dragon-ml-toolbox 6.0.1__tar.gz → 6.1.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of dragon-ml-toolbox might be problematic. Click here for more details.
- {dragon_ml_toolbox-6.0.1/dragon_ml_toolbox.egg-info → dragon_ml_toolbox-6.1.1}/PKG-INFO +1 -1
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1/dragon_ml_toolbox.egg-info}/PKG-INFO +1 -1
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/ML_inference.py +50 -44
- dragon_ml_toolbox-6.1.1/ml_tools/ML_optimization.py +308 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/pyproject.toml +1 -1
- dragon_ml_toolbox-6.0.1/ml_tools/ML_optimization.py +0 -226
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/LICENSE +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/LICENSE-THIRD-PARTY.md +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/README.md +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/dragon_ml_toolbox.egg-info/SOURCES.txt +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/dragon_ml_toolbox.egg-info/dependency_links.txt +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/dragon_ml_toolbox.egg-info/requires.txt +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/dragon_ml_toolbox.egg-info/top_level.txt +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/ETL_engineering.py +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/GUI_tools.py +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/MICE_imputation.py +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/ML_callbacks.py +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/ML_datasetmaster.py +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/ML_evaluation.py +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/ML_models.py +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/ML_trainer.py +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/PSO_optimization.py +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/RNN_forecast.py +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/SQL.py +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/VIF_factor.py +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/__init__.py +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/_logger.py +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/_script_info.py +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/custom_logger.py +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/data_exploration.py +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/ensemble_evaluation.py +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/ensemble_inference.py +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/ensemble_learning.py +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/handle_excel.py +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/keys.py +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/optimization_tools.py +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/path_manager.py +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/ml_tools/utilities.py +0 -0
- {dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/setup.cfg +0 -0
|
@@ -66,47 +66,10 @@ class PyTorchInferenceHandler:
|
|
|
66
66
|
|
|
67
67
|
# Ensure tensor is on the correct device
|
|
68
68
|
return features.to(self.device)
|
|
69
|
-
|
|
70
|
-
def
|
|
71
|
-
"""
|
|
72
|
-
Predicts on a single feature vector.
|
|
73
|
-
|
|
74
|
-
Args:
|
|
75
|
-
features (np.ndarray | torch.Tensor): A 1D or 2D array/tensor for a single sample.
|
|
76
|
-
|
|
77
|
-
Returns:
|
|
78
|
-
Dict[str, Any]: A dictionary containing the prediction.
|
|
79
|
-
- For regression: {'predictions': float}
|
|
80
|
-
- For classification: {'labels': int, 'probabilities': np.ndarray}
|
|
69
|
+
|
|
70
|
+
def predict_batch(self, features: Union[np.ndarray, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
|
81
71
|
"""
|
|
82
|
-
|
|
83
|
-
features = features.reshape(1, -1)
|
|
84
|
-
|
|
85
|
-
if features.shape[0] != 1:
|
|
86
|
-
raise ValueError("The predict() method is for a single sample. Use predict_batch() for multiple samples.")
|
|
87
|
-
|
|
88
|
-
results_batch = self.predict_batch(features)
|
|
89
|
-
|
|
90
|
-
# Extract the single result from the batch
|
|
91
|
-
if self.task == "regression":
|
|
92
|
-
return {PyTorchInferenceKeys.PREDICTIONS: results_batch[PyTorchInferenceKeys.PREDICTIONS].item()}
|
|
93
|
-
else: # classification
|
|
94
|
-
return {
|
|
95
|
-
PyTorchInferenceKeys.LABELS: results_batch[PyTorchInferenceKeys.LABELS].item(),
|
|
96
|
-
PyTorchInferenceKeys.PROBABILITIES: results_batch[PyTorchInferenceKeys.PROBABILITIES][0]
|
|
97
|
-
}
|
|
98
|
-
|
|
99
|
-
def predict_batch(self, features: Union[np.ndarray, torch.Tensor]) -> Dict[str, Any]:
|
|
100
|
-
"""
|
|
101
|
-
Predicts on a batch of feature vectors.
|
|
102
|
-
|
|
103
|
-
Args:
|
|
104
|
-
features (np.ndarray | torch.Tensor): A 2D array/tensor where each row is a sample.
|
|
105
|
-
|
|
106
|
-
Returns:
|
|
107
|
-
Dict[str, Any]: A dictionary containing the predictions.
|
|
108
|
-
- For regression: {'predictions': np.ndarray}
|
|
109
|
-
- For classification: {'labels': np.ndarray, 'probabilities': np.ndarray}
|
|
72
|
+
Core batch prediction method. Returns results as PyTorch tensors on the model's device.
|
|
110
73
|
"""
|
|
111
74
|
if features.ndim != 2:
|
|
112
75
|
raise ValueError("Input for batch prediction must be a 2D array or tensor.")
