 
101
106
  # ============ 数据转换命令 ============
@@ -208,6 +213,26 @@ def history(
208
213
  _history(filename, json)
209
214
 
210
215
 
216
+ # ============ 验证命令 ============
217
+
218
+
219
+ @app.command()
220
+ def validate(
221
+ filename: str = typer.Argument(..., help="输入文件路径"),
222
+ preset: Optional[str] = typer.Option(
223
+ None, "--preset", "-p", help="预设 Schema: openai_chat, alpaca, dpo, sharegpt"
224
+ ),
225
+ output: Optional[str] = typer.Option(None, "--output", "-o", help="输出有效数据的文件路径"),
226
+ filter: bool = typer.Option(
227
+ False, "--filter", "-f", help="过滤无效数据并保存"
228
+ ),
229
+ max_errors: int = typer.Option(20, "--max-errors", help="最多显示的错误数量"),
230
+ verbose: bool = typer.Option(False, "--verbose", "-v", help="显示详细信息"),
231
+ ):
232
+ """使用预设 Schema 验证数据格式"""
233
+ _validate(filename, preset, output, filter, max_errors, verbose)
234
+
235
+
211
236
  # ============ 工具命令 ============
212
237
 
213
238