|
|
@@ -114,18 +77,61 @@ class PyTorchInferenceHandler:
|
|
|
114
77
|
input_tensor = self._preprocess_input(features)
|
|
115
78
|
|
|
116
79
|
with torch.no_grad():
|
|
117
|
-
|
|
80
|
+
# Output tensor remains on the model's device (e.g., 'mps' or 'cuda')
|
|
81
|
+
output = self.model(input_tensor)
|
|
118
82
|
|
|
119
83
|
if self.task == "classification":
|
|
120
84
|
probs = nn.functional.softmax(output, dim=1)
|
|
121
85
|
labels = torch.argmax(probs, dim=1)
|
|
122
86
|
return {
|
|
123
|
-
PyTorchInferenceKeys.LABELS: labels
|
|
124
|
-
PyTorchInferenceKeys.PROBABILITIES: probs
|
|
87
|
+
PyTorchInferenceKeys.LABELS: labels,
|
|
88
|
+
PyTorchInferenceKeys.PROBABILITIES: probs
|
|
125
89
|
}
|
|
126
90
|
else: # regression
|
|
127
|
-
return {PyTorchInferenceKeys.PREDICTIONS: output
|
|
91
|
+
return {PyTorchInferenceKeys.PREDICTIONS: output}
|
|
128
92
|
|
|
93
|
+
def predict(self, features: Union[np.ndarray, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
|
94
|
+
"""
|
|
95
|
+
Core single-sample prediction. Returns results as PyTorch tensors on the model's device.
|
|
96
|
+
"""
|
|
97
|
+
if features.ndim == 1:
|
|
98
|
+
features = features.reshape(1, -1)
|
|
99
|
+
|
|
100
|
+
if features.shape[0] != 1:
|
|
101
|
+
raise ValueError("The predict() method is for a single sample. Use predict_batch() for multiple samples.")
|
|
102
|
+
|
|
103
|
+
batch_results = self.predict_batch(features)
|
|
104
|
+
|
|
105
|
+
single_results = {key: value[0] for key, value in batch_results.items()}
|
|
106
|
+
return single_results
|
|
107
|
+
|
|
108
|
+
# --- NumPy Convenience Wrappers (on CPU) ---
|
|
109
|
+
|
|
110
|
+
def predict_batch_numpy(self, features: Union[np.ndarray, torch.Tensor]) -> Dict[str, np.ndarray]:
|
|
111
|
+
"""
|
|
112
|
+
Convenience wrapper for predict_batch that returns NumPy arrays.
|
|
113
|
+
"""
|
|
114
|
+
tensor_results = self.predict_batch(features)
|
|
115
|
+
# Move tensor to CPU before converting to NumPy
|
|
116
|
+
numpy_results = {key: value.cpu().numpy() for key, value in tensor_results.items()}
|
|
117
|
+
return numpy_results
|
|
118
|
+
|
|
119
|
+
def predict_numpy(self, features: Union[np.ndarray, torch.Tensor]) -> Dict[str, Any]:
|
|
120
|
+
"""
|
|
121
|
+
Convenience wrapper for predict that returns NumPy arrays or scalars.
|
|
122
|
+
"""
|
|
123
|
+
tensor_results = self.predict(features)
|
|
124
|
+
|
|
125
|
+
if self.task == "regression":
|
|
126
|
+
# .item() implicitly moves to CPU
|
|
127
|
+
return {PyTorchInferenceKeys.PREDICTIONS: tensor_results[PyTorchInferenceKeys.PREDICTIONS].item()}
|
|
128
|
+
else: # classification
|
|
129
|
+
return {
|
|
130
|
+
PyTorchInferenceKeys.LABELS: tensor_results[PyTorchInferenceKeys.LABELS].item(),
|
|
131
|
+
# ✅ Move tensor to CPU before converting to NumPy
|
|
132
|
+
PyTorchInferenceKeys.PROBABILITIES: tensor_results[PyTorchInferenceKeys.PROBABILITIES].cpu().numpy()
|
|
133
|
+
}
|
|
134
|
+
|
|
129
135
|
|
|
130
136
|
def info():
|
|
131
137
|
_script_info(__all__)
|
|
@@ -0,0 +1,308 @@
|
|
|
1
|
+
import pandas # logger
|
|
2
|
+
import torch
|
|
3
|
+
import numpy #handling torch to numpy
|
|
4
|
+
import evotorch
|
|
5
|
+
from evotorch.algorithms import SNES, CEM, GeneticAlgorithm
|
|
6
|
+
from evotorch.logging import PandasLogger
|
|
7
|
+
from evotorch.operators import SimulatedBinaryCrossOver, GaussianMutation
|
|
8
|
+
from typing import Literal, Union, Tuple, List, Optional, Any, Callable
|
|
9
|
+
from pathlib import Path
|
|
10
|
+
from tqdm.auto import trange
|
|
11
|
+
from contextlib import nullcontext
|
|
12
|
+
from functools import partial
|
|
13
|
+
|
|
14
|
+
from .path_manager import make_fullpath, sanitize_filename
|
|
15
|
+
from ._logger import _LOGGER
|
|
16
|
+
from ._script_info import _script_info
|
|
17
|
+
from .ML_inference import PyTorchInferenceHandler
|
|
18
|
+
from .keys import PyTorchInferenceKeys
|
|
19
|
+
from .SQL import DatabaseManager
|
|
20
|
+
from .optimization_tools import _save_result
|
|
21
|
+
from .utilities import threshold_binary_values, save_dataframe
|
|
22
|
+
|
|
23
|
+
__all__ = [
|
|
24
|
+
"create_pytorch_problem",
|
|
25
|
+
"run_optimization"
|
|
26
|
+
]
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def create_pytorch_problem(
|
|
30
|
+
inference_handler: PyTorchInferenceHandler,
|
|
31
|
+
bounds: Tuple[List[float], List[float]],
|
|
32
|
+
binary_features: int,
|
|
33
|
+
task: Literal["min", "max"],
|
|
34
|
+
algorithm: Literal["SNES", "CEM", "Genetic"] = "Genetic",
|
|
35
|
+
population_size: int = 200,
|
|
36
|
+
**searcher_kwargs
|
|
37
|
+
) -> Tuple[evotorch.Problem, Callable[[], Any]]:
|
|
38
|
+
"""
|
|
39
|
+
Creates and configures an EvoTorch Problem and a Searcher factory class for a PyTorch model.
|
|
40
|
+
|
|
41
|
+
SNES and CEM do not accept bounds, the given bounds will be used as initial bounds only.
|
|
42
|
+
|
|
43
|
+
The Genetic Algorithm works directly with the bounds, and operators such as SimulatedBinaryCrossOver and GaussianMutation.
|
|
44
|
+
|
|
45
|
+
Args:
|
|
46
|
+
inference_handler (PyTorchInferenceHandler): An initialized inference handler containing the model and weights.
|
|
47
|
+
bounds (tuple[list[float], list[float]]): A tuple containing the lower and upper bounds for the solution features.
|
|
48
|
+
binary_features (int): Number of binary features located at the END of the feature vector. Will be automatically added to the bounds.
|
|
49
|
+
task (str): The optimization goal, either "minimize" or "maximize".
|
|
50
|
+
algorithm (str): The search algorithm to use.
|
|
51
|
+
population_size (int): Used for CEM and GeneticAlgorithm.
|
|
52
|
+
**searcher_kwargs: Additional keyword arguments to pass to the
|
|
53
|
+
selected search algorithm's constructor (e.g., stdev_init=0.5 for CMAES).
|
|
54
|
+
|
|
55
|
+
Returns:
|
|
56
|
+
Tuple:
|
|
57
|
+
A tuple containing the configured Problem and Searcher.
|
|
58
|
+
"""
|
|
59
|
+
# Create copies to avoid modifying the original lists passed in the `bounds` tuple
|
|
60
|
+
lower_bounds = list(bounds[0])
|
|
61
|
+
upper_bounds = list(bounds[1])
|
|
62
|
+
|
|
63
|
+
# add binary bounds
|
|
64
|
+
if binary_features > 0:
|
|
65
|
+
lower_bounds.extend([0.45] * binary_features)
|
|
66
|
+
upper_bounds.extend([0.55] * binary_features)
|
|
67
|
+
|
|
68
|
+
solution_length = len(lower_bounds)
|
|
69
|
+
device = inference_handler.device
|
|
70
|
+
|
|
71
|
+
# Define the fitness function that EvoTorch will call.
|
|
72
|
+
def fitness_func(solution_tensor: torch.Tensor) -> torch.Tensor:
|
|
73
|
+
# Directly use the continuous-valued tensor from the optimizer for prediction
|
|
74
|
+
predictions = inference_handler.predict_batch(solution_tensor)[PyTorchInferenceKeys.PREDICTIONS]
|
|
75
|
+
return predictions.flatten()
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
# Create the Problem instance.
|
|
79
|
+
if algorithm == "CEM" or algorithm == "SNES":
|
|
80
|
+
problem = evotorch.Problem(
|
|
81
|
+
objective_sense=task,
|
|
82
|
+
objective_func=fitness_func,
|
|
83
|
+
solution_length=solution_length,
|
|
84
|
+
initial_bounds=(lower_bounds, upper_bounds),
|
|
85
|
+
device=device,
|
|
86
|
+
vectorized=True #Use batches
|
|
87
|
+
)
|
|
88
|
+
|
|
89
|
+
# If stdev_init is not provided, calculate it based on the bounds (used for SNES and CEM)
|
|
90
|
+
if 'stdev_init' not in searcher_kwargs:
|
|
91
|
+
# Calculate stdev for each parameter as 25% of its search range
|
|
92
|
+
stdevs = [abs(up - low) * 0.25 for low, up in zip(lower_bounds, upper_bounds)]
|
|
93
|
+
searcher_kwargs['stdev_init'] = torch.tensor(stdevs, dtype=torch.float32, requires_grad=False)
|
|
94
|
+
|
|
95
|
+
if algorithm == "SNES":
|
|
96
|
+
SearcherClass = SNES
|
|
97
|
+
elif algorithm == "CEM":
|
|
98
|
+
SearcherClass = CEM
|
|
99
|
+
# Set a defaults for CEM if not provided
|
|
100
|
+
if 'popsize' not in searcher_kwargs:
|
|
101
|
+
searcher_kwargs['popsize'] = population_size
|
|
102
|
+
if 'parenthood_ratio' not in searcher_kwargs:
|
|
103
|
+
searcher_kwargs['parenthood_ratio'] = 0.2 #float 0.0 - 1.0
|
|
104
|
+
|
|
105
|
+
elif algorithm == "Genetic":
|
|
106
|
+
problem = evotorch.Problem(
|
|
107
|
+
objective_sense=task,
|
|
108
|
+
objective_func=fitness_func,
|
|
109
|
+
solution_length=solution_length,
|
|
110
|
+
bounds=(lower_bounds, upper_bounds),
|
|
111
|
+
device=device,
|
|
112
|
+
vectorized=True #Use batches
|
|
113
|
+
)
|
|
114
|
+
|
|
115
|
+
operators = [
|
|
116
|
+
SimulatedBinaryCrossOver(problem,
|
|
117
|
+
tournament_size=4,
|
|
118
|
+
eta=0.8),
|
|
119
|
+
GaussianMutation(problem,
|
|
120
|
+
stdev=0.1)
|
|
121
|
+
]
|
|
122
|
+
|
|
123
|
+
searcher_kwargs["operators"] = operators
|
|
124
|
+
if 'popsize' not in searcher_kwargs:
|
|
125
|
+
searcher_kwargs['popsize'] = population_size
|
|
126
|
+
|
|
127
|
+
SearcherClass = GeneticAlgorithm
|
|
128
|
+
|
|
129
|
+
else:
|
|
130
|
+
raise ValueError(f"Unknown algorithm '{algorithm}'.")
|
|
131
|
+
|
|
132
|
+
# Create a factory function with all arguments pre-filled
|
|
133
|
+
searcher_factory = partial(SearcherClass, problem, **searcher_kwargs)
|
|
134
|
+
|
|
135
|
+
return problem, searcher_factory
|
|
136
|
+
|
|
137
|
+
|
|
138
|
+
def run_optimization(
|
|
139
|
+
problem: evotorch.Problem,
|
|
140
|
+
searcher_factory: Callable[[],Any],
|
|
141
|
+
num_generations: int,
|
|
142
|
+
target_name: str,
|
|
143
|
+
binary_features: int,
|
|
144
|
+
save_dir: Union[str, Path],
|
|
145
|
+
save_format: Literal['csv', 'sqlite', 'both'],
|
|
146
|
+
feature_names: Optional[List[str]],
|
|
147
|
+
repetitions: int = 1,
|
|
148
|
+
verbose: bool = True
|
|
149
|
+
) -> Optional[dict]:
|
|
150
|
+
"""
|
|
151
|
+
Runs the evolutionary optimization process, with support for multiple repetitions.
|
|
152
|
+
|
|
153
|
+
This function serves as the main engine for the optimization task. It takes a
|
|
154
|
+
configured Problem and a Searcher from EvoTorch and executes the optimization
|
|
155
|
+
for a specified number of generations.
|
|
156
|
+
|
|
157
|
+
It has two modes of operation:
|
|
158
|
+
1. **Single Run (repetitions=1):** Executes the optimization once, saves the
|
|
159
|
+
single best result to a CSV file, and returns it as a dictionary.
|
|
160
|
+
2. **Iterative Analysis (repetitions > 1):** Executes the optimization
|
|
161
|
+
multiple times. Results from each run are streamed incrementally to the
|
|
162
|
+
specified file formats (CSV and/or SQLite database). In this mode,
|
|
163
|
+
the function returns None.
|
|
164
|
+
|
|
165
|
+
Args:
|
|
166
|
+
problem (evotorch.Problem): The configured problem instance, which defines
|
|
167
|
+
the objective function, solution space, and optimization sense.
|
|
168
|
+
searcher_factory (Callable): The searcher factory to generate fresh evolutionary algorithms.
|
|
169
|
+
num_generations (int): The total number of generations to run the search algorithm for in each repetition.
|
|
170
|
+
target_name (str): Target name that will also be used for the CSV filename and SQL table.
|
|
171
|
+
binary_features (int): Number of binary features located at the END of the feature vector.
|
|
172
|
+
save_dir (str | Path): The directory where the result file(s) will be saved.
|
|
173
|
+
save_format (Literal['csv', 'sqlite', 'both'], optional): The format for
|
|
174
|
+
saving results during iterative analysis.
|
|
175
|
+
feature_names (List[str], optional): Names of the solution features for
|
|
176
|
+
labeling the output files. If None, generic names like 'feature_0',
|
|
177
|
+
'feature_1', etc., will be created.
|
|
178
|
+
repetitions (int, optional): The number of independent times to run the
|
|
179
|
+
entire optimization process.
|
|
180
|
+
verbose (bool): Add an Evotorch Pandas logger saved as a csv. Only for the first repetition.
|
|
181
|
+
|
|
182
|
+
Returns:
|
|
183
|
+
Optional[dict]: A dictionary containing the best feature values and the
|
|
184
|
+
fitness score if `repetitions` is 1. Returns `None` if `repetitions`
|
|
185
|
+
is greater than 1, as results are streamed to files instead.
|
|
186
|
+
"""
|
|
187
|
+
# preprocess paths
|
|
188
|
+
save_path = make_fullpath(save_dir, make=True, enforce="directory")
|
|
189
|
+
|
|
190
|
+
sanitized_target_name = sanitize_filename(target_name)
|
|
191
|
+
if not sanitized_target_name.endswith(".csv"):
|
|
192
|
+
sanitized_target_name = sanitized_target_name + ".csv"
|
|
193
|
+
|
|
194
|
+
csv_path = save_path / sanitized_target_name
|
|
195
|
+
|
|
196
|
+
db_path = save_path / "Optimization.db"
|
|
197
|
+
db_table_name = target_name
|
|
198
|
+
|
|
199
|
+
# preprocess feature names
|
|
200
|
+
if feature_names is None:
|
|
201
|
+
feature_names = [f"feature_{i}" for i in range(problem.solution_length)] # type: ignore
|
|
202
|
+
|
|
203
|
+
# --- SINGLE RUN LOGIC ---
|
|
204
|
+
if repetitions <= 1:
|
|
205
|
+
searcher = searcher_factory()
|
|
206
|
+
_LOGGER.info(f"🤖 Starting optimization with {searcher.__class__.__name__} Algorithm for {num_generations} generations...")
|
|
207
|
+
# for _ in trange(num_generations, desc="Optimizing"):
|
|
208
|
+
# searcher.step()
|
|
209
|
+
|
|
210
|
+
# Attach logger if requested
|
|
211
|
+
if verbose:
|
|
212
|
+
pandas_logger = PandasLogger(searcher)
|
|
213
|
+
|
|
214
|
+
searcher.run(num_generations) # Use the built-in run method for simplicity
|
|
215
|
+
|
|
216
|
+
# # DEBUG new searcher objects
|
|
217
|
+
# for status_key in searcher.iter_status_keys():
|
|
218
|
+
# print("===", status_key, "===")
|
|
219
|
+
# print(searcher.status[status_key])
|
|
220
|
+
# print()
|
|
221
|
+
|
|
222
|
+
# Get results from the .status dictionary
|
|
223
|
+
# SNES and CEM use the key 'center' to get mean values if needed best_solution_tensor = searcher.status["center"]
|
|
224
|
+
best_solution_container = searcher.status["pop_best"]
|
|
225
|
+
best_solution_tensor = best_solution_container.values
|
|
226
|
+
best_fitness = best_solution_container.evals
|
|
227
|
+
|
|
228
|
+
best_solution_np = best_solution_tensor.cpu().numpy()
|
|
229
|
+
|
|
230
|
+
# threshold binary features
|
|
231
|
+
if binary_features > 0:
|
|
232
|
+
best_solution_thresholded = threshold_binary_values(input_array=best_solution_np, binary_values=binary_features)
|
|
233
|
+
else:
|
|
234
|
+
best_solution_thresholded = best_solution_np
|
|
235
|
+
|
|
236
|
+
result_dict = {name: value for name, value in zip(feature_names, best_solution_thresholded)}
|
|
237
|
+
result_dict[target_name] = best_fitness.item()
|
|
238
|
+
|
|
239
|
+
_save_result(result_dict, 'csv', csv_path) # Single run defaults to CSV
|
|
240
|
+
|
|
241
|
+
# Process logger
|
|
242
|
+
if verbose:
|
|
243
|
+
_handle_pandas_log(pandas_logger, save_path=save_path)
|
|
244
|
+
|
|
245
|
+
_LOGGER.info(f"✅ Optimization complete. Best solution saved to '{csv_path.name}'")
|
|
246
|
+
return result_dict
|
|
247
|
+
|
|
248
|
+
# --- MULTIPLE REPETITIONS LOGIC ---
|
|
249
|
+
else:
|
|
250
|
+
_LOGGER.info(f"🏁 Starting optimal solution space analysis with {repetitions} repetitions...")
|
|
251
|
+
|
|
252
|
+
db_context = DatabaseManager(db_path) if save_format in ['sqlite', 'both'] else nullcontext()
|
|
253
|
+
|
|
254
|
+
with db_context as db_manager:
|
|
255
|
+
if db_manager:
|
|
256
|
+
schema = {name: "REAL" for name in feature_names}
|
|
257
|
+
schema[target_name] = "REAL"
|
|
258
|
+
db_manager.create_table(db_table_name, schema)
|
|
259
|
+
|
|
260
|
+
print("")
|
|
261
|
+
# Repetitions loop
|
|
262
|
+
pandas_logger = None
|
|
263
|
+
for i in trange(repetitions, desc="Repetitions"):
|
|
264
|
+
# CRITICAL: Create a fresh searcher for each run using the factory
|
|
265
|
+
searcher = searcher_factory()
|
|
266
|
+
|
|
267
|
+
# Attach logger if requested
|
|
268
|
+
if verbose and i==0:
|
|
269
|
+
pandas_logger = PandasLogger(searcher)
|
|
270
|
+
|
|
271
|
+
searcher.run(num_generations) # Use the built-in run method for simplicity
|
|
272
|
+
|
|
273
|
+
# Get results from the .status dictionary
|
|
274
|
+
# SNES and CEM use the key 'center' to get mean values if needed best_solution_tensor = searcher.status["center"]
|
|
275
|
+
best_solution_container = searcher.status["pop_best"]
|
|
276
|
+
best_solution_tensor = best_solution_container.values
|
|
277
|
+
best_fitness = best_solution_container.evals
|
|
278
|
+
|
|
279
|
+
best_solution_np = best_solution_tensor.cpu().numpy()
|
|
280
|
+
|
|
281
|
+
# threshold binary features
|
|
282
|
+
if binary_features > 0:
|
|
283
|
+
best_solution_thresholded = threshold_binary_values(input_array=best_solution_np, binary_values=binary_features)
|
|
284
|
+
else:
|
|
285
|
+
best_solution_thresholded = best_solution_np
|
|
286
|
+
|
|
287
|
+
# make results dictionary
|
|
288
|
+
result_dict = {name: value for name, value in zip(feature_names, best_solution_thresholded)}
|
|
289
|
+
result_dict[target_name] = best_fitness.item()
|
|
290
|
+
|
|
291
|
+
# Save each result incrementally
|
|
292
|
+
_save_result(result_dict, save_format, csv_path, db_manager, db_table_name)
|
|
293
|
+
|
|
294
|
+
# Process logger
|
|
295
|
+
if pandas_logger is not None:
|
|
296
|
+
_handle_pandas_log(pandas_logger, save_path=save_path)
|
|
297
|
+
|
|
298
|
+
_LOGGER.info(f"✅ Optimal solution space complete. Results saved to '{save_path}'")
|
|
299
|
+
return None
|
|
300
|
+
|
|
301
|
+
|
|
302
|
+
def _handle_pandas_log(logger: PandasLogger, save_path: Path):
|
|
303
|
+
log_dataframe = logger.to_dataframe()
|
|
304
|
+
save_dataframe(df=log_dataframe, save_dir=save_path / "EvolutionLog", filename="evolution")
|
|
305
|
+
|
|
306
|
+
|
|
307
|
+
def info():
|
|
308
|
+
_script_info(__all__)
|
|
@@ -1,226 +0,0 @@
|
|
|
1
|
-
import torch
|
|
2
|
-
import numpy #handling torch to numpy
|
|
3
|
-
import evotorch
|
|
4
|
-
from evotorch.algorithms import CMAES, SteadyStateGA
|
|
5
|
-
from evotorch.logging import StdOutLogger
|
|
6
|
-
from typing import Literal, Union, Tuple, List, Optional
|
|
7
|
-
from pathlib import Path
|
|
8
|
-
from tqdm.auto import trange
|
|
9
|
-
from contextlib import nullcontext
|
|
10
|
-
|
|
11
|
-
from .path_manager import make_fullpath, sanitize_filename
|
|
12
|
-
from ._logger import _LOGGER
|
|
13
|
-
from ._script_info import _script_info
|
|
14
|
-
from .ML_inference import PyTorchInferenceHandler
|
|
15
|
-
from .keys import PyTorchInferenceKeys
|
|
16
|
-
from .SQL import DatabaseManager
|
|
17
|
-
from .optimization_tools import _save_result
|
|
18
|
-
from .utilities import threshold_binary_values
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
__all__ = [
|
|
22
|
-
"create_pytorch_problem",
|
|
23
|
-
"run_optimization"
|
|
24
|
-
]
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
def create_pytorch_problem(
|
|
28
|
-
handler: PyTorchInferenceHandler,
|
|
29
|
-
bounds: Tuple[List[float], List[float]],
|
|
30
|
-
binary_features: int,
|
|
31
|
-
task: Literal["minimize", "maximize"],
|
|
32
|
-
algorithm: Literal["CMAES", "GA"] = "CMAES",
|
|
33
|
-
verbose: bool = False,
|
|
34
|
-
**searcher_kwargs
|
|
35
|
-
) -> Tuple[evotorch.Problem, evotorch.Searcher]: # type: ignore
|
|
36
|
-
"""
|
|
37
|
-
Creates and configures an EvoTorch Problem and Searcher for a PyTorch model.
|
|
38
|
-
|
|
39
|
-
Args:
|
|
40
|
-
handler (PyTorchInferenceHandler): An initialized inference handler
|
|
41
|
-
containing the model and weights.
|
|
42
|
-
bounds (tuple[list[float], list[float]]): A tuple containing the lower
|
|
43
|
-
and upper bounds for the solution features.
|
|
44
|
-
binary_features (int): Number of binary features located at the END of the feature vector. Will be automatically added to the bounds.
|
|
45
|
-
task (str): The optimization goal, either "minimize" or "maximize".
|
|
46
|
-
algorithm (str): The search algorithm to use, "CMAES" or "GA" (SteadyStateGA).
|
|
47
|
-
verbose (bool): Add an Evotorch logger for real-time console updates.
|
|
48
|
-
**searcher_kwargs: Additional keyword arguments to pass to the
|
|
49
|
-
selected search algorithm's constructor (e.g., stdev_init=0.5 for CMAES).
|
|
50
|
-
|
|
51
|
-
Returns:
|
|
52
|
-
Tuple:
|
|
53
|
-
A tuple containing the configured evotorch.Problem and evotorch.Searcher.
|
|
54
|
-
"""
|
|
55
|
-
lower_bounds, upper_bounds = bounds
|
|
56
|
-
|
|
57
|
-
# add binary bounds
|
|
58
|
-
if binary_features > 0:
|
|
59
|
-
lower_bounds.extend([0.45] * binary_features)
|
|
60
|
-
upper_bounds.extend([0.55] * binary_features)
|
|
61
|
-
|
|
62
|
-
solution_length = len(lower_bounds)
|
|
63
|
-
device = handler.device
|
|
64
|
-
|
|
65
|
-
# Define the fitness function that EvoTorch will call.
|
|
66
|
-
@evotorch.decorators.to_tensor # type: ignore
|
|
67
|
-
@evotorch.decorators.on_aux_device(device)
|
|
68
|
-
def fitness_func(solution_tensor: torch.Tensor) -> torch.Tensor:
|
|
69
|
-
# Directly use the continuous-valued tensor from the optimizer for prediction
|
|
70
|
-
predictions = handler.predict_batch(solution_tensor)[PyTorchInferenceKeys.PREDICTIONS]
|
|
71
|
-
return predictions.flatten()
|
|
72
|
-
|
|
73
|
-
# Create the Problem instance.
|
|
74
|
-
problem = evotorch.Problem(
|
|
75
|
-
objective_sense=task,
|
|
76
|
-
objective_func=fitness_func,
|
|
77
|
-
solution_length=solution_length,
|
|
78
|
-
initial_bounds=(lower_bounds, upper_bounds),
|
|
79
|
-
device=device,
|
|
80
|
-
)
|
|
81
|
-
|
|
82
|
-
# Create the selected searcher instance.
|
|
83
|
-
if algorithm == "CMAES":
|
|
84
|
-
searcher = CMAES(problem, **searcher_kwargs)
|
|
85
|
-
elif algorithm == "GA":
|
|
86
|
-
searcher = SteadyStateGA(problem, **searcher_kwargs)
|
|
87
|
-
else:
|
|
88
|
-
raise ValueError(f"Unknown algorithm '{algorithm}'. Choose 'CMAES' or 'GA'.")
|
|
89
|
-
|
|
90
|
-
# Add a logger for real-time console updates.
|
|
91
|
-
# This gives the user immediate feedback on the optimization progress.
|
|
92
|
-
if verbose:
|
|
93
|
-
_ = StdOutLogger(searcher)
|
|
94
|
-
|
|
95
|
-
return problem, searcher
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
def run_optimization(
|
|
99
|
-
problem: evotorch.Problem,
|
|
100
|
-
searcher: evotorch.Searcher, # type: ignore
|
|
101
|
-
num_generations: int,
|
|
102
|
-
target_name: str,
|
|
103
|
-
binary_features: int,
|
|
104
|
-
save_dir: Union[str, Path],
|
|
105
|
-
save_format: Literal['csv', 'sqlite', 'both'],
|
|
106
|
-
feature_names: Optional[List[str]],
|
|
107
|
-
repetitions: int = 1
|
|
108
|
-
) -> Optional[dict]:
|
|
109
|
-
"""
|
|
110
|
-
Runs the evolutionary optimization process, with support for multiple repetitions.
|
|
111
|
-
|
|
112
|
-
This function serves as the main engine for the optimization task. It takes a
|
|
113
|
-
configured Problem and a Searcher from EvoTorch and executes the optimization
|
|
114
|
-
for a specified number of generations.
|
|
115
|
-
|
|
116
|
-
It has two modes of operation:
|
|
117
|
-
1. **Single Run (repetitions=1):** Executes the optimization once, saves the
|
|
118
|
-
single best result to a CSV file, and returns it as a dictionary.
|
|
119
|
-
2. **Iterative Analysis (repetitions > 1):** Executes the optimization
|
|
120
|
-
multiple times. Results from each run are streamed incrementally to the
|
|
121
|
-
specified file formats (CSV and/or SQLite database). In this mode,
|
|
122
|
-
the function returns None.
|
|
123
|
-
|
|
124
|
-
Args:
|
|
125
|
-
problem (evotorch.Problem): The configured problem instance, which defines
|
|
126
|
-
the objective function, solution space, and optimization sense.
|
|
127
|
-
searcher (evotorch.Searcher): The configured searcher instance, which
|
|
128
|
-
contains the evolutionary algorithm (e.g., CMAES, GA).
|
|
129
|
-
num_generations (int): The total number of generations to run the
|
|
130
|
-
search algorithm for in each repetition.
|
|
131
|
-
target_name (str): Target name that will also be used for the CSV filename and SQL table.
|
|
132
|
-
binary_features (int): Number of binary features located at the END of the feature vector.
|
|
133
|
-
save_dir (str | Path): The directory where the result file(s) will be saved.
|
|
134
|
-
save_format (Literal['csv', 'sqlite', 'both'], optional): The format for
|
|
135
|
-
saving results during iterative analysis. Defaults to 'both'.
|
|
136
|
-
feature_names (List[str], optional): Names of the solution features for
|
|
137
|
-
labeling the output files. If None, generic names like 'feature_0',
|
|
138
|
-
'feature_1', etc., will be created. Defaults to None.
|
|
139
|
-
repetitions (int, optional): The number of independent times to run the
|
|
140
|
-
entire optimization process. Defaults to 1.
|
|
141
|
-
|
|
142
|
-
Returns:
|
|
143
|
-
Optional[dict]: A dictionary containing the best feature values and the
|
|
144
|
-
fitness score if `repetitions` is 1. Returns `None` if `repetitions`
|
|
145
|
-
is greater than 1, as results are streamed to files instead.
|
|
146
|
-
"""
|
|
147
|
-
# preprocess paths
|
|
148
|
-
save_path = make_fullpath(save_dir, make=True, enforce="directory")
|
|
149
|
-
|
|
150
|
-
sanitized_target_name = sanitize_filename(target_name)
|
|
151
|
-
if not sanitized_target_name.endswith(".csv"):
|
|
152
|
-
sanitized_target_name = sanitized_target_name + ".csv"
|
|
153
|
-
|
|
154
|
-
csv_path = save_path / sanitized_target_name
|
|
155
|
-
|
|
156
|
-
db_path = save_path / "Optimization.db"
|
|
157
|
-
db_table_name = target_name
|
|
158
|
-
|
|
159
|
-
# preprocess feature names
|
|
160
|
-
if feature_names is None:
|
|
161
|
-
feature_names = [f"feature_{i}" for i in range(problem.solution_length)] # type: ignore
|
|
162
|
-
|
|
163
|
-
# --- SINGLE RUN LOGIC ---
|
|
164
|
-
if repetitions <= 1:
|
|
165
|
-
_LOGGER.info(f"🤖 Starting optimization with {searcher.__class__.__name__} for {num_generations} generations...")
|
|
166
|
-
for _ in trange(num_generations, desc="Optimizing"):
|
|
167
|
-
searcher.step()
|
|
168
|
-
|
|
169
|
-
best_solution_tensor, best_fitness = searcher.best
|
|
170
|
-
best_solution_np = best_solution_tensor.cpu().numpy()
|
|
171
|
-
|
|
172
|
-
# threshold binary features
|
|
173
|
-
if binary_features > 0:
|
|
174
|
-
best_solution_thresholded = threshold_binary_values(input_array=best_solution_np, binary_values=binary_features)
|
|
175
|
-
else:
|
|
176
|
-
best_solution_thresholded = best_solution_np
|
|
177
|
-
|
|
178
|
-
result_dict = {name: value for name, value in zip(feature_names, best_solution_thresholded)}
|
|
179
|
-
result_dict[target_name] = best_fitness.item()
|
|
180
|
-
|
|
181
|
-
_save_result(result_dict, 'csv', csv_path) # Single run defaults to CSV
|
|
182
|
-
_LOGGER.info(f"✅ Optimization complete. Best solution saved to '{csv_path.name}'")
|
|
183
|
-
return result_dict
|
|
184
|
-
|
|
185
|
-
# --- MULTIPLE REPETITIONS LOGIC ---
|
|
186
|
-
else:
|
|
187
|
-
_LOGGER.info(f"🏁 Starting optimal solution space analysis with {repetitions} repetitions...")
|
|
188
|
-
|
|
189
|
-
db_context = DatabaseManager(db_path) if save_format in ['sqlite', 'both'] else nullcontext()
|
|
190
|
-
|
|
191
|
-
with db_context as db_manager:
|
|
192
|
-
if db_manager:
|
|
193
|
-
schema = {name: "REAL" for name in feature_names}
|
|
194
|
-
schema[target_name] = "REAL"
|
|
195
|
-
db_manager.create_table(db_table_name, schema)
|
|
196
|
-
|
|
197
|
-
for i in trange(repetitions, desc="Repetitions"):
|
|
198
|
-
_LOGGER.info(f"--- Starting Repetition {i+1}/{repetitions} ---")
|
|
199
|
-
|
|
200
|
-
# CRITICAL: Re-initialize the searcher to ensure each run is independent
|
|
201
|
-
searcher.reset()
|
|
202
|
-
|
|
203
|
-
for _ in range(num_generations): # Inner loop does not need a progress bar
|
|
204
|
-
searcher.step()
|
|
205
|
-
|
|
206
|
-
best_solution_tensor, best_fitness = searcher.best
|
|
207
|
-
best_solution_np = best_solution_tensor.cpu().numpy()
|
|
208
|
-
|
|
209
|
-
# threshold binary features
|
|
210
|
-
if binary_features > 0:
|
|
211
|
-
best_solution_thresholded = threshold_binary_values(input_array=best_solution_np, binary_values=binary_features)
|
|
212
|
-
else:
|
|
213
|
-
best_solution_thresholded = best_solution_np
|
|
214
|
-
|
|
215
|
-
result_dict = {name: value for name, value in zip(feature_names, best_solution_thresholded)}
|
|
216
|
-
result_dict[target_name] = best_fitness.item()
|
|
217
|
-
|
|
218
|
-
# Save each result incrementally
|
|
219
|
-
_save_result(result_dict, save_format, csv_path, db_manager, db_table_name)
|
|
220
|
-
|
|
221
|
-
_LOGGER.info(f"✅ Optimal solution space complete. Results saved to '{save_path}'")
|
|
222
|
-
return None
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
def info():
|
|
226
|
-
_script_info(__all__)
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/dragon_ml_toolbox.egg-info/dependency_links.txt
RENAMED
|
File without changes
|
|
File without changes
|
{dragon_ml_toolbox-6.0.1 → dragon_ml_toolbox-6.1.1}/dragon_ml_toolbox.egg-info/top_level.txt
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|